
Department of Mathematics
Saint Petersburg State University

Joint Advanced Student School 2009
Saint Petersburg
Course 1: “Propositional Proof Complexity”

1

Optimal proof systems and disjoint NP pairs.

Dmitry Antipov

May 17, 2009

Contents

1 Optimal propositional proof system and canonical NP pair 2
1.1 Optimal and p-optimal proof systems . 2
1.2 NP pairs . 3

2 Canonical disjoint NP-Pairs 3

3 Automatizability 5

1 Optimal propositional proof system and canonical

NP pair

1.1 Optimal and p-optimal proof systems

The notion of proof system was formalized in classic work by Cook and Reckhow [CR79].
Definition 1 A proof system for a set S ∈ Σ∗ is a total function f :Σ∗ → S such that
f ∈ FP and f is onto. If f(w) = φ, it is said that w is the proof for φ

Definition 2 Let f and f ′ be two proof systems. f simulates f ′ if there exists function
h : Σ∗ → Σ∗, such that ∀w ∈ Σ∗,f(h(w)) = f ′(w) and ∃p : |h(w)| ≤ p(|w|). If h ∈ FP,we
say that f p-simulates f ′.

Definition 3 A proof system is optimal if it simulates every other proof system (for the
same language!).

Definition 4 A proof system is p-optimal if it p-simulates every other proof system.

In this talk, all proof systems are propositional proof systems, that is, proof systems for
TAUT .

2

1.2 NP pairs

Definition 5 Disjoint NP-pair is just a pair of two disjoint NP sets.

For example, sets of codes of 0 and 1 for most of cryptosystem which encodes 1 bit forms
a disjoint NP pair.

Definition 6 A set S is a separator of disjoint NP pair (A,B) if A ∈ S and B ∈ S.
Disjoint NP-pair is called p-separable if it has a separator from P.

Conjecture of existence of p-unseparable disjoint NP pairs is stronger, than P 6= NP
conjecture, and from it’s negation we can obtain co -NP ∩NP ⊂ P .

Definition 7 A set A is many-one reducible in polynomial time to B (A ≤P
m B) if there

exists a polynomial time computable function f such that x ∈ A⇔ f(x) ∈ B.
A set A is Turing reducible in polynomial time to B (A ≤P

T B) if there exists a
polynomial-time oracle DTM M : A = L(M,B).

Let (A,B) and (C,D) be disjoint pairs.

Definition 8 (A,B) is many-one reducible in polynomial time to
(C,D),(A,B) ≤PP

m (C,D) if there exists a function f ∈ FP such that f(A) ⊆ C and
f(B) ⊆ D

Definition 9 (A,B) is Turing reducible in polynomial time to (C,D),
(A,B) ≤PP

T (C,D), if there exists a polynomial-time oracle DTM M such that for every
separator T of (C,D) exists a separator S of (A,B), such that S = L(M,T)

It’s easy to see connection between reducibility and p-separability:
If (A,B) ≤PP

m (C,D) and (C,D) is p-separable then (A,B) is p-separable

2 Canonical disjoint NP-Pairs

The canonical pair of a propositional proof system, introduced by Razborov [Raz95], is
the disjoint NP-pair (SAT ∗, REFf),where

SAT ∗ = {(x, 0n)|x ∈ SAT and n ∈ N}

REFf = {(x, 0n)|¬x ∈ TAUT and ∃y : (|y| ≤ n and f(y) = ¬x)} .

This pair is disjoint, because in first set there are only padded satisfiable formulas, and in
second- unsatisfiable. First set is evidently in NP. The second set is in NP because we
take only such formulas, whose negations have short proofs, and this proof can be taken
as advice.

3

Theorem 1 Let f and g be propositional proof systems. If g simulates f then
(SAT ∗, REFf) ≤PP

m (SAT ∗, REFg).

By assumption, there exists a total function h and a polynomial p:
g(h(y)) = f(y) and |h(y)| ≤ p(|y|). Let’s define a reduction function r(x, 0n) := (x, 0p(n)).
Evidently (x, 0p(n)) ∈ SAT ∗. If (x, 0n) ∈ REFf then there is a proof y: |y| ≤ n and
f(y) = ¬x. But g(h(y) = f(y) and |h(y)| ≤ p(|y|), so |h(y)| < p(n),so there is a proof of
¬x in g, with length no more than p(n), so (x, 0p(n)) ∈ REFg.

Theorem 2 ([SGSZ04]) For every disjoint NP-pair (A,B) ∃ a proof system f :
(SAT ∗, REFf) ≡PP

m (A,B).

Let g be polynomially invertible function such that A ≤P
m SAT via g .Such g exists

because SAT is paddable. Let M ∈ NDTM , L(M) = B, time(M) is bounded by p.
Let < ., . >∈ FP and polynomially invertible function, | < x,w > | = 2(|x|+ |w|).

f(z) =


¬g(x)if z =< x,w >,|w| = p(|x|),M(x) accepts along path w
x : if z =< x,w >, |w| 6= p(|x|), |z| ≥ 2|x|, x ∈ TAUT
1 : otherwise;

It’s easy to see, that f is a proof system for TAUT.

Lemma 1 (SAT ∗, REFf) ≤PP
m (A,B).

Let a and b be an arbitrary element of A and B resp. So,we use this reduction algorithm.

• input(x, 0n);

• if (n ≥ 2|x|){
if (x ∈ SAT) return a else return b;
}

• if (g−1(x) exists) return g−1(x) else return a;

The condition x ∈ SAT can be checked in polynomial time due to exponential padding,
so this algorithm is polynomial-time. If (x, 0n) ∈ SAT ∗, then we output either a or
g−1(x), both from A. If (x, 0n) ∈ REFf , then if padding’s length was more than 2|x| we
returned b else, due the first case in definition of f , g−1(x) exists and belongs to B.

Lemma 2 (SAT ∗, REFf) ≥PP
m (A,B).

The reduction function is h′(x) := (g(x), 02(|x|+p(|x|))).
If x ∈ A then g(x) ∈ SAT and h′(x) ∈ SAT ∗. Else, if x ∈ B let w be an accepting path
of M(x) and let z =< x,w > , so |w| = p(|x|) and |z| = 2(|x|+ p(|x|)). By the first case
of definition of f, f(z) = ¬g(x), so h′(x) ∈ Reff

So, we proved the theorem.

4

Corollary 1 If there exists an optimal propositional proof system f , then (SAT ∗, REFf)
is a many-one complete disjoint NP pair

Assume,that f is optimal proof system. As we prooved, for every disjoint NP pair(A,B)
there exists propositional proof system g, which canonical NP pair is equivalent to
(A,B)but because f is optimal, (SAT ∗, REFf) ≥PP

m (SAT ∗, REFg), so
(SAT ∗, REFf) ≥PP

m (A,B)

3 Automatizability

Definition 10 A proof system f is automatizable if exists deterministic Turing machine
M : ∀x ∈ TAUT : ∃w : f(w) = x; f(M(x)) = x and M works in time polynomial of |w|

In other words, it means our possibility to construct a proof for a formula in reasonable
time.
It’s easy to see, that if a proof system is automatizable then it’s canonical NP-pair is
p-separable. But not vice versa!:

Lemma 3 ([Bey06]) ∃ a proof system f : (SAT ∗, REFf) is p-separable and f is not
automatizable unless P = NP

Let’s take this function f :

f(z) =

 x if z =< x, 1m > and m ≥ 2|x|

(x ∨ T) : if z =< x, α >, α is a satisfiable assignment for x
T : otherwise;

In first case, exponential padding allows us to separate SAT ∗and REFf in polynomial
time. And for second case formulas are always tautologies, and it can be determined in
polynomial time too. But the length of the shortest proof is the length of satisfying
assignment, so unless P = NP this proof system is not automatizable.

Definition 11 A proof system f is weakly automatizable if there exists a proof system
g : g is automatizable and g p-simulates f

Theorem 3 ([Pud03]) A proof system is weakly automatizable ⇔ its canonic NP-pair
is p-separable.

If canonic pair of proof system f is separable, let’s take function h ∈ FP which separates
canonical pair of f : h(SAT ∗) = 1 and h(REFf) = 0. Let’s define proof system g:

g(z) :=

{
x : if z =< x, 1m > and h < x, 1m >= 0
True : otherwise;

g p-simulates f by the function x→ (f(x), |x|) In the other way, if g p-simulates f then g
simulates f , then, as we proved in section 2, (SAT ∗, REFf) ≤PP

m (SAT ∗, REFg) But
canonical pair of g is p-separable, so the canonical pair of f is also p-separable.

5

References

[Bey06] Olaf Beyersdorff. Disjoint NP-pairs from propositional proof systems. In In
Proc. 3rd Conference on Theory and Applications of Models of Computation,
pages 236–247. Springer-Verlag, 2006.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of
propositional proof systems. Journal of Symbolic Logic, 44:36–50, 1979.

[Pud03] Pavel Pudlak. On reducibility and symmetry of disjoint np-pairs, 2003.

[Raz95] Alexander A. Razborov. On provably disjoint np-pairs. Technical report,
Electronic Colloquium on Computational Complexity, 1995.

[SGSZ04] Samik Sengupta, Christian Glasser, Alan L. Selman, and Liyu Zhang.
Canonical disjoint np-pairs of propositional proof systems. In In Proc. 30th
International Symposium on the Mathematical Foundations of Computer
Science, pages 399–409, 2004.

6

