
Razborov’s theorem, interpolation method,
and lower bounds for Resolution and Cutting

Planes.

Alisa Knizel

2009 April

Abstract

The goal of this article is to illustrate the interpolation method
of proving the lower bounds for resolution and cutting plane proofs.
The idea is to reduce this problem to the problem of proving the lower
bounds for monotone circuits which was solved by Razborov.

1 Introduction
The problem of proving lower bounds on the length of propositional proofs
is one of the most important problems in logic and complexity theory. It
is so important because we know the connection: NP= co -NP if and only
if there is a polynomialy-bounded proof system for the classical tautologies.
There is no general technique to proof lower bounds for all propositional
proof systems so we are trying to extend current methods to stronger and
stronger systems.

We can also formulate a congecture, a strengthering of the P 6= NP ,
which is very close to the problem we have discussed above, that NP -
complete problems have no polynomial circuits. The progress in proving
this conjecture has been very slow. At present the best lower bounds we
have been able to proof for explicit families of functions are of the form k ∗n
for small constants k. So it was decided to try to prove this statement in
a weeker circuit model: the monotone circuits. Many NP -complete prob-
lems cannot be computed by monotone circuits but some important ones

1

can be computed (for example, CLIQUEn,k). The question is how small
these monotone circuits can be?

First of all, in this article we will answer this question. After it we will
proof lower bounds for resolutios and for cutting planes proofs with the help
of this result.

2 Basic definitions
Definition 2.0.1. Boolean circuit is a directed acyclic graph. All the nodes
(gates) are labelled by: inputs, AND, OR, NOT. It computes a function of
its n input bit in the natural way.

Definition 2.0.2. Monotone circuits are ones without NOT gates.

Remark 1. Monotone circuits can only compute monotone functions(x ≤
y ⇒ f(x) ≤ f(y)), and ∀ monotone function can be computed by monotone
circuit.

Definition 2.0.3. CLIQUEn,k is the Boolean function. CLIQUE(G(V, E)) =
1 if G has a clique of size k.

Remark 2. CLIQUEn,k is a monotone function because if the graph has a
clique than the graph with an added edge will also have a clique. CLIQUEn,k

is NP -complete.

Now we are going to construct monotone circuit for CLIQUEn,k:

• input gate g[i, j] is set to true ⇔ [i, j] ∈ E

• ∀S ⊆ V with |S| = k test with AND gates whether S forms a clique

• repeat ∀S ⊆ V with |S| = k and take a big OR of the outcomes

Definition 2.0.4. Crude circuit is a circuit testing whether a family of sub-
sets of V form a clique and returning true⇔ one of the sets does. The above
circuit is denoted CC(S1, ..S(n

k)
)

2

3 Razborov’s Theorem
Theorem 1. There is a constant c such that for large enough n all monotone
circuits for CLIQUEn,k with k = 4

√
n have size at least 2c 8√n

The plan of the proof:
We are going to construct a restricted kind of crude circuit from the given

monotone circuit for CLIQUEn,k. This process we will call approximation.
This curcuit will be very crude but we are going to test it only on a very
special kind of inputs. We will call them possitive and negative examples.
The approximation is devided into steps. Each step corresponds to each gate
of the original curcuit. The errors which each approximation step can intro-
duce we will call false positives and false negatives. We will count how many
false negatives and false positives each approximation step can introduce.
We will show that each step introduces rather few errors but the resulting
crude circuit has exponentially many errors. It means that the approxima-
tion takes exponentially many steps. Thus the original monotone circuit has
exponentially many gates.

Now we have to proof a lemma which will be very useful for us.

Definition 3.0.5. A sunflower is a family of p sets {P1, ..., Pp}, called petals,
each of cardinality at most `, such that all pairs of sets in the family have
the same intersection (called the core of sunflower).

Lemma 1. (The Erdös-Rado Lemma) Let Z be a family of more than M =
(p− 1)``! nonempty sets, each of cardinality ` or less. Then Z must contain
a sunflower.

Proof. Induction on `.

• ` = 1 ⇔ different singletons form a sunflower. D is a maximal subset
of Z of disjoint sets.

• |D| ≥ p sets, then it constitutes a sunflower with empty core.

• Let’s define F :=
⋃

Hi, Hi ∈ D. We know: |F| ≤ (p− 1)` and that D
intersects every set in Z.

• Thus there is an element d ∈ D which intersects more than M
(p−1)`

=

(p− 1)`(`− 1)! sets.

3

• Let’s define G := {S− d : S ∈ Z and d ∈ Z}

• G has more than (p − 1)`(` − 1)! sets ⇒ by induction it contains a
sunflower P1, ..., Pp. Then {P1 ∪ {d}, ..., Pp ∪ {d}} is a sunflower in Z.

Definition 3.0.6. Plucking a sunflower entails replacing the sets in the sun-
flower by its core.

Z1, .., Zp −→ Z

Remark 3. During the whole proof the parameters p and ` will be fixed.
With the help of plucking we can also fix the maximal number of the sets in
the family. If there are more than M sets in a family, we can reduce their
number by repeatedly finding a sunflower and plucking it.

It is time to describe the approximation process. We will do it inductively
because any monotone circuit can be considered as the OR or AND of two
subcircuits(the induction is easy to stert because each input gate gi,j denoting
whether [i, j] ∈ E can be seen as a crude circuit CC(i,j)). Let’s define the
step of induction. Suppose there are two circuits CC(X), CC(Y), where X
and Y are families of ≤ M sets of nodes, each set with ≤ ` (= 8

√
n) nodes.

(Later we will define: M = (p− 1)``!, ` = 8
√

n) and p is about 8
√

n))
Approximation steps:

• A[CC(X) ∨ CC(Y)] = CC(pluck(X ∪Y))

• A[CC(X) ∧ CC(Y)] = CC(pluck ({Ui ∪ Vj : Ui ∈ X, Vi ∈ Y, and
|Ui ∪ Vj| ≤ `}))

A positive example is simply a graph with
(

k
2

)
edges connecting k nodes

in all possible ways. There are
(

n
k

)
such graphs, and they all should elicit the

"true". The negative examples are outcomes of following experiment: color
the nodes with k − 1 different colors. Then join by an edge any two nodes
that are colored differently. Such a graph has no k-clique. There are (k−1)n

negative examples overall.

Definition 3.0.7. (False positives)

Let N be a negative example. CC1(N) = false, CC2(N) = false, CC =
A[CC1 ∨ CC2] and CC(N) = true ⇒ the approximation step has in-
troduced a false positive.

4

Let N be a negative example. CC1(N) = false, CC = (AND)A[CC1∧
CC2] and CC(N) = true ⇒ the approximation step has introduced a
false positive.

Definition 3.0.8. (False negatives)

Let E be a positive example. CC1(E) = true, CC2(N) = true, CC =
A[CC1 ∧ CC2] and CC(E) = false ⇒ the approximation step has
introduced a false negative. Let E be a positive example. CC1(E) =
true, CC = A[CC1 ∨ CC2] and CC(E) = false ⇒ the approximation
step has introduced a false negative.

These two lemmas state that each approximation step introduces rather
few errors.

Lemma 2. (about false positives) Each approximation step introduces ≤
M22−p(k − 1)n false positives.

Proof. First for an OR.
A false positive introduced by plucking (the replacement of sunflower

{Z1, ..., Zp} by its core Z) is a coloring such that there is a pair of identically
colored nodes in each petal, but at least one node from each petal was plucked
away. Let’s count such colorings.

Let R(X) be the probability of the event that there are repeated colors
in set X. So we have:

prob[R(Z1) ∧ ... ∧R(Zp) ∧ ¬R(Z)]

≤ prob[R(Z1) ∧ ... ∧R(Zp)|¬R(Z)] =

=

p∏
i=1

prob[R(Zi)|¬R(Z)] ≤
p∏

i=1

prob[R(Zi)]

The first inequality holds because the left-hand side is actually equal to
the right-hand side devided by prob[¬R(Z)] < 1 (this is the definition of
conditional probability).The second equality is true because the only common
verticies the Z ′is have are in Z, and, given that there are no repeated colors
in Z, the probabilities of repeated colors in the Z ′is are independent. The
last inequality holds because the probability of repetitions in Zi is descreased
if we restrict ourselves to colorings with no repetitions in Z ⊆ Zi.

5

Let’s consider two nodes in Zi, prob[they have the same color]= 1
k−1

.
Then

prob[R(Zi)] ≤
(|Zi|

2

)
k − 1

≤
(

`
2

)
k − 1

≤ 1

2

Thus the probability that a randomly chosen coloring is a new false negative is
at most 2−p There are (k− 1)n different coloring⇒ each plucking introduces
≤ 2−p(k − 1)n false positives. The approximation step entails up to 2M

p−1

pluckings, so the lemma holds for the OR approximation step.
Consider now an AND approximation step. It can be broken down in 3

phases:

• first we form CC({U ∪ V : U ∈ X, V ∈ Y}), this introduces no false
positives, because any graph in which U ∪ V is a clique must have a
clique in both U and V .

• we delete the sets with cardinality more than ` and it introduces no
false positives.

• the third phase entails a sequence of less than M2 pluckings, during
each of which ≤ 2−p(k − 1)n false positives are introduced.

Lemma 3. (about false negatives) Each approximation step introduces ≤
M2
(

n−`−1
k−`−1

)
false negatives.

Proof. Plucking can introduce no false negatives, since replacing a set in a
crude circuit by a subset can only increase the number of accepted graphs.
As the approximation of an OR entails only pluckings, it introduces no
false negatives. Consider now an AND approximation step. When we form
CC({U ∪ V : U ∈ X, V ∈ Y}) no false negatives can be introduced. If a
positive example is accepted by both CC(X) and CC(Y); it must be the case
that its clique contains one set in X and one set in Y, but then it contains
the union of these sets(because of the structure of positive example), and
thus it is accepted by the new circuit.

Next we have to delete all sets which are larger than `. Each deletion of a
set W which is larger than ` can introduce several false negatives, namely the
cliques that contain W⇒ at most

(
n−`−1
k−`−1

)
false negatives can be introduced

by each deletion. There are at most M2 sets to be deleted. Thus the lemma
is proved.

6

So we can make a conclution. Previous lemmas show us that each ap-
proximation step introduces "few" false positives and false negatives. We’ll
next show that the resulting crude circuit must have "a lot".

Lemma 4. (number of errors) Every crude circuit is not identically false
(and thus is wrong on all positive examples), or outputs true on at least half
of the negative examples.

Proof. If the crude circuit is not identically false, then it accepts at least
those graphs that have a clique on some set X of nodes, with |X| ≤ `. But
from lemma 2 we know that at least half of the colorings assign different
colors to the nodes of X ⇒ half of the negative examples have a clique at X
and are accepted.

Now we will make the last step of proving the Razborov’s theorem(here
we use Stirling’s formula) :

• let’s defune p = 8
√

n log n, ` = 8
√

n ⇒

M = (p− 1)``! < n
1
3

8√n

for large enough n .

• if the final crude circuit is identically false ⇒ all possitive examples
were introduced as false negatives at some step.

• ⇒ the original monotone circuit for CLIQUEn,k had (lemma 3) ≤(
n
k

)
M2
(

n−`−1
k−`−1

)
≥ 1

M2(n−`
k

)`
≥ nc 8√n,

with c = 1
12

• lemma 4 states that there are ≥ 1
2
(k − 1)n false positives and each

approximation step introduces ≤M22−p(k − 1)n (lemma 2) of them.

• ⇒ the original monotone circuit had at least 2p−1M−2 > nc 8√n, with
c = 1

3
.

Thus the proof of the theorem is completed.

7

4 Resolution
Definition 4.0.9. The propositional resolution proof system is the one which
uses elementary disjunctions i. e., disjunctions of literals, as formulas, and
the cut rule as the only one rule

Γ ∨ p, ∆ ∨ ¬p

Γ ∨∆

Where Γ, ∆ are elementary disjunctions.

Definition 4.0.10. The ternary connective sel (selector) is defined by sel(0, x, y) =
x and sel(1, x, y) = y

Theorem 2. (Effective interpolation for Resolution)
Let P be a resolution proof of the empty clause from clauses Ai(p̄, q̄), i ∈

I, Bj(p̄, r̄), j ∈ J where p̄, q̄, r̄ are disjoint sets of propositional variables.
Then there exists a circuit C(p̄) such that for every 0− 1 assignment ā for p̄

C(ā) = 0⇒ Ai(p̄, q̄), i ∈ I

are unsatisfiable, and

C(ā) = 1⇒ Bj(p̄, r̄), j ∈ J

are unsatisfiable;
the circuit C is in basis {0, 1,∨,∧} and its underlying graph is the graph

of the proof P.
Moreover, we can construct in polynomial time a resolution proof of the

empty clause from clauses Ai(p̄, q̄), i ∈ I if C(ā) = 0, respectively Bj(p̄, r̄), j ∈
J if C(ā) = 1; the length of this proof is less than or equal to the length of P.

Proof. Let’s consider the transformation of the proof for a given assignment
p̄→ ā

• 1. We replace each clause of P by a subclause so that each clause in
the proof is either q-clause or r-clause. We start with initial clause,
which are left unchanged and continue along the derivation P .

8

• Case 1.
Γ ∨ pk, ∆ ∨ ¬pk

Γ ∨∆

and we have replaced Γ∨pk by Γ′ and ∆∨¬pk by ∆′. Then we replace
Γ ∨∆ by Γ′ if pk → 0 and by ∆′ if pk → 1

• Case 2.
Γ ∨ qk, ∆ ∨ ¬qk

Γ ∨∆

and we have replaced Γ ∨ qk by Γ′ and ∆ ∨ ¬qk by ∆′. If one of Γ′, ∆′

is an r-clause → replace Γ ∨ ∆ by this clause. If both Γ′ and ∆′ are
q-clauses → resolve along qk, or take one without qk.

• Case 3.
Γ ∨ rk, ∆ ∨ ¬rk

Γ ∨∆

This is the dual case to case 2.

• 2. Delete the clauses which contain a p̄ literal with value 1, and remove
all p̄ literals from the remaining clauses.

• We got a valid derivation of the final empty clause from the reduced
initial clauses. If this final clause is a q-clause, the proof contains a
subproof using only the reduced clauses Ai, i ∈ I; if an r-clause ⇒
Bj, j ∈ J

Construction of C: The value computed at a gate corresponding to a
clause Γ will determine if it is transformed into a q(r)-clause. We assign 0
to q-clauses and 1 to r-clauses. We put constant 0 gates on clauses Ai, i ∈ I
and constant 1 gates on clauses Bj, j ∈ J .

Now consider 3 cases as above.

• Case 1. If the gate on Γ∨ pk gets value x and the gate on ∆∨¬pk gets
value y, then the gate on Γ ∨∆ should get the value z = sel(pk, x, y).
We place the sel gate on Γ ∨∆.

• Case 2. If the gate on Γ∨ qk gets value x and the gate on ∆∨¬qk gets
value y, then the gate on Γ ∨ ∆ should get the value z = x ∨ y). We
place the ∨ gate on Γ ∨∆.

• Case 3. This is dual to case 2.

9

Theorem 3. Suppose moreover that either all variables p̄ occur in Ai(p̄, q̄), i ∈
I only positively or all variables p̄ occur in p̄ occur in Bj(p̄, r̄), j ∈ J only
negatively, then one can replace the selector connective sel by a monotone
ternary connective.

Proof. W. l. o. g. assume that all p̄’s are positive in clauses Ai, i ∈ I. Hence
in case 1, if ∆′ is a q-clause, it cannot contain ¬pk, hence we can take it for
Γ∨∆, even if pk → 0. Thus we can replace sel(pk, x, y) by (pk∨x)∧y which is
monotone and differs from selector exactly on one input (pk = 0, x = 1, y = 0)
which corresponds to the above situation.

There is a construction of a formula which states that the graph is n-
colorable and that it has a n-clique. Obviously this formula is false for every
assignment. It can be written in the manner which was described in the
statement of the theorem. So there is an interpolation circuit for it and the
Razborov’s theorem tells as that the size of this circuit is exponential. Thus
we can make the conclution that the lengh of the resolution proof for it was
also exponential.

5 Cutting planes:
Definition 5.0.11. We use propositional variables p̄ with the interpretation
0 = false, 1 = true.

• A proof line is an inequality∑
k

ckpk ≥ C

• Axiom: 0 ≤ pk ≤ 1

The rules:

• Addition:
∑

k ckpk ≥ C and
∑

k dkpk ≥ D −→
∑

k(ck + dk)pk ≥ C + D

• Division: d > 0, d ∈ Z, d|ck and
∑

k ckpk ≥ C−→
∑

k
ck

d
pk ≥ dC

d
e

10

• Multiplication: d > 0, d ∈ Z and
∑

k ckpk ≥ C−→
∑

k dckpk ≥ dC

Theorem 4. Let P be a cutting plane proof of the contradiction 0 ≥ 1 from
inequalities ∑

k

ci,kpk +
∑

l

bi,lql ≥ Ai, i ∈ I

, ∑
k

c′j,kpk +
∑
m

dj,mqm ≥ Bj, j ∈ J

where p̄, q̄, r̄ are disjoint sets of propositional variables. Then there exists a
circuit C(p̄) such that for every 0− 1 assignment ā for p̄

C(ā) = 0⇒
∑

k

ci,kpk +
∑

l

bi,lql ≥ Ai, i ∈ I

are unsatisfiable, and

C(ā) = 1⇒
∑

k

c′j,kpk +
∑
m

dj,mqm ≥ Bj, j ∈ J

are unsatisfiable.
The size of the circuit is polynomial in the binary length of the numbers

Ai, i ∈ I, Bj, j ∈ J and the number of inequalities in P .

Moreover, we can construct in polynomial time a cutting plane proof of
the contradiction 0 ≥ 1 from inequalities

∑
k ci,kpk +

∑
l bi,lql ≥ Ai, i ∈ I if

C(ā) = 0, respectively
∑

k c′j,kpk +
∑

m dj,mqm ≥ Bj, j ∈ J if C(ā) = 1; the
length of this proof is less than or equal to the length of P.

Proof. Let P and assignment p̄→ ā be given. We will gradually replace each
inequality in P ∑

k

ekpk +
∑

l

flql +
∑

l

flql ≥ D

by a pair of inequalities ∑
l

flql ≥ D0

and ∑
m

gmrm ≥ D1

11

where D0, D1 are some integers. The have to ensure that the pair is at least
as strong as the original one for the assignment ā, which means that

D0 + D1 ≥ D −
∑

k

ekpk

.

An initial inequality ∑
k

ci,kpk +
∑

l

bi,lql ≥ Ai

will be replaced by the pair∑
l

bi,lql ≥ Ai −
∑

k

ci,kpk, 0 ≥ 0.

Dually, an initial inequality∑
k

c′j,kpk +
∑
m

dj,mrm ≥ Bj

will be replaced by the pair∑
m

dj,mrm ≥ Bj −
∑

k

c′j,kpk, 0 ≥ 0.

The rules are performed in parallel on the 2 inequalities in the pair. The
pair corresponding to the last inequality 0 ≥ 1 is 0 ≥ D0, 0 ≥ D1 where
D0 + D1 ≥ 1 ⇒ D0 ≥ 1 ∨ D1 ≥ 1 Thus we have a proof of contradiction
either from

∑
k ci,kpk +

∑
l bi,lql ≥ Ai, i ∈ I or from

∑
k c′j,kpk +

∑
m dj,mqm ≥

Bj, j ∈ J . Also we have to use the fact that each proof P can be transformed
in proof P’ wich is at most polynomially longer and all the coefficients have
polynomially bounded binary length (Clote and Buss). So we can consider
that all Di have polynomially bounded binary length⇒ the above procedure
can be done in polynomial time in the binary length of Ai, i ∈ I, Bj, j ∈ J and
the number of inequalities. After it we use the transformation of polynomial
time algorithms into sequences of polynomial size circuits.

Now to prove the lower bounds for cutting planes we have to use the
generalisation of Razborov’s thereme for so-called real monotone circuits. In
fact the idea of the proof of it is the same. With the help of it we can make
the same reasoning as for the resolution proof system.

12

References

[1] Christos M. Papadimitriou, Computational complexity (1994), 343-
349

[2] Pudlák, P. , Lower bounds for resolution and cutting plane proofs and
monotone computations, Journal of Symbolic Logic (3), (1997), 981–998

13

