Switching Lemma

Alexander Glazman

St Petersburg State University

Joint Advanced Student School March 25, 2009

Outline

1 Definitions:

- Matchings
- Language L_n
- *Tree_S*(*F*)
- Switching lemma.

Matchings

- Let D, R be ordered subsets of S with all elements of D preceding elements of R and D ∪ R = S. A matching between D and R is a set of mutually disjoint unordered pairs {i, j}, where i ∈ D, j ∈ R.
- A matching covers a vertex i if {i, j} belongs to the matching for some vertex j. By V(π) we will denote the vertices covered by π.
- If X ⊆ S, then M(X) denotes the set of all matchings π such that π covers X, but no matching properly contained in π covers X.
- The set of matchings between D and R we shall denote by M_n .
- Two matchings π₁ and π₂ in M_n are compatible if π₁ ∪ π₂ is also a matching. In this case we will denote there union by π₁π₂.
- If π is a matching then $S|\pi = S \setminus V(\pi)$.

Language L_n

- Let |D| = n + 1 and |R| = n. The language built from propositional variables P_{ij} and the constants 0 and 1 using the connectives ∨ and ¬ we shall refer to as L_n.
- A matching π determines a restriction ρ_π of the variables of L_n: if i or j is covered by π then ρ_π(P_{ij}) = 1 if {i, j} ∈ π, and ρ_π(P_{ij}) = 0 if {i, j} ∉ π; otherwise ρ_π(P_{i,j}) is undefined.
- If F is formula of L_n, and π ∈ M_n, then we denote by F|π the formula resulting from F by substituting for the variables in F the constants representing their value under π.
- Formula C is a matching term if:

$$C = \bigcap_{\{i,j\}\in\pi} P_{ij} = \wedge \pi$$

where π is a matching.

• Formula F is a matching disjunction if $F = C_1 \lor \cdots \lor C_m$, where C_i is a matching term for every i. It is an r-disjunction if all the matching terms have size bounded by r.

Matching trees

Let |D| = n + 1 and |R| = n, where $S = D \cup R$ and $D \cap R = \emptyset$. The full matching tree for S over S is a tree T satisfying conditions:

- 1 nodes of T other than the leaves are labeled with vertices in S;
- 2 edges of T are labeled with pairs {i, j}, where i ∈ D and j ∈ R;
- if p is a node of T then the edge labels on the path from the root of T to p determine a matching π(p) between D and R;
- *p* is labeled with the first node *i* in X not covered by π(p), and the set {π(q)|q a child of p} consists of all matchings in S of the form π(p) ∪ {{i,j}} for j ∈ S;

$\text{Tree}_{\text{S}}(\text{F})$

Let $F = C_1 \lor \cdots \lor C_m$ be a matching disjunction over S. The canonical matching decision tree for F over S, $Tree_S(F)$, is defined inductively as follows:

- If F ≡ 0 then Tree_S(F) is a single node labeled 0; if F ≡ 1 then Tree_S(F) is a single node labeled 1;
- 2 Let C be the first matching term in F such that $C \neq 0$. Then $Tree_S(F)$ is constructed as follows:
 - Construct the full matching tree for V(C) over S;
 - Replace each leaf ℓ of the fill matching tree for V(C) by the canonical matching decision tree $Tree_{S|\pi(\ell)}(F|\pi(\ell))$.

The depth of a tree T is a maximum length of a branch in T.

$\boldsymbol{Code(r,s)}$

Define Code(r, s) to be the set of all tables $k \times r$ with elements just 0 and 1 such that there is no string with all 0, and the number of 1 in the whole table is s.

Given table A, define a map from $\{1, \ldots, s\}$ to $\{1, \ldots, r\} \times \{0, 1\}$ as follows:

- 1 Let the first 1 occur in the *j*th place. Then f(1) = (j, 0).
- 2 Let the *i*th 1, where i > 1, occur in the *j*th place in the ℓ th string for some ℓ . Then f(i) = (j, b), where b = 0 if the previous 1 occurs in the same string, and b = 1 otherwise.

It is easy to see that this map uniquely determines a table $A \in Code(r, s)$. So we get the estimate for the cardinality of Code(r, s):

 $|Code(r,s)| \leq (2r)^s$.

$\text{Bad}_n^\ell(F,s)$

Let |D| = n + 1 and |R| = n, $S = D \cup R$. For $\ell \leq n$ define M_n^{ℓ} :

$$M_n^\ell = \{ \rho \in M_n : \#R | \rho = \ell \}.$$

For s > 0, F a matching disjunction over S:

$$Bad_n^{\ell}(F,s) = \{ \rho \in M_n^{\ell} : |Tree_{S|\rho}(F|\rho)| \ge s \}.$$

Theorem

Switching Lemma. Let F be an r-disjunction over $D \cup R$, |D| = n + 1, |R| = n. Let $l \ge 10$. If $r \le l$ and $l^4/n \le 1/10$ then:

$$\frac{|\mathsf{Bad}_n^\ell(\mathsf{F},2s)|}{|M_n^\ell|} \leq (11r\ell^4/n)^s.$$

Proof idea

Note that:

$$\begin{split} |M_n^{\ell}| &= \binom{n}{\ell} (n+1)^{\underline{n-l}} = \frac{n^{\underline{\ell}} (n+1)^{\underline{n-\ell}}}{\ell!} \\ \frac{|M_n^{\ell-j}|}{|M_n^{\ell}|} &= \frac{n^{\underline{\ell-j}} (n+1)^{\underline{n-\ell+j}} \ell!}{(\ell-j)! n^{\underline{\ell}} (n+\ell)^{\underline{n-\ell}}} = \frac{(\ell+1)^{\underline{j}} \ell!}{(\ell-j)! n^{\underline{\ell}} (n-\ell+j)^{\underline{j}}} = \\ &= \frac{(\ell+1)^{\underline{j}} \ell^{\underline{j}}}{(n-\ell+j)^{\underline{j}}} \le \left(\frac{\ell(\ell+1)}{n-\ell}\right)^{j} \end{split}$$

Bijection

$$Bad_n^{\ell}(F,s) o M_n^{\ell-j} \ Bad_n^{\ell}(F,s) o igcup_{s/2 \le j \le s} M_n^{\ell-j}$$

Theorem Let $F = C_1 \lor \cdots \lor C_m$ be an r-disjunction over S. Then there is a bijection from $Bad_n^l(F, s)$ into

$$\bigcup_{s/2 \leq j \leq s} M_n^{l-j} \times Code(r,j) \times [2l+1]^s.$$

Proof

Let $\rho \in Bad_n^l(F, s)$; choose π to be matching determined by the leftmost path originating in the root of $Tree_{S|\rho}(F|\rho)$ that has length s. Define three sequences by induction:

1) D_1, \ldots, D_k , a subsequence of C_1, \ldots, C_m ;

- 2 $\sigma_1, \ldots, \sigma_k$, a sequence of restrictions $\sigma_i \subseteq \delta_i$, where $D_i = \wedge \delta_i$, and $\rho \sigma_1 \ldots \sigma_i \in M_n$;
- **3** π_1, \ldots, π_k , a partition of π , where each $\pi_i, i < k$, satisfies the conditions:
 - $\pi_i \in M(V(\sigma_i));$
 - the restriction ρπ₁...π_i labels a path in Tree_S(F), ending in a boundary node.

Sequence defining

We have $\pi_{i-1}, D_{i-1}, \sigma_{i-1}$ and $\pi_1 \dots \pi_{i-1} \neq \pi$. Since $\pi_1 \dots \pi_{i-1}$ labels a path ending in a boundary node, it follows that there must be a term D in F so that $D|\rho\pi_1 \dots \pi_{i-1} \neq 0$ and $D|\rho\pi_1 \dots \pi_{i-1} \neq 1$, for otherwise the path labeled by π would end at that node.

- **1** Define D_i be the first such term in F;
- 2 then define σ_i to be the unique minimal matching so that $D|\rho\pi_1...\pi_{i-1}\sigma_i \equiv 1$ (at the end here $\neq 0$);

3 let π_i be the set of pairs in π that cover vertices in $V(\sigma_i)$. It is easy to verify that $\rho\sigma_1 \ldots \sigma_i \in M_n$, moreover $\rho\pi_1 \ldots \pi_{i-1}\sigma_i \ldots \sigma_k \in M_n$.

Ordering by index

It is convenient to introduce a special ordering of the 2l + 1 vertices unset by the restriction ρ . To avoid confusion between the original ordering and the new ordering, we shall refer to the original ordering as ordering by size. and the new order as ordering by index. Let $\sigma = \sigma_1 \dots \sigma_k$. The index ordering is defined as follows:

- The vertices set by σ are listed:
 - **1** first according to the order $V(\sigma_1) < \cdots < V(\sigma_k)$
 - 2 then by size
- The remaining vertices unset by $\rho\sigma$ are listed by size, in the index positions $2j + 1, \ldots, 2l + 1$, where $j = |\sigma|$.

Bijection: definition

The map $G(\rho) = \langle G_1(\rho), G_2(\rho), G_3(\rho) \rangle$ is now defined as follows:

1
$$G_1(\rho) = \rho \sigma;$$

- For i = 1,..., k and j = 1,..., r let G₂(ρ)_{ij} be 1 if σ_i sets the jth variable of D_i, and let it be 0, otherwise
- **3** The list $G_3(\rho) \in [2l+1]^s$ is defined as follows:
 - List the elements of π according to the index ordering, where for each pair in π the element with lower index determines the position of the pair;
 - From the ordered list of the pairs in π , create a new list by recording for each pair the index of the element in the pair with the higher index. This new list is $G_3(\rho)$.

Bijection: correctness

It is easy to see that $G(\rho) \in M_n^{l-j} \times Code(r, j) \times [2l+1]^s$, where $j = |\sigma|$. For i < k, $\pi_i \in M(V(\sigma_i))$, so that $|\sigma_i| \le |\pi_i| \le 2|\sigma_i|$, while for i = k, $|\sigma_i| = |\pi_i|$ holds by construction. Thus $|\pi|/2 \le |\sigma| \le |\pi|$, that is, $s/2 \le j \le s$. So it remains to show that G is a bijection.

Bijection: proof

How to reconstruct ρ from $G(\rho)$:

- 1 We know $G(\rho)$ and the *r*-disjunction F;
- 2) the set of vertices unset by $ho\sigma$;
- **3** Induction by *i*. We know $D_1, \ldots, D_{i-1}, \pi_1, \ldots, \pi_{i-1}$,

 $\sigma_1,\ldots,\sigma_{i-1}$ and $\rho\pi_1\ldots\pi_{i-1}\sigma_i\ldots\sigma_k$.

4 If C_j occurs earlier in F than D_i , then $C_j | \rho \pi_1 \dots \pi_{i-1} \equiv 0$. Hence:

$$C_j|
ho\pi_1\ldots\pi_{i-1}\sigma_i,\ldots,\sigma_k\equiv 0$$

5 If
$$i < k$$
 then $D|\rho\pi_1 \dots \pi_{i-1}\sigma_i \equiv 1$ while
 $D|\rho\pi_1 \dots \pi_{k-1}\sigma_k \not\equiv 0$. Thus in either case:
 $D_i|\rho\pi_1 \dots \pi_{i-1}\sigma_i \dots \sigma_k \not\equiv 0$

6 We know D_i — this is the first term in F not set 0 by the restriction $\rho \pi_1 \dots \pi_{i-1} \sigma_i \dots \sigma_k$.

Bijection: proof

- **7** Using D_i and $G_2(\rho)$ we can find σ_i .
- 8 We know indices of the vertices in $V(\sigma_i)$.
- O Every pair in π_i contains at least one vertex in V(σ_i), hence for every such pair we can find the vertex with lower index.
- **(1)** Using $G_3(\rho)$ we can find π_i .
- **1** By replacing σ_i by π_i we can find restriction $\rho \pi_1 \dots \pi_i \sigma_{i+1} \dots \sigma_k$.
- **(2)** Having found all of $\sigma_1, \ldots, \sigma_k$, we can find ρ by removing all of the pairs in $\sigma_1 \ldots \sigma_k$ from $\rho \sigma_1 \ldots \sigma_k$.

Switching lemma

Theorem

Let F be an r-disjunction over $D \cup R$, |D| = n + 1, |R| = n. Let $\ell \ge 10$. If $r \le \ell$ and $\ell^4/n \le 1/10$ then:

$$rac{|\mathsf{Bad}_n^\ell(\mathsf{F},2s)|}{|\mathcal{M}_n^\ell|} \leq (11 r \ell^4/n)^s$$

Proof

By the previous theorem we should bound the ratio:

$$\frac{\bigcup_{s \leq j \leq 2s} M_n^{\ell-j} \times \textit{Code}(r,j) \times [2\ell+1]^s}{|M_n^{\ell}|}$$

And we know, that:

$$rac{|M_n^{\ell-j}|}{|M_n^\ell|} \leq \left(rac{\ell(\ell+1)}{n-\ell}
ight)^j$$

Using this and the estimate $|Code(r, j)| \leq (2r)^j$ we can bound our ratio by the sum:

$$\sum_{s \le j \le 2s} \left(\frac{\ell(\ell+1)}{n-\ell} \right)^j (2r)^j (2\ell+1)^{2s} = (2\ell+1)^{2s} \sum_{s \le j \le 2s} \left(\frac{2\ell(\ell+1)r}{n-\ell} \right)^j$$

Proof

Using the inequalities $r \leq \ell$, $\ell^4/n \leq 1/10$ and $\ell \geq 10$, we can prove that:

$$\frac{2\ell(\ell+1)r}{n-\ell} < 0.0221.$$

So the geometrical progression which we have is less than 1.03 times its largest term. This provides the estimate:

$$\frac{|\mathsf{Bad}_n^\ell(\mathsf{F},2s)|}{|\mathsf{M}_n^\ell|} \leq 1.03 \left(\frac{2(2\ell+1)^2\ell(\ell+1)r}{n-\ell}\right)^s$$

Now we can estimate the right side:

$$\left(\frac{2(2\ell+1)^2\ell(\ell+1)r}{n-\ell}\right) \le \frac{10.65\ell^4r}{n}$$

This inequality yields the bound:

$$rac{|Bad_n^\ell(F,2s)|}{|M_n^\ell|} \leq 1.03 (10.65 r \ell^4/n)^s < (11 r \ell^4/n)^s.$$

This completes the proof of this fact.