Introduction to the Theory of Complexity Classes
and Logic

Stefan Kunkel
June 5, 2009

Abstract

This paper — written for the Joint Advanced Student School 2009
in St. Petersburg — gives an introduction to the theory of complexity
classes and logic for the and sets a baseline of knowledge and notation
about these topics. It assumes that the attendees are already familiar with
them and as such skips lengthy explanations and sketches or skips many
of the standard proofs.

The first part covers Turing-machines including determinism and nonde-
terminism, input and output, space and time complexity, some complexity
classes and completeness. It mostly follows Papadimitriou.

The second shorter part deals with the very basics of propositional
logic and proof systems and gives a short example of one. Most of it is
adapted from Buss and Pudlak.

Contents

(I Complexity Theory|

1 Languages and Turing-machines|

[1.1 Turing-machines|
L2 Nondefermimisml . . - - v v o vt et e

2 Complexity Classes|
RI_Pand NPl....... e
[2.2 Space Complexity|
[2-3 Relation between various Complexity Classes
2.4 Completeness|

(I Propositional Logic|

13 Abstract Proof Systems|

4 Example of a Propositional Proof System: Resolution|

Part I
Complexity Theory

1 Languages and Turing-machines

For computation and its input and output to make sense we first need a way to
describe a “language” formally to express ourselves.

DEFINITION 1 Language

e X denotes a finite, non-empty set called alphabet; its elements are called
symbol

For symbols ly,ls, ..., 1, € X we write lly--+1,,, for its concatenation; con-
catenated symbols are called words

The set of all words constructed by concatenating symbols in ' € X is
denoted by I'*

A subset L ¢ X is called language

For a word w we write |w| for its length.

Shorthand notation:

— The concatenation of words wy = l1-+-lp,, we = ky---ky, 1s defined as
w1Wy = lllmklkn

— Let T’ be a set of words. Then I'* denotes the set of all words con-
structed by concatenating the words in T'.

— For a letter a we write a* instead of {a}*; similarly we write w*
instead of {w}* for a word w.

Examples are well known: The Latin alphabet is an alphabet in our sense and
English is an example of a language in our sense.

1.1 Turing-machines

Now that we have a way of expressing ourselves we can formalize “computa-
tion”.

DEFINITION 2 Turing-machine

A (deterministic) Turing-machine M is a quadruple M = (Q, 2,9, s), where Q is
a finite set of states and X is an alphabet containing the special symbols U, the
blank symbol, and >, the first symbol; s € @ is the initial state. QQ and X are
disjoint.

Finally 6 : Qx X = (Qu{h, “yes”, “no”}) x L x {«, >, —} is called transition
function. We assume that the halting state h, the accepting state “yes”, the
rejecting state “no” and the cursor direction —, < and — are neither in Q nor
m .

A Turing-machine can be seen as a cursor on a string of symbols and having
a definite internal state. Every time the cursor moves over the end of the string
a new U is inserted on the string.

The function § is the “program” of the machine. It specifies, for each
combination of the current state ¢ € Q and current symbol a € X, a triple
5(q,1) = (p,b,D). p is the next state, b is the symbol, which is written over a,
and D € {—,«<,—} is the direction in which the cursor will move.

By definition a Turing-machine always starts on the symbol >. It cannot
overwrite > and will always upon reading > move to the right.

Now define a way of asking Turing-maches and give them a way to answer
us.

DEFINITION 3 Input and Output of a Turing-machine
A Turing-machine M may be initialized with a word x written on its string.
This word x is called input of M and for the resulting Turing-machine we write
If a Turing-machine M halts on input © — i.e. M is in one of its three
halting states h, “yes” or “no” — we can define its output: If M is in state
“yes” it is said to accept x and M (x) =“yes”; if M is in state “no” it is said
to reject x and M(x) =“no”. Otherwise it is in state h and the output of M is
the word on the string of M : by definition this string starts with a <, followed
by a word y, whose last symbol is not an U, possibly followed by a number of
u-symbols. Then we consider y to be the output of M and we write M(x) =y.
If M does not halt on input x, we write M(x) = .

Let us see a first and easy example of a Turing-machine in action:

Example 1 M = (Q,%,d,s), where Q = {s}, ¥ = {0,1,u, >} and § as in the
table below. We examine the behavior of M with the input 101:

0. s, >101

geQ lex| d(gl) 1. s, >101
s > (s >2) g Lo
5 0 | (s1,>) 3. s 011
s L] (502) 1 Sotou
5 u_| (b,) 5. h, >010u

So the output is M (101) = 010.

To reason about Turing-machines we need a better way to talk about the
computation going on and therefore we somehow need to talk about the current
“overall state” of the machine and the transition to the next one respectively all
states adopted.

DEFINITION 4 Configuration

A configuration of a Turing-machine M = (Q,X,6,s) contains all information
of the current state of M. Formally it is a triple (q,w,u), where q € Q is the
current state of M, w is the word on the left of the cursor including the symbol
scanned by the cursor and u is the word on the right.

This is the “overall state” a machine is currently in. In the example M is at
step 3. in the configuration (s,011,¢).

DEFINITION 5 Yields in one step
Let M be a Turing-machine. We say that a configuration (g, w,u) yields the
configuration (¢',w’,u") in one step, denoted by (g, w,u) M (¢',w',u"), if a step
of the machine from configuration (q,w,u) results in the configuration (¢',w’,u’).
Formally, it means that the following holds: Let | be the last symbol of w and
0(q,1) =(¢',l',D). If D =—, then w' is w with | replaced by I’ and appended by
the first symbol of w; u’ is u with its first symbol removed. If D =<, then w' is
w with I' omitted from its end and v’ is 'u. Finally if D =—, then w' is w with
[replaced by 1 and u' = u.

This is the transition between states.

DEFINITION 6 Yields
Now that we have defined yields in one step, we define yields to be its transitive
closure: That is, we say a configuration (q,w,u) yields (¢",w"”,u") in k steps,

. M . . ,
written as (q,w,u) > (¢",w",u"), if there is a configuration (¢’,w’',u’) such

Mk M
that (q,w,u) > (¢, w',u') and (¢',w',u") > (¢",w",u"). Finally, we say a
configuration (g, w,u) yields a configuration (¢',w’,u"), if there is a k >0 such
k

that (g, w,u) i (¢ w',u'). In this case we write (q,w,u) i (¢, w',u').

Finally this formalizes the notion of all the states adopted by the machine. In
the example (s, >,101) yields (h, >010,u).

With these concepts made clear we can describe the behavior of Turing-
machines on whole sets of words using the halting states “yes” and “no” and
define computation of a function using “h”.

DEFINITION 7 Deciding and accepting languages
Let L c (XN {u})* be a language and M be a Turing-machine. If the output of
M for any word x is either “yes”, when x € L, or “no”, when x ¢ L then we say,
that M decides L and L is called a recursive language.

If M(x) =*“yes”, when x € L, and M(xz) =, when x ¢ L, then we say M
simply accepts L and L is called recursively enumerable.

DEFINITION 8 Computation of functions

Let f: (XN {u})* = X be function and M be a Turing-machine with alphabet
Y. We say that M computes f if, for any word x € (X~ {u})*, f(z) = M(z).
Then f is called a recursive function.

For example the function from {0,1}* to {0,1,u}, that replaces 0 with 1 and
vice versa until it encounters a U, is recursive by the example.

For ease of “programming” Turing-machines we define an obvious generaliza-
tion.

DEFINITION 9 k-string Turing-machines
A k-string Turing-machine is a quadruple M = (Q, %, 6, s), where Q, ¥ and s are
exactly as in ordinary Turing-machines. But here § is a function from Q x X*
to (Qu {h, “yes”, “no”}) x (X x {«,—, —)F. We still assume that > is at the
start of each string, cannot be overwritten and upon reading it the cursor must
move to the right.

The input of M is written on the first string and the output on the last string.

Intuitively, d decides the next state of the machine by looking at its current
state and the symbol at the cursor of each band. It then overwrites the current
symbol on each band by another and moves the cursors on each band either left
or right or not at all.

Analogous to 1-string Turing-machines we define configuration and yields for
k-string Turing-machines:

A configuration is a k + 2 tuple, with the first coordinate being the current
state, the even ones being the word on the left of the cursor, the odd ones the
word on the right of the cursor.

Yields is defined exactly as in 1-string machines after taking the greater
number of strings into account.

Example 2 (Palindromes) We now construct a 2-string Turing-machine, that
decides the language of palindromes on ¥ = {0,1}. It first copies its input on
the second string, then it moves the first cursor on the first symbol of the input
and the second on the last symbol. Then it moves the two cursors in opposite
direction comparing the two symbols at the cursors.

qge@ lLeX IlyeX 0(q,l1,12)
> (s, >, >, >,—)
(5’ 07_)703 _))
(87]‘7 _)7 17 _))
(q,u, <, u,—)
(Q707(_,‘—|’7)
(q,1,«<,u,—) There is no Turing-machine
(P, >y =0, <)
(p7 0’ _)707 <_)
(p7 1’ _)7 17 <_)
“no”,0,—,1,<)
(“nO”’ 1’_>7O’ (_)
u > (“yes”, U, =, D>, <)
significantly faster at deciding palindromes than this one.

V2]

— O, OVY —~,OL —~OoOvVv
oL, oOoOLCCCCCC

R » » ®

3

1.2 Nondeterminism

So far we have examined “realtistic” Turing-machines in the sense, that it is
possible and feasible to build one; we now drop this notion and consider a
different, “unrealistic” kind of Turing-machine.

DEFINITION 10 Nondeterministic Turing-machines

A nondeterministic Turing-machine is a quadruple N = (Q,X,0,s), where Q, X
and s are as in deterministic Turing-machines. But now § is a function from QxX
to P((Qu{h, “yes”, “no”}) x X x {«<, >, —}). That is, for a nondeterministic
machine there may be more than one appropriate next step or none at all. It
can also be in multiple configurations at once.

A computation of a nondeterministic machine can be imagined as a computation
tree where each path can be computed by a deterministic machine.
Analogous to deterministic machines we define additional concepts.

DEFINITION 11 Nondeterministic yields
Similarily we define (q,w,u) yields (¢',w’,u’) in one step as with deterministic
machines except that only one (¢',I', D) € §(q,1) must match the definition of
yields in one step for deterministic machines.

Yields in & steps and yields are defined exactly as with deterministic machines.

DEFINITION 12 Nondeterministic decision of languages
We say N accepts a language L, if for any x € ¥X* the following is true: x € L if
and only if (s, >, x) yields (“yes”,w,u) for some words w and u.

This definition of decision sets the nondeterministic machine apart from the
deterministic one: An input is accepted if there is one computation path that

results in “yes”.

2 Complexity Classes

We now introduce now the notion of the time needed to compute an output.

DEFINITION 13 TIME(f(n))

For an input x of a k-string Turing-machine M the time required by M on
input x is simply the number of steps to halting. If M does not halt on x the
time required is oo.

Now let f : N - N be a function. We say the M operates within time f(n) if,
for any input x, the time required by M on x is at most f(|z|). f is then called
a time bound for M.

Finally let L c (X~ {u})* be language decided by M operating in time f(n).
Then we say that L € TIME(f(n)).

That is, TIME(f(n)) contains exactly those languages that can be decided by a
Turing-machine within time bound f(n).

Example 3 (Palindromes) In our example we constructed a Turing-machine
M, which decides the language of palindromes L on {0,1}. Now let us count
how many steps M needs in the worst case to accept a word = with length n.
At first the machine copies x to the second band and moves the first cursor
to the first symbol needing 2n + 3 steps. Then is compares the symbols of the
first band with the symbols on the second band needing n steps.
Altogether M needs at most 3n + 3 steps and as such L € TIME(3n + 3).

2.1 P and NP

In this section we will define the most well known complexity classes: P and
NP.

DEFINITION 14 P
P is the set of all languages decidable by a Turing-machine in a polynomial time
bound. That is:

P = | TIME(n")
k=0

The number of strings does not significantly increase the speed of Turing-
machines.

THEOREM 1 Simulating a k-string Turing machine with 1 string
Given any k-string Turing machine M operating within time bound f(n), there
is a 1-string Turing-machine M’ operating within time O(f(n)?), such that
M(z)=M'(x) for any input x.

PROOF We define M’ by taking m]

This theorem also holds for nondeterministic Turing-machines.
Now analogous to the definition of TIME and P:

DEFINITION 15 NTIME(f(n))
We say that a nondeterministic Turing-machine N accepts a language L in time
f(n), where f : N - N, if N decides L and for all words x with length n no
computation path may be longer than f(n).

Then NTIME(f(n)) is the set of languages acceptable by a nondeterministic
Turing-machine within time bound f(n).

Note that we do not tax non-deterministic machines for the whole amount of
computation going on; just for the longest path.

DEFINITION 16 NP
NP is the set of all languages acceptable by a nondeterministic Turing-machine
within a polynomial time bound. That is:

NP = | J NTIME(n")
k=0

NP does not depend on the number of strings of the Turing-machines.
Obviously it holds that P ¢ NP: The deterministic Turing-machines are
exactly those nondeterministic machines where |§(g,1)| =1 for all ¢ and .
Whether the other inclusion also holds is unknown: This is the famous
problem

PINP.
It is strongly conjected to be not the case.

Example 4 (Traveling Salesman Problem) Now an example of a problem
and its discussion.

Given a weighted, possibly directed
graph, what is the shortest path such
that each vertice is visited at least once.
It can be transformed in a decision
problem: Given an integer B is there a
path with length at most B such that
each vertice is visited at least once. We
call this problem TSP(D).

By encoding the problem TSP(D) in an alphabet, we can use Turing-machines
to solve it: the most obvious algorithm is calculating all routes and checking if
the shortest one is shorter than B or not. If n is the number of vertices, then
this takes about n! steps; the best known algorithm is not much better than
that.

Still it is unknown whether there is an algorithm solving TSP(D) in polyno-
mial time. If this were the case then P = NP.

But TSP(D) is obviously in NP: a nondeterministic Turing-machine can
calculate all routes at once and check if it is shorter than B or not, a task which
takes roughly n? steps.

We now give a more intuitive characterization of NP.

Let R c X* x¥* be arelation. R is said to be polynomially decidable if there is
a deterministic Turing-machine which decides the language {z#vy, (z,y) € R} in
polynomial time. R is called polynomially balanced if (x,y) € R implies |y| < |z|*
for some k > 1.

THEOREM 2 Let L be a language. Then L € NP if and only if there
is a polynomially decidable and polynomially balanced relation R, such that
L={xz, (x,y) € R for some y}.

Such a y is called certificate for x. An example for a certificate would be the
vertices of a path shorter than B for TSP(D).
We can now describe P and N P informally:

P contains those languages L, for which x € L can be decided quickly

NP contains those languages L, for which a certificate for x € L can quickly be
verified.

This is another reason why it is believed that P = N P does not hold: It is usually
much easier to verify a solution than to find one.

THEOREM 3 Simulating a nondeterministic Turing-machine by a
deterministic one
Let L be language decided by a nondeterministic Turing-machine N in time f(n).
Then there is deterministic Turing-machine M deciding L in time O(c/(™),
where ¢ > 1 depends on N alone.

Or put differently:

NTIME(f(n)) c | TIME(c/ ™)

2.2 Space Complexity

We now introduce another way of quantifying “complexity”: by the sum of the
maximum lengths of the strings.

To do this properly we have to introduce a special version of Turing-machines:
Ones with special input and output bands. Otherwise we could not study
machines which need asymptotically less or equal space for computation than
the length of the input respectively output.

DEFINITION 17 k-string Turing-machine with input and output
A (non)deterministic k-string Turing-machine, k > 3, with input and output is
a Turing-machine that scans over its input only once, does not overwrite it and

stops at the end of the input string. Furthermore it never moves the last cursor
to the left.

DEFINITION 18 Space required
Let M be a k-string Turing-machine with input x such that the starting configu-
ration (s, >, x, >,¢,...) yields (H,wi,uy, ..., wg, ux), where H is halting state.
Then the space required by M on input = is Y, [wu|.

If however M is a Turing-machine with input and output then the first and
last band are not counted: the space required by M on input x is then 25:21 [w;wg)

Now we can define the deterministic space complexity class just like the time
complexity one.

DEFINITION 19 SPACE(f(n))
Let f:N - N be a function and M be a Turing-machine. We say M operates
within space bound f(n), if for any input x the space required by M is at most

Szl
We say a language L is in (f(n)), if there is a Turing-machine with input
and output that decides L in space bound f(n).

Now we define space complexity for nondeterministic machines.

DEFINITION 20 Deciding in space f(n)
Let f : N = N be a function and N be a k-string nondeterministic Turing-machine
with input and output. We say N decides L in space f(n), if N decides L and
if for any input x this implication holds:
N)(-
(5, >,x, >,6,...) > (g, w1,U1,..., Wk, Uk)
=

k-1

Z lwiwi| < f(|2])

1=2

So N may not use in any computation path more space than f(|z|). Note
that we do not require for N to halt on all computations.

10

DEFINITION 21 NSPACE(f(n))

Let f : N > N be a function. We say that a language L is in NSPACE(f(n)), if
there is a k-string nondeterministic Turing-machine with input and output that
decides L in space f(n).

Now completely analogous to P and NP for time we define for space com-
plexity:

DEFINITION 22 Some space complexity classes

PSPACE := |) SPACE(n")
k=1

NPSPACE := | J NSPACE(n")
k=1

2.3 Relation between various Complexity Classes

Now that we have seen quite a lot different complexity classes, we will clear
some connections between them.

THEOREM 4 Relation between deterministic and nondeterministic
classes

(i) SPACE(f(n)) c NSPACE(f(n)), TIME(f(n)) c NTIME(f(n))
(ii) NTIME(f(n)) c SPACE(f(n))
(iii) NSPACE(f(n)) c TIME(k'ee(m)+f(n))

For any complexity class S we can define coS = {L, L€ € S} as the class of
the complements of languages in S.

THEOREM 5 Deterministic classes and coclasses
Any deterministic complexity class D is closed under complement, i.e. for L e€C
its complement L is also in C.

PROOF Let L be alanguage in C' and M be a Turing-machine that decides L
within the bound required by the class D. Now let M’ be the Turing-machine
whose output is “no” whenever the output of M is “yes” and vice versa. Then
M decides L in the same bound as M and therefore LE € D. O

11

THEOREM 6 Relation between space complexity classes

PSPACE = NPSPACE
NPSPACE =coNPSPACE

Open questions

As we have seen, there are some unexpected relationships between the complexity
classes, but for some of the most obvious questions it remains unknown whether:

e P=NP?
e NP=coNP?

Both answer are suspected to be “no”, but so far a proof supporting either
way remains elusive since the beginning of the theory of complexity classes.

Various deterministic and nondeterministic complexity classes can be defined
analogous to P and N P using other functions than polynomials, e.g. logarithms
or exponentionals.

For all of these it is also unknown whether they are equal or not.

2.4 Completeness

If we want to prove that some language is in a complexity class, it is cumbersome
to start from scratch every time; one wants to use something already known to
shorten the process. One of the most useful techniques for this is reduction.

DEFINITION 23 Reduction

Let ¥ and T be alphabets and Ly ¢ ¥* and Ly c T be languages. We say
that L is reducible to Lo, if there is a function f:X* - I'* computable by a
deterministic Turing-machine in polynomial time such that the following holds
for all inputs x: x € Ly if and only if f(x) € Ly. f is then called reduction from
L1 to L2.

Note that the composition of reductions is also a reduction; it follows that
reducible is a transitive relation.
And here is the reason, why reductions are useful to shorten proofs:

THEOREM 7 P, NP, coNP, PSPACE, NPSPACE are closed under reduc-

tions, i.e. if Lo € PINP/coNP/PSPACE[/NPSPACE and Ly can be reduced
to Ly then Ly € P/NPJcoNP/PSPACE/NPSPACE.

There are many more classes that are closed under reductions; in fact one expects
for a sensible complexity class to be closed under some kind of reduction.

12

DEFINITION 24 Completeness
Let L be a language in a complexity class C. Then L is called C-complete if any
language L' € C can be reduced to C.

Reduction and completeness can be very useful tools for establishing relations
between the classes:

THEOREM 8 Let C be a complexity class and D c C be another complexity
class closed under reductions. If L € C is a C'-complete language, then L € D if
and only if C'=D.

PROOF “&”: trivial. “=7: Let L’ a language in C; since L € D is complete,
L’ can be reduced to L. The reduction is also in D since D is closed under
reductions. Therefore C = D. O

N P-complete problems

So one way to solve P 2 NP or similar problems positively, is to search for a
N P-complete problem and find a polynomial time deterministic algorithm to
solve it.

Here is short list of such problems:

o SAT

o HAMILTON PATH
e TSP(D)

e CLIQUE

o KNAPSACK

e BIN PACKING

e PARTITION

13

Part II
Propositional Logic

As we will mainly discuss the complexity of propositional proof systems we shall
now introduce basics of propositional logic and formally describe “proofs” in this
logic using Turing-machines.

DEFINITION 1 Syntax of propositional logic

Let V = {x1,22,...} be a countable set of variables and C be a finite set of
logical connectives with arbitrary, finite arity. Then all of the following are
propositional formulas:

e The signs 1L and T
e Variables

e &(p1,...,pk), where & € C is a logical connective (with arity k) and
P1,...,Pr are propositional formulas.

Parentheses may be added to clarify the precedence of logical connectives.

DEFINITION 2 Valuation
A valuation v: V — {T,1} is a function that gives variables the values “T” or
“l »”

DEFINITION 3 Propositional language
Given a set of variable2 s V', a finite set of connectives C' and a valuation v a
propositional language defines the value of a propositional formula inductively:

e T means “true”, 1L means “false”
e Fach x € V means v(x)

e For each k € Ny, each connective @ in C and each k-tuple of formulas
(t1,...,tr) each t; meaning either “true” or “false” it defines whether
®(t1,...,tk) is “true” or “false”

After fixing a language we can give any formula ¢ a meaning of either “true” or
“false” using a valuation v. For this we write ¢(v).

Example 5 (A propositional logic) Here is a well known propositional lan-
guage:

V=A{xy,...}, C={v,A,=}

Examples of such propositional formulas

T1 NZTa, (—|(Z‘3 V.]Zl)) NT1y...

14

With the usual meaning of the connectives this propositional language is
called standard base. Usually when we talk about propositional formulas, we
mean this language.

The other well known symbols p = ¢ and p < ¢ can be seen as abbreviations
of -pv (pAgq) or (p=q)A(q=p).

The standard way to prove something about a propositional formula ¢ is the
induction on the structure of p. For example:

THEOREM 1 Let ¢ be a propositional formula and v, and vo be valuations
that agree on the set P of variables in &, i.e. vi|p = va|p. Then ¢(v1) = d(va).

PROOF Proof by induction on the structure of ¢.
e p=1lor¢=T:
d(v) =“true” respectively “false” regardless of valuation v
e ¢ =z with z variable:
d(v1) = v1(x) = va(x) = ¢(v2) because vy and vy agree on {z}.

e ¢=@(1,...,7) where 7; are propositional formulas for which the hypoth-
esis 7;(v1) = 7;(v2) holds:

P(v1) = &(11(v1), ..., (1)) = ®(T1(v2),. .., T (v2)) = P(v2)
Therefore the hypothesis holds. O

Many proofs about propositional formulas follow the same scheme.
DEFINITION 4 Satisfiability and Tautology

A propositional formula ¢ is called

satisfiable , if there is a valuation v such that ¢p(v) = “true”.
unsatisfiable , if there is no such valuation.

tautology , if for each valuation v ¢(v) = “true”.

equivalent to a formula ¢ if ¢ < ¢ is a tautology.

The set of all satisfiable formulas is called SAT, the set of all tautology TAUT.

About SAT and TAUT

SAT is in NP: A nondeterministic machine can “guess” all valuations of a
formula at once and then check if one is true. This can be done polynomial time.
It even is N P-complete: For any nondeterministic machine N deciding L
in polynomial time and any input x, there is a formula F' constructible in
logarithmic space that is satisfiable if and only if = € L.
Instead of asking if ¢ €TAUT one can ask if —¢ €SAT. In that sense SAT and
TAUT are essentially the same.

15

3 Abstract Proof Systems

DEFINITION 5 (Abstract) Proof systems

A proof system for a language L is a deterministic Turing-machine M operating
in polynomial time that for any word x, there exists a certificate p, such that M
accepts x#p if and only if x € L.

Recall the characterization of NP through certificates: It is clear that the
language L is in N P.

In that case, p is called a proof for z.

The time bound of the machine M is called (time) complezity of the proof.

DEFINITION 6 Propositional proof system
A propositional proof system is a proof system for the language TAUT of
tautologies.

If there exists a proof p in this system for every tautology x, then the system
1s called complete.

If the existence of a proof p for x in this system implies that x is a tautology,
then the system is called sound.

Since a formula is a tautology if and only if its negation is unsatisfiable, we
can give an alternative definition:

DEFINITION 7 Propositional proof system
A propositional proof system is a proof system for the language UNSAT of
unsatisfiable formulas.

Since there is a great number of propositional proof systems, it is useful to
have a way of saying that one is as strong as another.

DEFINITION 8 Simulation

Let M and M' be two proof systems. We say that M polynomially simulates
M’ if M and M’ prove the same language and proofs in M’ can be polynomially
converted into proofs in M, i.e. there exists a in polynomial time computable
function such that p is a proof in M’ if and only if f(p) is a proof in M'.

DEFINITION 9 Equivalence of proof systems
Two proof systems M and M' are said to be equivalent if M polynomially
simulates M’ and vice versa.

16

4 Example of a Propositional Proof System: Res-
olution

Now a short introduction to a common proof system: Resolution
The proof systems will be described algorithmically rather than stating the
corresponding Turing machine.

Resolution

DEFINITION 10 Literal, Conjunctive and Disjunctive Normal Form
A propositional formula ¢ is

a literal if ¢ is a variable or a negated variable.

in conjunctive normal form (CNF) if it is a conjunction of disjunctions of
literals.

in disjunctive normal form (DNF) if it is a disjunction of conjunctions of
literals.

Any formula has an equivalent formula in CNF and one in DNF.

DEFINITION 11 Equisatisfiable
Two formulas ¢ and ¢’ are called equisatisfiable, if ¢ is satisfiable if and only if
@' is satisfiable.

Example 6 (z < p) A (xVvq) and pV q, with p, ¢ formulas, are equisatisfiable,
but not equivalent.

Let ¢ be a formula in CNF represented as a set ® of sets of literals, e.g.
¢ = (x1Vx2) Ax3 A -xg is represented as ® = {{z1,x2},{x3}, {z2}}. Resolution
is an algorithm for deciding if ¢ eSAT working on that set ®.

Example 7 Let us now see how resolution might be used to proof or disproof
the satisfiability of a formula:

{{a’v b}v {av ﬂb}’ {ﬂav b}v {_‘av ﬂb}}
{{a},{-a}}

1%}

Each step in this example resolved on a variable: On the first we resolved on b
using two resolution steps, on the second on a.
The formula represented by this set of sets is not satisfiable.

17

DEFINITION 12 Resolvent

Let C and D be set of literals representing a disjunction and x be variable. If
x € C and —~x € D, then the set (C~{x})u (D~ {=z}) is called the resolvent of
C and D.

Taking two clauses and replacing them by their resolvent is called one resolution
step

DavisPutnam algorithm

Now we will build from a set of clauses all possible resolvents replacing the
original clauses. Let S be a set of sets of literals representing a CNF and [be a
variable. Define

o P:={C~{l}, leCeS}

e N:={D~{-l}, -leDeS}

o Soy={E¢cS, I,-¢E}

o S":=S,u{CuD, CeP, De N}

Then the formulas represented by S and S’ are equisatisfiable. Building S’ from
S is one step in the DavisPutnam algorithm.

Let S be a set of sets of literals. Construct S’ by one DavisPutnam step
from S, S” by one resolution step from S, S®) from S and so on, each time
using a new variable.

If there is a n € N such that @ € S(™) then the formula represented by S(*) is
unsatisfiable and therefore also the one represented by S.

Is it not possible to choose a variable to construct a new resolvent anymore,
then the formula represented by S is satisfiable.

Resolution is therefore a complete and sound proof system for propositional
formulas in CNF.

18

References

[1] S. Buss. An introduction to proof theory. Handbook of Proof Theory, pages
1-78, 1998.

[2] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[3] P. Pudlak. On the complexity of the propositional calculus. Sets and Proofs:
Invited papers from Logic Colloguium’97, pages 197-218, 1999.

	I Complexity Theory
	Languages and Turing-machines
	Turing-machines
	Nondeterminism

	Complexity Classes
	P and NP
	Space Complexity
	Relation between various Complexity Classes
	Completeness

	II Propositional Logic
	Abstract Proof Systems
	Example of a Propositional Proof System: Resolution

