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Language

Definition (Language)
» 3 denotes a finite, non-empty set called alphabet; its elements

are called symbol

» For symbols h, b, ..., In € X we write bl - - I, for its
concatenation; concatenated symbols are called words

» The set of all words constructed by concatenating symbols in
I C ¥ is denoted by I'*

» A subset L C ¥* is called language
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Languages and Turing-machines

Definition (Language)

» For a word w we write |w| for its length.
» Shorthand notation:
» The concatenation of words wy = 1 -+ l,;, wo = ki -- -k, is
defined as wiwy 1= /1 tee /mkl s kn-
> Let I be a set of words. Then I'™* denotes the set of all words
constructed by concatenating the words in I.

» For a letter a we write a* instead of {a}*; similarly we write
w* instead of {w}* for a word w.
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Turing-machines

Turing-machines

Definition (Turing-machine)

A (deterministic) Turing-machine M is a quadruple

M= (Q,X%,d,s), where Q is a finite set of states and ¥ is an
alphabet containing the special symbols U, the blank symbol, and
>, the first symbol; s € Q is the initial state. Q and X are disjoint.
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Turing-machines

Turing-machines

Definition (Turing-machine)

A (deterministic) Turing-machine M is a quadruple

M= (Q,X%,d,s), where Q is a finite set of states and ¥ is an
alphabet containing the special symbols LI, the blank symbol, and
>, the first symbol, s € Q is the initial state. @ and ¥ are disjoint.
Finally 6 : Q x £ — (QU {h, “yes", “no"}) x ¥ x {«, —,—}is
called transition function. We assume that the halting state h, the
accepting state "yes", the rejecting state “no” and the cursor
direction —, < and — are neither in Q nor in ¥.
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Languages and Turing-machines

Turing-machines

A Turing-machine can be seen as a cursor on a string of symbols
and having a definite internal state. Every time the cursor moves
over the end of the string a new U is inserted on the string.

The function 4 is the “program” of the machine. It specifies, for
each combination of the current state g € Q and current symbol
a€ X, atriple 6(q,/) = (p, b, D). p is the next state, b is the
symbol, which is written over a, and D € {—, <, —} is the
direction in which the cursor will move.
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Languages and Turing-machines

Turing-machines

A Turing-machine can be seen as a cursor on a string of symbols
and having a definite internal state. Every time the cursor moves
over the end of the string a new U is inserted on the string.

The function 4 is the “program” of the machine. It specifies, for
each combination of the current state g € Q and current symbol
a€ X, atriple 6(q,/) = (p, b, D). p is the next state, b is the
symbol, which is written over a, and D € {—, <, —} is the
direction in which the cursor will move.

By definition a Turing-machine always starts on the symbol . It
cannot overwrite > and will always upon reading > move to the
right.
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Turing-machines
L O S O

Input of a Turing-machine

A Turing-machine M may be initialized with a word x written on
its string. This word x is called input of M and for the resulting
Turing-machine we write M(x).
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Turing-machines
Input of a Turing-machine
A Turing-machine M may be initialized with a word x written on
its string. This word x is called input of M and for the resulting
Turing-machine we write M(x).
Output of a Turing-machine

If a Turing-machine M halts on input x — i.e. M is in one of its
three halting states h, “yes” or “no” — we can define its output:
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Languages and Turing-machines

Turing-machines

Input of a Turing-machine

A Turing-machine M may be initialized with a word x written on
its string. This word x is called input of M and for the resulting
Turing-machine we write M(x).

Output of a Turing-machine

If a Turing-machine M halts on input x — i.e. M is in one of its
three halting states h, “yes” or “no” — we can define its output:If
M is in state "yes” it is said to accept x and M(x) ="yes"; if M is
in state “no” it is said to reject x and M(x) ="no”.
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Languages and Turing-machines

Turing-machines

Input of a Turing-machine

A Turing-machine M may be initialized with a word x written on
its string. This word x is called input of M and for the resulting
Turing-machine we write M(x).

Output of a Turing-machine

If a Turing-machine M halts on input x — i.e. M is in one of its
three halting states h, “yes” or “no” — we can define its output:If
M is in state "yes” it is said to accept x and M(x) ="yes"; if M is
in state “no” it is said to reject x and M(x) ="no".Otherwise it is
in state h and the output of M is the word on the string of M: by
definition this string starts with a <, followed by a word y, whose
last symbol is not an LI, possibly followed by a number of
Ll-symbols. Then we consider y to be the output of M and we
write M(x) = y.
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Languages and Turing-machines

Turing-machines

Input of a Turing-machine

A Turing-machine M may be initialized with a word x written on
its string. This word x is called input of M and for the resulting
Turing-machine we write M(x).

Output of a Turing-machine

If a Turing-machine M halts on input x — i.e. M is in one of its
three halting states h, “yes” or “no” — we can define its output:If
M is in state "yes” it is said to accept x and M(x) ="yes"; if M is
in state “no” it is said to reject x and M(x) ="no".Otherwise it is
in state h and the output of M is the word on the string of M: by
definition this string starts with a <, followed by a word y, whose
last symbol is not an LI, possibly followed by a number of
Ll-symbols. Then we consider y to be the output of M and we
write M(x) = y.

If M does not halt on input x, we write M(x) =,
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Turing-machines
L O S O

Example
M= (Q,X%,d,s), where Q ={s}, X ={0,1,U,>} and ¢ as in the
table below. We examine the behavior of M with the input 101:

geQ lexX | (g,
s > (s,>,—)
S 0 (s,1,—)
s 1 (s,0,—)
s u | (hu,—)
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Complexity Classes

Turing-machines

Example

M= (Q,X%,d,s), where Q ={s}, X ={0,1,U,>} and ¢ as in the
table below. We examine the behavior of M with the input 101:

geQ lexX | (g,
s > (s,>,—)
S 0 (s,1,—)
s 1 (s,0,—)
s u | (hu,—)

0. s, >101
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Turing-machines
L O S O

Example
M= (Q,X%,d,s), where Q ={s}, X ={0,1,U,>} and ¢ as in the
table below. We examine the behavior of M with the input 101:

rmraw I
s > (s,>,—) TS
S 0 (s,1,—)

s 1 (s,0,—)
s u | (hu,—)
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Turing-machines
L O S O

Example

M= (Q,X%,d,s), where Q ={s}, X ={0,1,U,>} and ¢ as in the
table below. We examine the behavior of M with the input 101:

0. s, »101
9€Q I€x | 9a.)) 1. s, 101
s > (s,>,—) N
< 0 (s,1,—) 2. s, 001
s 1 (s,0,—)
s u | (hu,—)

Stefan Kunkel: Introduction to the Theory of Complexity Classes and Logic 10/ 71



Languages and Turing-machines Complexity Classes

Turing-machines
L O S O

Example

M= (Q,X%,d,s), where Q ={s}, X ={0,1,U,>} and ¢ as in the
table below. We examine the behavior of M with the input 101:

o Ter e | 0o
s > (s =) o oot
° 0 (s.1,—) 3 s, DOIl
s 1 (s,0,—)
s u | (hu,—)
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Turing-machines
L O S O

Example
M= (Q,%,d,s), where Q = {s}, ¥ ={0,1,U,>} and ¢ as in the
table below. We examine the behavior of M with the input 101:

cmeam con BT
s >l (52 =) o oot
s 0 (s,1,—) 3. s, DOIl
s L1 &0=) 1 4 oo
s u | (hu,—) S =
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Turing-machines

Example
M= (Q,%,d,s), where Q = {s}, ¥ ={0,1,U,>} and ¢ as in the
table below. We examine the behavior of M with the input 101:

0. s 101

9€Q Iex| ¥q.)) 1. s, 5101
s > se =) S Loon
s 0 | (sL=) 1 3 on
s Lo (80.=) 1 o ot
s U (U ) 5 p soto
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Languages and Turing-machines

Turing-machines

Example
M= (Q,%,d,s), where Q = {s}, ¥ ={0,1,U,>} and ¢ as in the
table below. We examine the behavior of M with the input 101:

0. s 101

9€Q Iex| ¥q.)) 1. s, 5101
g > se =) S Loon
s 0 | (sL=) 1 3 on
s Lo (80.=) 1 o ot
s U (U ) 5 p soto

So the output is M(101) = 010.
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Turing-machines

Definition (Configuration)

A configuration of a Turing-machine M = (Q, X, d, s) contains all
information of the current state of M. Formally it is a triple

(g, w, u), where g € Q is the current state of M, w is the word on
the left of the cursor including the symbol scanned by the cursor
and v is the word on the right.

In the example M is at step 3. in the configuration (s,011,¢).
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Turing-machines

Definition (Yields in one step)

Let M be a Turing-machine. We say that a configuration (g, w, u)
yields the configuration (g’, w’, u’) in one step, denoted by

(g, w,u) M (¢',w', '), if a step of the machine from configuration
(g, w, u) results in the configuration (g¢’, w’, u').
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Languages and Turing-machines

Turing-machines

Definition (Yields in one step)

Let M be a Turing-machine. We say that a configuration (g, w, u)
yields the configuration (g’, w’, u’) in one step, denoted by

(g, w,u) M (¢',w', '), if a step of the machine from configuration
(g, w, u) results in the configuration (g¢’, w’, u').

Formally, it means that the following holds: Let / be the last
symbol of w and 6(q,/) = (¢, /', D). If D =—, then w' is w with
| replaced by I’ and appended by the first symbol of u; v is u with
its first symbol removed. If D =<, then w’ is w with /' omitted
from its end and ' is /'u. Finally if D =—, then w’ is w with /
replaced by / and v/ = u.
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Turing-machines
L O S O

Definition (Yields)
Now that we have defined yields in one step, we define yields to be
its transitive closure:
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Turing-machines

Definition (Yields)

Now that we have defined yields in one step, we define yields to be
its transitive closure:That is, we say a configuration (g, w, u) yields
(", w”,u") in k steps, written as (q, w, u) M (", w" "), if
there is a configuration (¢’, w’, u) such that

(g, w,u) 2" (¢, w', /) and (¢, W', o) 2 (¢, ", u").
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Languages and Turing-machines

Turing-machines

Definition (Yields)
Now that we have defined yields in one step, we define yields to be
its transitive closure:That is, we say a configuration (g, w, u) yields

. . M :
(", w”,u") in k steps, written as (q, w,u) = (q",w”, "), if
there is a configuration (¢’, w’, u) such that

(g, w,u) M= (¢',w', ) and (¢, W', ) M (g",w”, u").Finally,
we say a configuration (g, w, u) yields a configuration (¢’, w’, '),

if there is a k > 0 such that (g, w, u) M (¢',w', ). In this case
we write (g, w, u) M (q',w', ).
In the example (s,>,101) yields (h,>010,LJ).
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Turing-machines

Definition (Deciding and accepting languages)

Let L C (X \ {U})* be a language and M be a Turing-machine. If
the output of M for any word x is either “yes”, when x € L, or
“no”, when x ¢ L then we say, that M decides L and L is called a
recursive language.

If M(x) ="yes", when x € L, and M(x) =", when x ¢ L, then we
say M simply accepts L and L is called recursively enumerable.
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Turing-machines

Definition (Computation of functions)

Let f: (X \ {U})* — X* be function and M be a Turing-machine
with alphabet X. We say that M computes f if, for any word

x € (Z\{u})*, f(x) = M(x). Then f is called a recursive
function.

For example the function from {0,1}* to {0, 1, U}, that replaces 0
with 1 and vice versa until it encounters a L, is recursive by the
example.
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Languages and Turing-machines Complexity Classes

Turing-machines

Definition (k-string Turing-machines)

A k-string Turing-machine is a quadruple M = (Q, X, 4, s), where
Q, X and s are exactly as in ordinary Turing-machines. But here §
is a function from @ x X* to

(QU{h, “yes", “no"}) x (L x {«, —,—})K. We still assume that
> is at the start of each string, cannot be overwritten and upon
reading it the cursor must move to the right.

The input of M is written on the first string and the output on the
last string.
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Languages and Turing-machines

Turing-machines

Definition (k-string Turing-machines)

A k-string Turing-machine is a quadruple M = (Q, X, 4, s), where
Q, X and s are exactly as in ordinary Turing-machines. But here §
is a function from @ x X* to

(QU{h, “yes", “no"}) x (L x {«, —,—})K. We still assume that
> is at the start of each string, cannot be overwritten and upon
reading it the cursor must move to the right.

The input of M is written on the first string and the output on the
last string.

Intuitively, & decides the next state of the machine by looking at its
current state and the symbol at the cursor of each band. It then
overwrites the current symbol on each band by another and moves
the cursors on each band either left or right or not at all.
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Languages and Turing-machines

Turing-machines

Analogous to 1-string Turing-machines we define configuration and
yields for k-string Turing-machines:

A configuration is a k + 2 tuple, with the first coordinate being the
current state, the even ones being the word on the left of the
cursor, the odd ones the word on the right of the cursor.

Yields is defined exactly as in 1-string machines after taking the
greater number of strings into account.
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Languages and Turing-machines

Turing-machines

Example (Palindromes)

We now construct a 2-string Turing-machine, that decides the
language of palindromes on ¥ = {0,1}. It first copies its input on
the second string, then it moves the first cursor on the first symbol
of the input and the second on the last symbol. Then it moves the
two cursors in opposite direction comparing the two symbols at the
cursors.
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Languages and Turing-machines

Turing-machines

Example (Palindromes)

We now construct a 2-string Turing-machine, that decides the
language of palindromes on ¥ = {0,1}. It first copies its input on
the second string, then it moves the first cursor on the first symbol
of the input and the second on the last symbol. Then it moves the
two cursors in opposite direction comparing the two symbols at the
cursors.

There is no Turing-machine significantly faster at deciding
palindromes than this one.
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Turing-machines

Example (Palindromes)

geQ heX hbeX (5(q, /1,/2)
> > (s,>,—,>,—)
s 0 L (s,0,—,0,—)
s 1 L (s,1,—,1,—)
s L U (g,U, —,1,—)
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Languages and Turing-machines Complexity Classes

Turing-machines
L O S O

Example (Palindromes)

geQ heX hbeX (5(q, /1,/2)

> > (s,>,—,>,—)
s 0 L (s,0,—,0,—)
s 1 L (s,1,—,1,—)
s L U (g,U,—,U,—)
q 0 U (g,0,—,U,—)
q 1 L (g,1,—,1,—)
q > L (p,>, —, L, <)
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Turing-machines
L O S O

Example (Palindromes)

qc Q heXx beXx (5(q, /1,/2)
s > > (s,>,—,>,—)
s 0 L (s,0,—,0,—)
s 1 L (s,1,—,1,—)
s L L (g,U,—,U,—)
q 0 U (q,O,%,I_l,—)
q 1 U (g,1,«,,—)
q > U (P,D,—>,|—|,‘_)
1% 0 0 (p, 0,—>,0,<—)
p 1 1 (p,1,—,1,<)
p 0 1 (“no”,0,—,1, <)
p 1 0 ("no”,1,—,0,«)
p L > (“yes", U, —,>, <)
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Nondeterminism

Nondeterminism

Definition (Nondeterministic Turing-machines)

A nondeterministic Turing-machine is a quadruple N = (Q, X, 0, s),
where Q, X and s are as in deterministic Turing-machines. But
now ¢ is a function from @ X X to

P((QU {h, “yes", “no"}) x ¥ x {«,—,—1}). That s, for a
nondeterministic machine there may be more than one appropriate
next step or none at all. It can also be in multiple configurations at
once.
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Nondeterminism

Nondeterminism

Definition (Nondeterministic Turing-machines)

A nondeterministic Turing-machine is a quadruple N = (Q, X, 0, s),
where Q, X and s are as in deterministic Turing-machines. But
now ¢ is a function from @ X X to

P((QU {h, “yes", “no"}) x ¥ x {«,—,—1}). That s, for a
nondeterministic machine there may be more than one appropriate
next step or none at all. It can also be in multiple configurations at
once.

A computation of a nondeterministic machine can be imagined as
a computation tree where each path can be computed by a
deterministic machine.
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Nondeterminism

Definition (Yields for nondeterministic Turing-machines)
Similarily we define (g, w, u) yields (g’, w’, u’) in one step as with
deterministic machines except that only one (¢, /', D) € d(q,/)
must match the definition of yields in one step for deterministic
machines.
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Languages and Turing-machines Complexity Classes

Nondeterminism

Definition (Yields for nondeterministic Turing-machines)
Similarily we define (g, w, u) yields (g’, w’, u’) in one step as with
deterministic machines except that only one (¢, /', D) € d(q,/)
must match the definition of yields in one step for deterministic

machines.
Yields in k steps and yields are defined exactly as with
deterministic machines.
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Languages and Turing-machines Complexity Classes

Nondeterminism

Definition (Deciding languages for nondeterministic
Turing-machines)

We say N decides a language L, if for any x € ¥* the following is
true: x € L if and only if (s,>, x) yields (“yes", w, u) for some
words w and u.

This definition of decision sets the nondeterministic machine apart
from the deterministic one: An input is accepted if there is one
computation path that results in “yes”.
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Outline

Complexity Classes
P and NP
Space Complexity
Relation between various Complexity Classes
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P and NP

P and NP

We now introduce now the notion of the time needed to compute
an output.
Definition (TIME(f(n)))

For an input x of a k-string Turing-machine M the time required
by M on input x is simply the number of steps to halting. If M
does not halt on x the time required is co.
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P and NP

P and NP

We now introduce now the notion of the time needed to compute
an output.

Definition (TIME(f(n)))

For an input x of a k-string Turing-machine M the time required
by M on input x is simply the number of steps to halting. If M
does not halt on x the time required is oco.

Now let f : N — N be a function. We say the M operates within
time f(n) if, for any input x, the time required by M on x is at
most f(|x|). f is then called a time bound for M.
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Complexity Classes

P and NP

P and NP

We now introduce now the notion of the time needed to compute
an output.

Definition (TIME(f(n)))

For an input x of a k-string Turing-machine M the time required
by M on input x is simply the number of steps to halting. If M
does not halt on x the time required is co.

Now let f : N — N be a function. We say the M operates within
time f(n) if, for any input x, the time required by M on x is at
most f(|x|). f is then called a time bound for M.

Finally let L C (X \ {U})* be language decided by M operating in
time f(n). Then we say that L € TIME(f(n)).

That is, TIME(f(n)) contains exactly those languages that can be
decided by a Turing-machine within time bound f(n).
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P and NP
A A P

Example (Palindromes)

In our example we constructed a Turing-machine M, which decides
the language of palindromes L on {0,1}. Now let us count how
many steps M needs in the worst case to accept a word x with
length n.
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Complexity Classes

P and NP

Example (Palindromes)

In our example we constructed a Turing-machine M, which decides
the language of palindromes L on {0,1}. Now let us count how
many steps M needs in the worst case to accept a word x with
length n.

At first the machine copies x to the second band and moves the
first cursor to the first symbol needing 2n + 3 steps. Then is
compares the symbols of the first band with the symbols on the
second band needing n steps.
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Complexity Classes

P and NP

Example (Palindromes)

In our example we constructed a Turing-machine M, which decides
the language of palindromes L on {0,1}. Now let us count how
many steps M needs in the worst case to accept a word x with
length n.

At first the machine copies x to the second band and moves the
first cursor to the first symbol needing 2n + 3 steps. Then is
compares the symbols of the first band with the symbols on the
second band needing n steps.

Altogether M needs at most 3n + 3 steps and as such

L € TIME(3n + 3).
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Languages and Turing-machines Complexity Classes

P and NP
A A P

Definition (P)
P is the set of all languages decidable by a Turing-machine in a
polynomial time bound. That is:

P = | J TIME(n¥)
k=0
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Languages and Turing-machines Complexity Classes

P and NP

The number of strings does not significantly increase the speed of
Turing-machines.
Theorem (Simulating a k-string Turing machine with 1 string)

Given any k-string Turing machine operating within time bound
f(n), there is a 1-string Turing-machine M’ operating within time
O(f(n)?), such that M(x) = M'(x) for any input x.

This theorem also holds for nondeterministic Turing-machines.
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Languages and Turing-machines Complexity Classes

P and NP

Now analogous to the definition of TIME and P:
Definition (NTIME(f(n)))

We say that a nondeterministic Turing-machine N decides a
language L in time f(n), where f : N — N, if N decides L and for
all words x with length n no computation path may be longer than
f(n).
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Now analogous to the definition of TIME and P:
Definition (NTIME(f(n)))
We say that a nondeterministic Turing-machine N decides a

language L in time f(n), where f : N — N, if N decides L and for
all words x with length n no computation path may be longer than

f(n).
Then NTIME(f(n)) is the set of languages decidable by a
nondeterministic Turing-machine within time bound f(n).
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Complexity Classes

P and NP

Now analogous to the definition of TIME and P:
Definition (NTIME(f(n)))
We say that a nondeterministic Turing-machine N decides a

language L in time f(n), where f : N — N, if N decides L and for
all words x with length n no computation path may be longer than

f(n).
Then NTIME(f(n)) is the set of languages decidable by a
nondeterministic Turing-machine within time bound f(n).

Note that we do not tax non-deterministic machines for the whole
amount of computation going on; just for the longest path.
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Complexity Classes

P and NP

Definition (NP)
NP is the set of all languages decidable by a nondeterministic
Turing-machine within a polynomial time bound. That is:

NP = _J NTIME(n¥)
k=0

NP does not depend on the number of strings of the
Turing-machines.
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Languages and Turing-machines Complexity Classes

P and NP
A A P

Obviously it holds that P C NP: The deterministic
Turing-machines are exactly those nondeterministic machines
where |5(g, /)| =1 for all g and /.
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Complexity Classes

P and NP

Obviously it holds that P C NP: The deterministic
Turing-machines are exactly those nondeterministic machines
where |5(g, /)| =1 for all g and /.

Whether the other inclusion also holds is unknown: This is the

famous problem
P < NP.
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Complexity Classes

P and NP

Obviously it holds that P C NP: The deterministic
Turing-machines are exactly those nondeterministic machines

where |5(g, /)| =1 for all g and /.
Whether the other inclusion also holds is unknown: This is the

famous problem
P < NP.

It is strongly conjected to be not the case.
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Complexity Classes
P and NP

Example (Traveling Salesman Problem)

Given a weighted, possibly
directed graph, what is the
shortest path such that each
vertice is visited at least once.

It can be transformed in a
decision problem: Given an
integer B is there a path with
length at most B such that each
vertice is visited at least once.
We call this problem TSP(D).
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Complexity Classes

P and NP

Example (Traveling Salesman Problem)

By encoding the problem TSP(D) in an alphabet, we can use
Turing-machines to solve it: the most obvious algorithm is
calculating all routes and checking if the shortest one is shorter
than B or not. If nis the number of vertices, then this takes about
n! steps; the best known algorithm is not much better than that.

Stefan Kunkel: Introduction to the Theory of Complexity Classes and Logic 32/ 71



Complexity Classes

P and NP

Example (Traveling Salesman Problem)

By encoding the problem TSP(D) in an alphabet, we can use
Turing-machines to solve it: the most obvious algorithm is
calculating all routes and checking if the shortest one is shorter
than B or not. If nis the number of vertices, then this takes about
n! steps; the best known algorithm is not much better than that.
Still it is unknown whether there is an algorithm solving TSP(D) in
polynomial time. If this were the case then P = NP.
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Complexity Classes

P and NP

Example (Traveling Salesman Problem)

By encoding the problem TSP(D) in an alphabet, we can use
Turing-machines to solve it: the most obvious algorithm is
calculating all routes and checking if the shortest one is shorter
than B or not. If nis the number of vertices, then this takes about
n! steps; the best known algorithm is not much better than that.
Still it is unknown whether there is an algorithm solving TSP(D) in
polynomial time. If this were the case then P = NP.

But TSP(D) is obviously in NP: a nondeterministic
Turing-machine can calculate all routes at once and check if it is
shorter than B or not, a task which takes roughly n? steps.
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Languages and Turing-machines Complexity Classes

P and NP
A A P

We now give a more intuitive characterization of NP.
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Complexity Classes
P and NP

We now give a more intuitive characterization of NP.

Let R C ¥* X L* be a relation. R is said to be polynomially
decidable if there is a deterministic Turing-machine which decides
the language {x#y, (x,y) € R} in polynomial time. R is called
polynomially balanced if (x,y) € R implies |y| < |x|¥ for some
k> 1.
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Complexity Classes
P and NP

We now give a more intuitive characterization of NP.

Let R C ¥* X L* be a relation. R is said to be polynomially
decidable if there is a deterministic Turing-machine which decides
the language {x#y, (x,y) € R} in polynomial time. R is called
polynomially balanced if (x,y) € R implies |y| < |x|¥ for some
k> 1.

Theorem

Let L be a language. Then L € NP if and only if there is a
polynomially decidable and polynomially balanced relation R, such
that L = {x, (x,y) € R for some y}.

Such a y is called certificate for x.
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Complexity Classes

P and NP

We now give a more intuitive characterization of NP.

Let R C ¥* X L* be a relation. R is said to be polynomially
decidable if there is a deterministic Turing-machine which decides
the language {x#y, (x,y) € R} in polynomial time. R is called
polynomially balanced if (x,y) € R implies |y| < |x|¥ for some
k> 1.

Theorem

Let L be a language. Then L € NP if and only if there is a
polynomially decidable and polynomially balanced relation R, such
that L = {x, (x,y) € R for some y}.

Such a y is called certificate for x.

An example for a certificate would be the vertices of a path shorter
than B for TSP(D).
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Languages and Turing-machines Complexity Classes

P and NP
A A P

Now we can describe P and NP informally:
P contains those languages L, for which x € L can be decided
quickly
NP contains those languages L, for which a certificate for x € L
can quickly be verified.
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Complexity Classes

P and NP

Now we can describe P and NP informally:
P contains those languages L, for which x € L can be decided
quickly
NP contains those languages L, for which a certificate for x € L
can quickly be verified.

This is another reason why it is believed that P = NP does not
hold: It is usually much easier to verify a solution than finding one.
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Languages and Turing-machines

P and NP

Complexity Classes

Theorem (Simulating a nondeterministic Turing-machine by a
deterministic one)

Let L be language decided by a nondeterministic Turing-machine
N in time f(n). Then there is deterministic Turing-machine M
deciding L in time O(c("), where ¢ > 1 depends on N alone.
Or put differently:

NTIME(f(n)) C | TIME(c (")
c>1
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Languages and Turing-machines Complexity Classes

Space Complexity
A A P

Space Complexity

We now introduce another way of quantifying “complexity”: by the
sum of the maximum lengths of the strings.
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Complexity Classes
Space Complexity

Space Complexity

We now introduce another way of quantifying “complexity”: by the
sum of the maximum lengths of the strings.

To do this properly we have to introduce a special version of
Turing-machines: Ones with special input and output bands.
Otherwise we could not study machines which need asymptotically
less or equal space for computation than the length of the input
respectively output.
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Languages and Turing-machines Complexity Classes

Space Complexity
A A P

Definition (k-string Turing-machine with input and output)

A (non)deterministic k-string Turing-machine, k > 3, with input
and output is a Turing-machine that scans over its input only once,
does not overwrite it and stops at the end of the input string.
Furthermore it never moves the last cursor to the left.
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Languages and Turing-machines Complexity Classes

Space Complexity
A A P

Definition (Space required)

Let M be a k-string Turing-machine with input x such that the
starting configuration (s,>, x,>, €, ...) yields

(H,wi,u1, ..., wk, ug), where H is halting state. Then the space
required by M on input x is Zf'(:l |wiu|.
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Complexity Classes

Space Complexity

Definition (Space required)

Let M be a k-string Turing-machine with input x such that the
starting configuration (s,>, x,>, €, .. .) yields

(H,wi,u1, ..., wk, ug), where H is halting state. Then the space
required by M on input x is Zf-;l |w;jujl.

If however M is a Turing-machine with input and output then the
first and last band are not counted: the space required by M on
input x is then Zf-:zl |wiuj|.
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Languages and Turing-machines Complexity Classes

Space Complexity

Now we can define the deterministic space complexity class just
like the time complexity one.

Definition (SPACE(f(n)))

Let f : N — N be a function and M be a Turing-machine. We say
M operates within space bound f(n), if for any input x the space

required by M is at most than f(|x|).

We say a language L is in (f(n)), if there is a Turing-machine with
input and output that decides L in space bound f(n).
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Complexity Classes

Space Complexity
Now we define space complexity for nondeterministic machines.

Definition (Deciding in space f(n))

Let f : N — N be a function and N be a k-string nondeterministic
Turing-machine with input and output. We say N decides L in
space f(n), if N decides L and if for any input x this implication
holds:

*

(s,>,x,>,6,...) = (g, wi,u1,..., wg,ug)
=

k—1
> lwiui] < f(|x])
i=2

So N may not use in any computation path more space than f(|x]).
Note that we do not require for N to halt on all computations.
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Languages and Turing-machines Complexity Classes

Space Complexity

Definition (NSPACE(f(n)))

Let f : N — N be a function. We say that a language L is in
NSPACE(f(n)), if there is a k-string nondeterministic
Turing-machine with input and output that decides L in space f(n).
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Languages and Turing-machines Complexity Classes

Space Complexity

Definition (Some space complexity classes)

PSPACE := |_J SPACE(n*)
k=1

NPSPACE

|J NSPACE(n*)
k=1
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Languages and Turing-machines Complexity Classes

Relation between various Complexity Classes
A A P

Relation between various Complexity Classes

Theorem (Relation between deterministic and nondeterministic
classes)

1. SPACE(f(n)) C NSPACE(f(n)), TIME(f(n))  NTIME(f(n))
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Languages and Turing-machines Complexity Classes

Relation between various Complexity Classes
A A P

Relation between various Complexity Classes

Theorem (Relation between deterministic and nondeterministic
classes)

1. SPACE(f(n)) € NSPACE(f(n)), TIME(f(n)) € NTIME(f(n))
2. NTIME(f(n)) C SPACE(f(n))
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Languages and Turing-machines Complexity Classes

Relation between various Complexity Classes
A A P

Relation between various Complexity Classes

Theorem (Relation between deterministic and nondeterministic
classes)

1. SPACE(f(n)) C NSPACE(f(n)), TIME(f(n)) C NTIME(f(n))
2. NTIME(f(n)) C SPACE(f(n))
3. NSPACE(f(n)) C TIME(klog(m+f(n)y
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Languages and Turing-machines Complexity Classes

Relation between various Complexity Classes
A A P

For any complexity class S we can define coS = {L, LCe S} as
the class of the complements of languages in S.
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Languages and Turing-machines Complexity Classes

Relation between various Complexity Classes

For any complexity class S we can define coS = {L, LCe S} as
the class of the complements of languages in S.
Theorem (Deterministic classes and coclasses)

Any deterministic complexity class D is closed under complement,
i.e. for L € C its complement L% s also in C.
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Complexity Classes

Relation between various Complexity Classes

For any complexity class S we can define coS = {L, LCe S} as
the class of the complements of languages in S.

Theorem (Deterministic classes and coclasses)

Any deterministic complexity class D is closed under complement,
i.e. for L € C its complement L8 is also in C.

Proof.

Let L be a language in C and M be a Turing-machine that decides
L within the bound required by the class D. Now let M’ be the
Turing-machine whose output is “no” whenever the output of M is
“yes" and vice versa. Then M decides L% in the same bound as M
and therefore LC € D. O]
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Languages and Turing-machines Complexity Classes

Relation between various Complexity Classes
A A P

Theorem (Relation between space complexity classes)

PSPACE = NPSPACE
NPSPACE = coNPSPACE
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Languages and Turing-machines Complexity Classes

Relation between various Complexity Classes

Open questions
It is unknown whether:
> P = NP?
» NP = coNP?
Both answer are suspected to be “no"”, but so far a proof

supporting either way remains elusive since the beginning of the
theory of complexity classes.
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Complexity Classes

Relation between various Complexity Classes

Open questions

It is unknown whether:
> P=NP?
» NP = coNP?

Both answer are suspected to be “no"”, but so far a proof
supporting either way remains elusive since the beginning of the
theory of complexity classes.

Various deterministic and nondeterministic complexity classes can
be defined analogous to P and NP using other functions than
polynomials, e.g. logarithms or exponentionals.
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Complexity Classes

Relation between various Complexity Classes

Open questions

It is unknown whether:
> P=NP?
» NP = coNP?

Both answer are suspected to be “no"”, but so far a proof
supporting either way remains elusive since the beginning of the
theory of complexity classes.

Various deterministic and nondeterministic complexity classes can
be defined analogous to P and NP using other functions than
polynomials, e.g. logarithms or exponentionals.

For all of these it is also unknown whether they are equal or not.
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Complexity Classes

Completeness

Completeness

Definition (Reduction)

Let > and I' be alphabets and L; C X* and Ly C I'* be languages.
We say that L; is reducible to L;, if there is a function f : X* — *
computable by a deterministic Turing-machine in logarithmic space
such that the following holds for all inputs x: x € L; if and only if
f(x) € Lp. f is then called reduction from L; to L,.

Note that the composition of reductions is also a reduction; it
follows that reducible is a transitive relation.
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Languages and Turing-machines Complexity Classes

Completeness

Theorem

P, NP, coNP, PSPACE, NPSPACE are closed under reductions,
ie. if Ly € P/NP/coNP/PSPACE /NPSPACE and L; can be
reduced to Ly then Ly € P/NP/coNP/PSPACE /NPSPACE.
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Languages and Turing-machines Complexity Classes

Completeness
A A P

Definition (Completeness)

Let L be a language in a complexity class C. Then L is called
C-complete if any language L’ € C can be reduced to C.
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Complexity Classes

Completeness

Definition (Completeness)
Let L be a language in a complexity class C. Then L is called
C-complete if any language L’ € C can be reduced to C.

Completeness can be a very useful tool for establishing relations
between the classes:

Theorem

Let C be a complexity class and D C C be another complexity
class closed under reductions. If L € C is a C-complete language,
then L € D if and only if C = D.
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Complexity Classes

Completeness

Definition (Completeness)

Let L be a language in a complexity class C. Then L is called
C-complete if any language L’ € C can be reduced to C.

Completeness can be a very useful tool for establishing relations
between the classes:

Theorem

Let C be a complexity class and D C C be another complexity
class closed under reductions. If L € C is a C-complete language,
then L € D if and only if C = D.

Proof.

“<": trivial. “=": Let L’ a language in C; since L € D is
complete, L’ can be reduced to L. The reduction is also in D since
D is closed under reductions. Therefore C = D. O
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Languages and Turing-machines Complexity Classes

Completeness

NP-complete problems

? .. :
So one way to solve P = NP positively, is to search for a
NP-complete problem and find a polynomial time deterministic
algorithm to solve it.
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Languages and Turing-machines Complexity Classes

Completeness

NP-complete problems

So one way to solve P  np positively, is to search for a
NP-complete problem and find a polynomial time deterministic
algorithm to solve it.

Here is short list of such problems:

» SAT
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Languages and Turing-machines Complexity Classes

Completeness

NP-complete problems

So one way to solve P  np positively, is to search for a
NP-complete problem and find a polynomial time deterministic
algorithm to solve it.

Here is short list of such problems:

» SAT
» HAMILTON PATH
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Languages and Turing-machines Complexity Classes

Completeness

NP-complete problems

So one way to solve P  np positively, is to search for a
NP-complete problem and find a polynomial time deterministic
algorithm to solve it.

Here is short list of such problems:

» SAT
» HAMILTON PATH
» TSP(D)
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Languages and Turing-machines Complexity Classes

Completeness

NP-complete problems

So one way to solve P  np positively, is to search for a
NP-complete problem and find a polynomial time deterministic
algorithm to solve it.

Here is short list of such problems:

» SAT

» HAMILTON PATH
» TSP(D)

» CLIQUE
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Languages and Turing-machines Complexity Classes

Completeness

NP-complete problems

So one way to solve P  np positively, is to search for a
NP-complete problem and find a polynomial time deterministic
algorithm to solve it.

Here is short list of such problems:

» SAT

HAMILTON PATH
TSP(D)

CLIQUE
KNAPSACK

vV v v VY
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Languages and Turing-machines Complexity Classes

Completeness

NP-complete problems

So one way to solve P  np positively, is to search for a
NP-complete problem and find a polynomial time deterministic
algorithm to solve it.

Here is short list of such problems:

» SAT

HAMILTON PATH
TSP(D)

CLIQUE
KNAPSACK

BIN PACKING

vV v v v .Y
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Complexity Classes

Completeness

NP-complete problems

So one way to solve P  np positively, is to search for a
NP-complete problem and find a polynomial time deterministic
algorithm to solve it.

Here is short list of such problems:

» SAT

HAMILTON PATH
TSP(D)

CLIQUE
KNAPSACK

BIN PACKING
PARTITION

v

vV v . v. v Y
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Complexity Classes

Completeness

NP-complete problems

So one way to solve P  np positively, is to search for a
NP-complete problem and find a polynomial time deterministic
algorithm to solve it.

Here is short list of such problems:

» SAT

HAMILTON PATH
TSP(D)

CLIQUE
KNAPSACK

BIN PACKING
PARTITION

v

vV v vV v Vv Y
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Abstract Proof Systems Example of a Propositional Proof System: Resolution

Part 1l

Propositional Logic
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Definition (Syntax of propositional logic)

Let V = {x1,x2,...} be a countable set of variables and C be a
finite set of logical connectives with arbitrary, finite arity. Then all
of the following are propositional formulas:

» Thesigns 1 and T

» Variables
> ®(p1,.-..,Pk), where @ € C is a logical connective (with arity
k) and p1,..., px are propositional formulas.

Parentheses may be added to clarify the precedence of logical
connectives.
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Abstract Proof Systems Example of a Propositional Proof System: Resolution

Definition (Valuation)

A valuation v : V — {T, L} is a function that gives variables the
values “true” or “false”
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Definition (Valuation)

A valuation v : V — {T, L} is a function that gives variables the
values “true” or “false”

Definition (Propositional language)

Given a set of variable V/, a finite set of connectives C and a

valuation v a propositional language defines the value of a
propositional formula inductively:

» T means “true”, L means “false”
» Each x € V means v(x)

» For each k € Ny, each connective & in C and each k-tuple of
formulas (t1, ..., tx) each t; meaning either “true” or “false”
it defines whether @(t,. .., tx) is “true” or “false”
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Definition (Valuation)

A valuation v : V — {T, L} is a function that gives variables the
values “true” or “false”

Definition (Propositional language)

Given a set of variable V/, a finite set of connectives C and a

valuation v a propositional language defines the value of a
propositional formula inductively:

» T means “true”, L means “false”
» Each x € V means v(x)

» For each k € Ny, each connective & in C and each k-tuple of
formulas (t1, ..., tx) each t; meaning either “true” or “false”
it defines whether @(t,. .., tx) is “true” or “false”

After fixing a language we can give any formula ¢ a meaning of
either “true” or “false” using a valuation v. For this we write ¢(v).
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Example (A propositional logic)

Here is a well known propositional language:
V={x,...}, C={V,A~}
Examples of such propositional formulas
x1 A xa, (5(x3V x1))Ax,...

With the usual meaning of the connectives this propositional
language is called standard base. Usually when we talk about
propositional formulas, we mean this language.
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Example (A propositional logic)

Here is a well known propositional language:
V={x,...}, C={V,A~}
Examples of such propositional formulas
x1 A xa, (5(x3V x1))Ax,...

With the usual meaning of the connectives this propositional
language is called standard base. Usually when we talk about
propositional formulas, we mean this language.

The other well known symbols p = g and p < g can be seen as
abbreviations of —=pV (p A q) or (p = q) A (g = p).
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The standard way to prove theorems about a propositional formula
¢ is the induction on the structure of p. For example:

Theorem
Let ¢ be a propositional formula and vi; and v, be valuations that
agree on the set P of variables in ¢, i.e. vi|p = va|p. Then

¢(v1) = ¢(v2).
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Proof.
Proof by induction on the structure of ¢.
> op=_Lorgp=T:
¢(v) ="true” respectively “false” regardless of valuation v
> ¢ = x with x variable:
d(v1) = vi(x) = va(x) = ¢(v2) because v; and v, agree on
{x}.
» ¢ = @®(71,...,7k) Where 7; are propositional formulas for
which the hypothesis 7;(v1) = 7;(v2) holds:
gb(vl) = @(Tl(vl), ceey Tk(vl)) = EB(Tl(VQ), e Tk(VQ)) =
P(v2)
Therefore the hypothesis holds. Ol

Many proofs about propositional formulas follow the same scheme.
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Abstract Proof Systems Example of a Propositional Proof System: Resolution

Definition (Satisfiability and Tautology)
A propositional formula ¢ is called
satisfiable , if there is a valuation v such that ¢(v) ="true".

The set of all satisfiable formulas is called SAT, the set of all
tautology TAUT.
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Abstract Proof Systems Example of a Propositional Proof System: Resolution

Definition (Satisfiability and Tautology)
A propositional formula ¢ is called

satisfiable , if there is a valuation v such that ¢(v) ="true".
unsatisfiable , if there is no such valuation.

tautology , if for any valuation v ¢(v) ="true”.

equivalent to a formula ¢ if ¢ < 9 is a tautology.

The set of all satisfiable formulas is called SAT, the set of all
tautology TAUT.

Stefan Kunkel: Introduction to the Theory of Complexity Classes and Logic 57/ 71



Abstract Proof Systems Example of a Propositional Proof System: Resolution

About SAT and TAUT

SAT is in NP: A nondeterministic machine can “guess” all
valuations of a formula at once and then check if one is true. This
can be done polynomial time.
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About SAT and TAUT

SAT is in NP: A nondeterministic machine can “guess” all
valuations of a formula at once and then check if one is true. This
can be done polynomial time.

It even is NP-complete: For any nondeterministic machine N
deciding L in polynomial time and any input x, there is a formula
F constructible in logarithmic space that is satisfiable if and only if
x € L.
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About SAT and TAUT

SAT is in NP: A nondeterministic machine can “guess” all
valuations of a formula at once and then check if one is true. This
can be done polynomial time.

It even is NP-complete: For any nondeterministic machine N
deciding L in polynomial time and any input x, there is a formula
F constructible in logarithmic space that is satisfiable if and only if
x € L.

Instead of asking if ¢ €TAUT one can ask if =¢ €SAT. In that
sense SAT and TAUT are essentially the same.
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Abstract Proof Systems Example of a Propositional Proof System: Resolution

Outline

Abstract Proof Systems
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Abstract Proof Systems

Proof Systems

Definition ((Abstract) Proof systems)

A proof system for a language L is a deterministic Turing-machine
M operating in polynomial time that for any word x, there exists a
certificate p, such that M accepts x#p if and only if x € L.

Recall the characterization of NP through certificates: It is clear
that the language L is in NP.

In that case, p is called a proof for x.

The time bound of the machine M is called (time) complexity of
the proof.
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Abstract Proof Systems

Definition (Propositional proof system)

A propositional proof system is a proof system for the language

TAUT of tautologies.

If there exists a proof p in this system for every tautology x, then
the system is called complete.

If the existence of a proof p for x in this system implies that x is a
tautology, then the system is called sound.
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Abstract Proof Systems Example of a Propositional Proof System: Resolution

Since a formula is a tautology if and only if its negation is
unsatisfiable, we can give an alternative definition:
Definition (Propositional proof system)

A propositional proof system is a proof system for the language
UNSAT of unsatisfiable formulas.
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Abstract Proof Systems

Since there is a great number of propositional proof systems, it is
useful to have a way of saying that one is as strong as another.

Definition (Simulation)

Let M and M’ be two proof systems. We say that M polynomially
simulates M’ if M and M’ prove the same language and proofs in
M’ can be polynomially converted into proofs in M, i.e. there
exists a in polynomial time computable function such that p is a
proof in M if and only if f(p) is a proof in M'.
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Abstract Proof Systems

Since there is a great number of propositional proof systems, it is
useful to have a way of saying that one is as strong as another.

Definition (Simulation)

Let M and M’ be two proof systems. We say that M polynomially
simulates M’ if M and M’ prove the same language and proofs in
M’ can be polynomially converted into proofs in M, i.e. there
exists a in polynomial time computable function such that p is a
proof in M if and only if f(p) is a proof in M'.

Definition (Equivalence of proof systems)

Two proof systems M and M’ are said to be equivalent if M
polynomially simulates M’ and vice versa.
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Abstract Proof Systems Example of a Propositional Proof System: Resolution

Outline

Example of a Propositional Proof System: Resolution
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Abstract Proof Systems Example of a Propositional Proof System: Resolution

Examples of Propositional Proof Systems

Now a short introduction to a common proof system: Resolution
The proof systems will be described algorithmically rather than
stating the corresponding Turing machine.
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Abstract Proof Systems Example of a Propositional Proof System: Resolution

Resolution

Definition (Literal, Conjunctive and Disjunctive Normal Form)
A propositional formula ¢ is
a literal if ¢ is a variable or a negated variable.

in conjunctive normal form (CNF) if it is a conjunction of
disjunctions of literals.

in disjunctive normal form (DNF) if it is a disjunction of
conjunctions of literals.

Any formula has an equivalent formula in CNF and one in DNF.
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Abstract Proof Systems Example of a Propositional Proof System: Resolution

Definition (Equisatisfiable)

Two formulas ¢ and ¢’ are called equisatisfiable, if ¢ is satisfiable
if and only if ¢/ is satisfiable.

Example: (x < p) A(xV q) and pV g, with p, g formulas, are
equisatisfiable, but not equivalent.
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Abstract Proof Systems Example of a Propositional Proof System: Resolution

Let ¢ be a formula in CNF represented as a set ¢ of sets of
literals, e.g. ¢ = (x1 V x2) A x3 A —x2 is represented as

& = {{x1,x},{x3},{x2}}. Resolution is an algorithm for deciding
if ¢ €SAT working on that set ®.
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Example of a Propositional Proof System: Resolution

Let ¢ be a formula in CNF represented as a set ® of sets of
literals, e.g. ¢ = (x1 V x2) A x3 A —xp is represented as

& = {{x1,x},{x3},{x2}}. Resolution is an algorithm for deciding
if ¢ €SAT working on that set ®.

Example:

{{37 b}7 {37 _'b}7 {_'37 b}v {_'37 _'b}}
{{a}.{—a}}
0

Each step in this example resolved on a variable: On the first we
resolved on b, on the second on a.
The formula represented by this set of sets is not satisfiable.

Stefan Kunkel: Introduction to the Theory of Complexity Classes and Logic 68/ 71



Abstract Proof Systems Example of a Propositional Proof System: Resolution

Definition (Resolvent)

Let C and D be set of literals representing a disjunction and x be
variable. If x € C and —x € D, then the set
(C\ {x})U(D\ {—x}) is called the resolvent of C and D.
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Abstract Proof Systems Example of a Propositional Proof System: Resolution

DavisPutnam algorithm

Let S be a set of sets of literals representing a CNF and / be a
variable. Define

» P:={C\{l}, leCeS}

Then the formulas represented by S and S’ are equisatisfiable.
This is one DavisPutnam step building all possible resolvents.
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DavisPutnam algorithm

Let S be a set of sets of literals representing a CNF and / be a
variable. Define

» P:={C\{l}, e CeS}

» N:={D\{~/}, ~le DeS}

>» So={E€S, |,-l¢E}

» S':=5U{CuD, CeP, De N}
Then the formulas represented by S and S’ are equisatisfiable.
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Abstract Proof Systems Example of a Propositional Proof System: Resolution

DavisPutnam algorithm
Let S be a set of sets of literals. Construct S’ by one DavisPutnam
step from S, S” by one resolution step from §’, S©) from S” and

so on, each time using a new variable.
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DavisPutnam algorithm

Let S be a set of sets of literals. Construct S’ by one DavisPutnam
step from S, S” by one resolution step from §’, S©) from S” and
so on, each time using a new variable.

If there is a n € N such that () € S(") then the formula represented
by S(") is unsatisfiable and therefore also the one represented by S.
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so on, each time using a new variable.

If there is a n € N such that () € S(") then the formula represented
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Is it not possible to choose a variable to construct a new resolvent
anymore, then the formula represented by S is satisfiable.
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Example of a Propositional Proof System: Resolution

DavisPutnam algorithm

Let S be a set of sets of literals. Construct S’ by one DavisPutnam
step from S, S” by one resolution step from §’, S©) from S” and

so on, each time using a new variable.

If there is a n € N such that () € S(") then the formula represented
by S(") is unsatisfiable and therefore also the one represented by S.
Is it not possible to choose a variable to construct a new resolvent
anymore, then the formula represented by S is satisfiable.

Resolution is therefore a complete and sound proof system for
propositional formulas in CNF.
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