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Matchings

• Let D, R be ordered subsets of S with all elements of D

preceding elements of R and D ∪ R = S . A matching between

D and R is a set of mutually disjoint unordered pairs {i , j},
where i ∈ D, j ∈ R .

• A matching covers a vertex i if {i , j} belongs to the matching

for some vertex j . By V (π) we will denote the vertices covered

by π.

• If X ⊆ S , then M(X ) denotes the set of all matchings π such

that π covers X , but no matching properly contained in π
covers X .

• The set of matchings between D and R we shall denote by Mn.

• Two matchings π1 and π2 in Mn are compatible if π1 ∪ π2 is

also a matching. In this case we will denote there union

by π1π2.

• If π is a matching then S |π = S \ V (π).
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Language Ln

• Let |D| = n + 1 and |R| = n. The language built from

propositional variables Pij and the constants 0 and 1 using the

connectives ∨ and ¬ we shall refer to as Ln.
• A matching π determines a restriction ρπ of the variables

of Ln: if i or j is covered by π then ρπ(Pij) = 1 if {i , j} ∈ π,
and ρπ(Pij) = 0 if {i , j} 6∈ π; otherwise ρπ(Pi ,j) is unde�ned.

• If F is formula of Ln, and π ∈ Mn, then we denote by F |π the

formula resulting from F by substituting for the variables in F
the constants representing their value under π.

• Formula C is a matching term if:

C =
⋂
{i ,j}∈π

Pij = ∧π

where π is a matching.
• Formula F is a matching disjunction if F = C1 ∨ · · · ∨ Cm,

where Ci is a matching term for every i . It is an r -disjunction
if all the matching terms have size bounded by r .
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Matching trees

Let |D| = n + 1 and |R| = n, where S = D ∪ R and D ∩ R = ∅.

The full matching tree for S over S is a tree T satisfying

conditions:

1 nodes of T other than the leaves are labeled with vertices in S ;

2 edges of T are labeled with pairs {i , j}, where i ∈ D
and j ∈ R ;

3 if p is a node of T then the edge labels on the path from the

root of T to p determine a matching π(p) between D and R ;

4 p is labeled with the �rst node i in X not covered by π(p),
and the set {π(q)|q a child of p} consists of all matchings

in S of the form π(p) ∪ {{i , j}} for j ∈ S ;
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TreeS(F)

Let F = C1 ∨ · · · ∨ Cm be a matching disjunction over S . The
canonical matching decision tree for F over S , TreeS(F ), is de�ned
inductively as follows:

1 If F ≡ 0 then TreeS(F ) is a single node labeled 0; if F ≡ 1
then TreeS(F ) is a single node labeled 1;

2 Let C be the �rst matching term in F such that C 6≡ 0.
Then TreeS(F ) is constructed as follows:

• Construct the full matching tree for V (C ) over S ;
• Replace each leaf ` of the �ll matching tree for V (C ) by the

canonical matching decision tree TreeS|π(`)(F |π(`)).

The depth of a tree T is a maximum length of a branch in T .
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Code(r, s)

De�ne Code(r , s) to be the set of all tables k × r with elements

just 0 and 1 such that there is no string with all 0, and the number

of 1 in the whole table is s.
Given table A, de�ne a map from {1, . . . , s} to {1, . . . , r} × {0, 1}
as follows:

1 Let the �rst 1 occur in the jth place. Then f (1) = (j , 0).

2 Let the ith 1, where i > 1, occur in the jth place in the `th
string for some `. Then f (i) = (j , b), where b = 0 if the

previous 1 occurs in the same string, and b = 1 otherwise.

It is easy to see that this map uniquely determines a

table A ∈ Code(r , s). So we get the estimate for the cardinality

of Code(r , s):
|Code(r , s)| ≤ (2r)s .
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Bad`n(F, s)

Let |D| = n + 1 and |R| = n, S = D ∪ R . For ` ≤ n de�ne M`
n:

M`
n = {ρ ∈ Mn : #R|ρ = `}.

For s > 0, F a matching disjunction over S :

Bad`n(F , s) = {ρ ∈ M`
n : |TreeS |ρ(F |ρ)| ≥ s}.

Theorem

Switching Lemma. Let F be an r -disjunction over D ∪ R ,

|D| = n + 1, |R| = n. Let l ≥ 10. If r ≤ l and l4/n ≤ 1/10 then:

|Bad`n(F , 2s)|
|M`

n|
≤ (11r`4/n)s .
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Proof idea

Note that:

|M`
n| =

(
n

`

)
(n + 1)n−l =

n`(n + 1)n−`

`!

|M`−j
n |
|M`

n|
=

n`−j(n + 1)n−`+j`!

(`− j)!n`(n + `)n−`
=

(`+ 1)j`!

(`− j)!n`(n − `+ j)j
=

=
(`+ 1)j`j

(n − `+ j)j
≤
(
`(`+ 1)

n − `

)j
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Bijection

Bad`n(F , s)→ M`−j
n

Bad`n(F , s)→
⋃

s/2≤j≤s

M`−j
n

Theorem

Let F = C1 ∨ · · · ∨ Cm be an r -disjunction over S. Then there is a

bijection from Bad l
n(F , s) into⋃

s/2≤j≤s

M l−j
n × Code(r , j)× [2l + 1]s .
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Proof

Let ρ ∈ Bad l
n(F , s); choose π to be matching determined by the

leftmost path originating in the root of TreeS |ρ(F |ρ) that has

length s. De�ne three sequences by induction:

1 D1, . . . ,Dk , a subsequence of C1, . . . ,Cm;

2 σ1, . . . , σk , a sequence of restrictions σi ⊆ δi , where Di = ∧δi ,
and ρσ1 . . . σi ∈ Mn;

3 π1, . . . , πk , a partition of π, where each πi , i < k , satis�es the
conditions:

• πi ∈ M(V (σi ));
• the restriction ρπ1 . . . πi labels a path in TreeS(F ), ending in a

boundary node.
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Sequence de�ning

We have πi−1,Di−1, σi−1 and π1 . . . πi−1 6= π. Since π1 . . . πi−1

labels a path ending in a boundary node, it follows that there must

be a term D in F so that D|ρπ1 . . . πi−1 6≡ 0 and

D|ρπ1 . . . πi−1 6≡ 1, for otherwise the path labeled by π would end

at that node.

1 De�ne Di be the �rst such term in F ;

2 then de�ne σi to be the unique minimal matching so that

D|ρπ1 . . . πi−1σi ≡ 1 (at the end here 6≡ 0);

3 let πi be the set of pairs in π that cover vertices in V (σi ).

It is easy to verify that ρσ1 . . . σi ∈ Mn, moreover

ρπ1 . . . πi−1σi . . . σk ∈ Mn.
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Ordering by index

It is convenient to introduce a special ordering of the 2l + 1 vertices

unset by the restriction ρ. To avoid confusion between the original

ordering and the new ordering, we shall refer to the original ordering

as ordering by size. and the new order as ordering by index.

Let σ = σ1 . . . σk . The index ordering is de�ned as follows:

• The vertices set by σ are listed:

1 �rst according to the order V (σ1) < · · · < V (σk)
2 then by size

• The remaining vertices unset by ρσ are listed by size, in the

index positions 2j + 1, . . . , 2l + 1, where j = |σ|.
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Bijection: de�nition

The map G (ρ) = 〈G1(ρ),G2(ρ),G3(ρ)〉 is now de�ned as follows:

1 G1(ρ) = ρσ;

2 For i = 1, . . . , k and j = 1, . . . , r let G2(ρ)ij be 1 if σi sets

the jth variable of Di , and let it be 0, otherwise

3 The list G3(ρ) ∈ [2l + 1]s is de�ned as follows:
• List the elements of π according to the index ordering, where

for each pair in π the element with lower index determines the

position of the pair;
• From the ordered list of the pairs in π, create a new list by

recording for each pair the index of the element in the pair

with the higher index. This new list is G3(ρ).
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Bijection: correctness

It is easy to see that G (ρ) ∈ M l−j
n × Code(r , j)× [2l + 1]s ,

where j = |σ|. For i < k , πi ∈ M(V (σi )), so
that |σi | ≤ |πi | ≤ 2|σi |, while for i = k , |σi | = |πi | holds by
construction. Thus |π|/2 ≤ |σ| ≤ |π|, that is, s/2 ≤ j ≤ s.
So it remains to show that G is a bijection.
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Bijection: proof
How to reconstruct ρ from G (ρ):

1 We know G (ρ) and the r -disjunction F ;

2 the set of vertices unset by ρσ;

3 Induction by i . We know D1, . . . ,Di−1, π1, . . . , πi−1,

σ1, . . . , σi−1 and ρπ1 . . . πi−1σi . . . σk .

4 If Cj occurs earlier in F than Di , then Cj |ρπ1 . . . πi−1 ≡ 0.
Hence:

Cj |ρπ1 . . . πi−1σi , . . . , σk ≡ 0

5 If i < k then D|ρπ1 . . . πi−1σi ≡ 1 while

D|ρπ1 . . . πk−1σk 6≡ 0. Thus in either case:

Di |ρπ1 . . . πi−1σi . . . σk 6≡ 0

6 We know Di � this is the �rst term in F not set 0 by the

restriction ρπ1 . . . πi−1σi . . . σk .
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Bijection: proof

7 Using Di and G2(ρ) we can �nd σi .

8 We know indices of the vertices in V (σi ).

9 Every pair in πi contains at least one vertex in V (σi ), hence
for every such pair we can �nd the vertex with lower index.

10 Using G3(ρ) we can �nd πi .

11 By replacing σi by πi we can �nd restriction

ρπ1 . . . πiσi+1 . . . σk .

12 Having found all of σ1, . . . , σk , we can �nd ρ by removing all

of the pairs in σ1 . . . σk from ρσ1 . . . σk .
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Switching lemma

Theorem

Let F be an r -disjunction over D ∪ R , |D| = n + 1, |R| = n.
Let ` ≥ 10. If r ≤ ` and `4/n ≤ 1/10 then:

|Bad`n(F , 2s)|
|M`

n|
≤ (11r`4/n)s .
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Proof

By the previous theorem we should bound the ratio:⋃
s≤j≤2s M`−j

n × Code(r , j)× [2`+ 1]s

|M`
n|

And we know, that:

|M`−j
n |
|M`

n|
≤
(
`(`+ 1)

n − `

)j

Using this and the estimate |Code(r , j)| ≤ (2r)j we can bound our

ratio by the sum:

∑
s≤j≤2s

(
`(`+ 1)

n − `

)j

(2r)j(2`+ 1)2s = (2`+1)2s
∑

s≤j≤2s

(
2`(`+ 1)r

n − `

)j
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Proof
Using the inequalities r ≤ `, `4/n ≤ 1/10 and ` ≥ 10, we can prove

that:
2`(`+ 1)r

n − `
< 0.0221.

So the geometrical progression which we have is less than 1.03
times its largest term. This provides the estimate:

|Bad`n(F , 2s)|
|M`

n|
≤ 1.03

(
2(2`+ 1)2`(`+ 1)r

n − `

)s

Now we can estimate the right side:(
2(2`+ 1)2`(`+ 1)r

n − `

)
≤ 10.65`4r

n

This inequality yields the bound:

|Bad`n(F , 2s)|
|M`

n|
≤ 1.03(10.65r`4/n)s < (11r`4/n)s .

This completes the proof of this fact.
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