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Plan

Proof of Razborov’s theorem.
Lower bounds for the resolution proof system.
Lower bounds for the cutting planes.
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Monotone circuits

Definition Boolean circuit :
directed acyclic graph
nodes (gates) labelled by: inputs, AND, OR, NOT
computes a function of its n input bit in the natural way

Conjecture: NP-complete problems have no polynomial circuits.

the best lower bounds we are able to prove are kn (for small constants
k)
let’s prove in a weaker circuit model
the most natural model is the monotone circuits (that is, ones without
NOT gates)
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Monotone circuits

Monotone circuits can only compute monotone functions(
x ≤ y ⇒ f (x) ≤ f (y)), and ∀ monotone function can be computed by
monotone circuit.
There are monotone NP-complete problems (CLIQUEn,k)
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CLIQUE

Definition: CLIQUEn,k is the Boolean function. CLIQUE(G(V, E))=1 if G
has a clique of size k .

CLIQUEn,k is a monotone function.
CLIQUEn,k is NP-complete
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Monotone circuit for CLIQUEn,k

input gate g[i ,j] is set to true ⇔ [i , j ] ∈ E
∀S ⊆ V with |S | = k test with AND gates whether S forms a clique
repeat ∀S ⊆ V with |S | = k and take a big OR of the outcomes

Definition: Crude circuit is a circuit testing whether a family of subsets of
V form a clique and returning true ⇔ one of the sets does. The above
circuit is denoted CC (S1, ..S(n

k))
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Razborov’s Theorem:

Razborov’s Theorem: There is a constant c such that for large enough n
all monotone circuits for CLIQUEn,k with k = 4

√
n have size at least 2c 8√n
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Plan

approximate any monotone circuit for CLIQUEn,k by a restricted kind
of crude circuit.
show that each step introduces rather few errors
show that the resulting crude circuit has exponentially many errors.
Thus the approximation takes exponentially many steps ⇒ the original
monotone circuit has exponentially many gates.
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The Erdös-Rado Lemma

Defenition: A sunflower is a family of p sets {P1, ...,Pp}, called petals,
each of cardinality at most `, such that all pairs of sets in the family have
the same intersection (called the core of sunflower).

The Erdös-Rado Lemma: Let Z be a family of more than
M = (p − 1)``! nonempty sets, each of cardinality ` or less. Then Z must
contain a sunflower.
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Proof:

Induction on `.

` = 1 ⇔ different singletons form a sunflower. D is a maximal subset
of Z of disjoint sets.
|D| ≥ p sets, then it constitutes a sunflower with empty core.
F =

⋃
Hi ,Hi ∈ D. We know: |F| ≤ (p − 1)` and that D intersects

every set in Z.
There is an element d ∈ D which intersects more than

M
(p−1)` = (p − 1)`(`− 1)! sets.
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G = {S− d : S ∈ Z and d ∈ Z}
G has more than (p − 1)`(`− 1)! sets ⇒ by induction it contains a
sunflower P1, ...,Pp. Then {P1 ∪ {d}, ...,Pp ∪ {d}} is a sunflower in
Z. �

Definition: Plucking a sunflower entails replacing the sets in the sunflower
by its core.

Z1, ..,Zp −→ Z

Remark:If there are >M sets in a family, we can reduce their number by
repeatedly finding a sunflower and plucking it.
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Approximation

do it inductively (any monotone circuit is considered as the OR or
AND of two subcircuits).
there are two circuits CC(X), CC(Y), X,Y are families of ≤ M sets of
nodes. (M = (p − 1)``! (p is about 8

√
n )).

each set with ≤ ` (= 8
√
n) nodes.
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Approximation steps

A[CC (X) ∨ CC (Y)] = CC(pluck(X ∪ Y))
A[CC (X) ∧ CC (Y)] = CC(pluck ({Ui ∪ Vj : Ui ∈ X, Vi ∈ Y, and
|Ui ∪ Vj | ≤ `}))
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Positive and negative examples

Definition: A positive example is simply a graph with
(k
2

)
edges

connecting k nodes in all possible ways. There are
(n
k

)
such graphs,

and they all should elicit the "true".
The negative examples are outcomes of following experiment: color
the nodes with k − 1 different colors. Then join by an edge any two
nodes that are colored differently. Such a graph has no k-clique. There
are (k − 1)n negative examples overall.

Alisa Knizel () march 2009 14 / 1



False negatives and false positives

E is a positive example. CC1(E ) = true,CC = A[CC1 ∨ CC2] and
CC (E ) = false ⇒ the approximation step has introduced a false
negative.
N is a negative example.
CC1(N) = false,CC2(N) = false,CC = A[CC1 ∨ CC2] and
CC (N) = true ⇒ the approximation step has introduced a false
positive.
E is a positive example.
CC1(E ) = true,CC2(N) = true,CC = A[CC1 ∧ CC2] and
CC (E ) = false ⇒ the approximation step has introduced a false
negative.
N is a negative example. CC1(N) = false,CC = (AND)A[CC1 ∧ CC2]
and CC (N) = true ⇒ the approximation step has introduced a false
positive.
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Lemma 1 (about false positives)

Lemma: Each approximation step introduces ≤ M22−p(k − 1)n false
positives.

Proof: First for an OR.
A false positive introduced by plucking (the replacement of sunflower
{Z1, ...,Zp} by its core Z) is a coloring such that there is a pair of
identically colored nodes in each petal, but at least one node from each
petal was plucked away. Let’s count such colorings.
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Proof (OR):

R(X) is the probability of the event that there are repeated colors in set X.
We have:

prob[R(Z1) ∧ ... ∧ R(Zp) ∧ ¬R(Z )] ≤ prob[R(Z1) ∧ ... ∧ R(Zp)|¬R(Z )] =

=

p∏
i=1

prob[R(Zi )|¬R(Z )] ≤
p∏

i=1

prob[R(Zi )]
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Proof(OR):

Consider two nodes in Zi , prob[they have the same color]= 1
k−1 . Then

prob[R(Zi )] ≤
(|Zi |

2

)
k − 1

≤
(

`
2

)
k − 1

≤ 1
2

Thus the probability that a randomly chosen coloring is a new false
negative is at most 2−p

There are (k − 1)n different coloring ⇒ each plucking introduces
≤ 2−p(k − 1)n false positives. The approximation step entails up to
2M
p−1 pluckings, the lemma holds for the OR approximation step.

Alisa Knizel () march 2009 18 / 1



Proof (AND):

Consider now an AND approximation step. It can be broken down in 3
phases:

we form CC ({U ∪ V : U ∈ X,V ∈ Y})→ no false positives.
the second phase omits from the approximator circuit several sets →
no false positives.
the third phase entails a sequence <M2 pluckings, during each of
which ≤ 2−p(k − 1)n false positives are introduced. �
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Lemma 2(about false negatives)

Lemma: Each approximation step introduce ≤ M2(n−`−1
k−`−1

)
false

negatives.
Proof:
plucking can introduce no false negatives
⇒ the approximation of an OR introduces no false negatives.
Consider now an AND approximation step.
when we form CC ({U ∪ V : U ∈ X,V ∈ Y}) no f. n. can be
introduced.
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Proof:

each deletion of a set W which is larger than ` can introduce several
false negatives, namely the cliques that contain W⇒ at most

(n−`−1
k−`−1

)
f. n. can be introduced by each deletion.

there are at most M2 sets to be deleted. �
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Conclusion

Lemma 1 and 2 show that each approximation step introduces "few"false
positives and false negatives. We’ll next show that the resulting crude
circuit must have "a lot".
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Lemma 3 (number of errors)

Lemma 3: Every crude circuit is not identically false(and thus is wrong on
all positive examples), or outputs true on at least half of the negative
examples.

If the crude circuit is not identically false, then it accepts at least
those graphs that have a clique on some set X of nodes, with |X | ≤ `.
But from Lemma 1 at least half of the colorings assign different colors
to the nodes of X ⇒ half of the negative examples have a clique at X
and are accepted. �
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The last step of the proof of Razborov’s theorem:

p = 8
√
n log n, ` = 8

√
n ⇒

M = (p − 1)``! < n
1
3

8√n

for large enough n.
If the final crude circuit is identically false⇒ all possitive examples
were introduced as false negatives at some step
⇒ the original monotone circuit for CLIQUEn,k had ≤ (Lemma 2)(n

k

)
M2
(n−`−1
k−`−1

)
≥ 1

M2(n−`
k )`

≥ nc 8√n,

with c = 1
12
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The proof of Razborov’s theorem:

Lemma 3 states that there are ≥ 1
2(k − 1)n false positives, each

approximation step introduces ≤ M22−p(k − 1)n (Lemma 1) of them.
⇒ the original monotone circuit had at least 2p−1M−2 > nc 8√n, with
c = 1

3 .
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Resolution

Definition The propositional resolution proof system is the one which uses
elementary disjunctions i. e., disjunctions of literals, as formulas, and the
cut rule as the only one rule

Γ ∨ p, ∆ ∨ ¬p
Γ ∨∆

Where Γ, ∆ are elementary disjunctions.
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Effective interpolation for Resolution

The ternary connective sel (selector) is defined by sel(0, x , y) = x and
sel(1, x , y) = y

Theorem 1: Let P be a resolution proof of the empty clause from
clauses Ai (p̄, q̄), i ∈ I ,Bj(p̄, r̄), j ∈ J where p̄, q̄, r̄ are disjoint sets of
propositional variables. Then there exists a circuit C (p̄) such that for
every 0− 1 assignment ā for p̄

C (ā) = 0⇒ Ai (p̄, q̄), i ∈ I

are unsatisfiable, and

C (ā) = 1⇒ Bj(p̄, r̄), j ∈ J

are unsatisfiable;
the circuit C is in basis {0, 1,∨,∧} and its underlying graph is the
graph of the proof P.
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Theorem 1

Moreover, we can construct in polynomial time a resolution proof of the
empty clause from clauses Ai (p̄, q̄), i ∈ I if C (ā) = 0, respectively
Bj(p̄, r̄), j ∈ J if C (ā) = 1; the length of this proof is less than or equal to
the length of P.
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Proof:

The transformation of the proof for a given assignment p̄ → ā
1. We replace each clause of P by a subclause so that each clause in
the proof is either q-clause or r-clause. We start with initial clause,
which are left unchanged and continue along the derivation P .
Case 1.

Γ ∨ pk , ∆ ∨ ¬pk

Γ ∨∆

and we have replaced Γ ∨ pk by Γ′ and ∆ ∨ ¬pk by ∆′. Then we
replace Γ ∨∆ by Γ′ if pk → 0 and by ∆′ if pk → 1
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Proof:

Case 2.
Γ ∨ qk , ∆ ∨ ¬qk

Γ ∨∆
and we have replaced Γ∨ qk by Γ′ and ∆∨¬qk by ∆′. If one of Γ′, ∆′

is an r-clause → replace Γ ∨∆ by this clause. If both Γ′ and ∆′ are
q-clauses → resolve along qk , or take one without qk .
Case 3.

Γ ∨ rk , ∆ ∨ ¬rk
Γ ∨∆

This is the dual case to case 2.
2.Delete the clauses which contain a p̄ literal with value 1, and remove
all p̄ literals from the remaining clauses.
We got a valid derivation of the final empty clause from the reduced
initial clauses. If this final clause is a q-clause, the proof contains a
subproof using only the reduced clauses Ai , i ∈ I ; if an r-clause ⇒
Bj , j ∈ J
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Proof:

Construction of C:
The value computed at a gate corresponding to a clause Γ will
determine if it is transformed into a q(r)-clause. We assign 0 to
q-clauses and 1 to r-clauses.
Put constant 0 gates on clauses Ai , i ∈ I and constant 1 gates on
clauses Bj , j ∈ J.
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Proof:

Now consider 3 cases as above.
Case 1. If the gate on Γ ∨ pk gets value x and the gate on ∆ ∨ ¬pk
gets value y , then the gate on Γ ∨∆ should get the value
z = sel(pk , x , y). We place the sel gate on Γ ∨∆.
Case 2. If the gate on Γ ∨ qk gets value x and the gate on ∆ ∨ ¬qk
gets value y , then the gate on Γ ∨∆ should get the value z = x ∨ y).
We place the ∨ gate on Γ ∨∆.
Case 3. This is dual to case 2.

�
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Theorem 2

Theorem 2:
Suppose moreover that either all variables p̄ occur in Ai (p̄, q̄), i ∈ I only
positively or all variables p̄ occur in p̄ occur in Bj(p̄, r̄), j ∈ J only
negatively, then one can replace the selector connective sel by a monotone
ternary connective.
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Proof:

W. l. o. g. assume that all p̄’s are positive in clauses Ai , i ∈ I .
Hence in case 1, if ∆′ is a q-clause, it cannot contain ¬pk , hence we
can take it for Γ ∨∆, even if pk → 0.
Thus we can replace sel(pk , x , y) by (pk ∨ x) ∧ y which is monotone
and differs from selector exactly on one input (pk = 0, x = 1, y = 0)
which corresponds to the above situation.

�
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Cutting planes:

We use propositional variables p̄ with the interpretation
0 = false, 1 = true.
A proof line is an inequality ∑

k

ckpk ≥ C

Axiom: 0 ≤ pk ≤ 1
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The rules

Addition:
∑

k ckpk ≥ C and
∑

k dkpk ≥ D
−→

∑
k(ck + dk)pk ≥ C + D

Division: d > 0, d ∈ Z, d |ck and
∑

k ckpk ≥ C−→
∑

k
ck
d pk ≥ dCd e

Multiplication: d > 0, d ∈ Z and
∑

k ckpk ≥ C−→
∑

k dckpk ≥ dC
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Theorem 3

Theorem 3: Let P be a cutting plane proof of the contradiction
0 ≥ 1 from inequalities

∑
k ci ,kpk +

∑
l bi ,lql ≥ Ai , i ∈ I ,∑

k c
′
j ,kpk +

∑
m dj ,mqm ≥ Bj , j ∈ J where p̄, q̄, r̄ are disjoint sets of

propositional variables. Then there exists a circuit C (p̄) such that for
every 0− 1 assignment ā for p̄
C (ā) = 0⇒

∑
k ci ,kpk +

∑
l bi ,lql ≥ Ai , i ∈ I are unsatisfiable, and

C (ā) = 1⇒
∑

k c
′
j ,kpk +

∑
m dj ,mqm ≥ Bj , j ∈ J are unsatisfiable.

The size of the circuit is polynomial in the binary length of the
numbers Ai , i ∈ I ,Bj , j ∈ J and the number of inequalities in P .
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Theorem 3

Moreover, we can construct in polynomial time a cutting plane proof of the
contradiction 0 ≥ 1 from inequalities

∑
k ci ,kpk +

∑
l bi ,lql ≥ Ai , i ∈ I if

C (ā) = 0, respectively
∑

k c
′
j ,kpk +

∑
m dj ,mqm ≥ Bj , j ∈ J if C (ā) = 1;

the length of this proof is less than or equal to the length of P.
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Proof:

Let P and assignment p̄ → ā be given.
Replace∑

k ekpk +
∑

l flql +
∑

l flql ≥ D −→
∑

l flql ≥ D0,
∑

m gmrm ≥ D1

The pair is at least as strong as the original one
D0 + D1 ≥ D −

∑
k ekpk∑

k ci ,kpk +
∑

l bi ,lql ≥ Ai −→ the pair∑
l bi ,lql ≥ Ai −

∑
k ci ,kpk , 0 ≥ 0∑

k c
′
j ,kpk +

∑
m dj ,mrm ≥ Bj −→ the pair∑

m dj ,mrm ≥ Bj −
∑

k c
′
j ,kpk , 0 ≥ 0

The rules are performed in parallel on the 2 inequalities in the pair.
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Proof:

The pair corresponding to the last inequality 0 ≥ 1 is 0 ≥ D0, 0 ≥ D1
where D0 + D1 ≥ 1
⇒D0 ≥ 1 ∨ D1 ≥ 1
⇒ We have a proof of contradiction either from∑

k ci ,kpk +
∑

l bi ,lql ≥ Ai , i ∈ I or from∑
k c
′
j ,kpk +

∑
m dj ,mqm ≥ Bj , j ∈ J .

Each proof P can be transformed in proof P’ wich is at most
polynomially longer and all the coefficients have polynomially bounded
binary length (Clote and Buss).
All Di have polynomially bounded binary length ⇒ the above
procedure can be done in polynomial time in the binary length of
Ai , i ∈ I ,Bj , j ∈ J and the number of inequalities.
We use the transformation of polynomial time algorithms into
sequences of polynomial size circuits.
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The End.
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