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Summary 

Accurate predictions of noise generation and spread in turbulent separating flows require detailed 
simulations of such flows to be performed. In this report CFD simulations of the unsteady turbulent flow 
field behind two outside side-view vehicle mirror models are presented and analyzed. The objective of this 
study are: to investigate numerically the transient flow structure around the mirror models in a range of 
incident flow velocities, to interpret the experimental observations available, to validate the CFD tools 
Ansys CFX 10.0 and Ansys Fluent 6.3, and to identify computational requirements and predictive 
capabilities for a range of turbulence modelling approaches. 
In the simulations, qualitatively different flow behavior and vortical structure has been demonstrated for two 
mirror models considered in agreement with the suggestions earlier made based on the measured data. 
Surface pressure distributions and velocity fields as well as their fluctuation spectra are compared to the 
wind tunnel measurements provided by GM. Despite a discrepancy observed in the downwind region near 
the reflecting surface, a reasonable agreement was found. The performed simulations will provide a basis for 
subsequent aero-acoustic computations. 

 
Statement of the problem 
Two different full-scale mirror models were considered. The computational domain is shown on Figure 1.  
In the nozzle outlet, a uniform mean velocity profile was assumed with turbulence intensity of 

, and integral length scale of lt = 0.7 m. The inlet turbulence is not felt to play an important 
role since the inlet is located rather far upstream of the mirror. This allows the correct turbulent structures to 
establish themselves before the incoming flow reaches the mirror model. 
Quantitative estimates of turbulent flow characteristics are summarized in the Table 1 for a range of inlet 
flow velocities from 10 m/s to 50 m/s. In particular, integral scales (length, time, and velocity) are estimated 
against the Kolmogorov ones thereby demonstrating characteristic values for the fluctuation spectrum of 
fully developed turbulence.  
Two mean flow velocities, 30 m/s and 40 m/s, have been considered at this phase of the work. 

 
Flow equations 
To simulate the flow, the Navier-Stokes system that includes continuity and momentum equations is solved  



 
Both classical Reynolds averaged Navier-Stokes (RANS) approach and its combination with Large-Eddy 
Simulation (LES) that is referred as Detached Eddy Simulation (DES) methodology have been exploited in 

this study. When equations (1) and (2) are treated as averaged (RANS) or filtered (LES), the stress tensor  

is equal to that for a Newtonian fluid complemented by turbulent stresses,  

Where is the strain-rate tensor. 
Thus in equations mean or filtered values are implied instead of instantaneous quantities (overbars are 
omitted over the averaged or filtered variables). Within the eddy viscosity concept, turbulent stresses are 
expressed through the turbulent viscosity,  , and the mean flow strain rate: 

 
where , the turbulent kinetic energy (TKE), and,  , the turbulent viscosity, are defined by a 
turbulence model. Flow is assumed to be incompressible ( ) within the velocity range considered. 
 
Computational grids 
Multi-block computational grids used in the simulations were constructed with Ansys ICEM CFD 10.0. The 
computational domain was divided onto several sub-domains, each covered by a separate curvilinear 
structured grid. To assess grid dependency of the results, two grids with total number of control volumes of 
2.92M (referred below as coarse grid) and 7.15M (fine grid) have been used. 
 
Table 2. Characteristic sizes of grid elements in near wake downstream the mirror models 

 
Characteristic grid sizes are compared to turbulent length scales in Table 1.  
 
Flow Results 
Table surface pressure distributions 
Adequate prediction of the surface pressure distributions is necessary for accurate simulations of noise 
originated from the dipole surface sources.  
Comparison of the pressure distributions obtained with two grids is shown in Figure 2 for 30 m/s flow 
around MODEL A mirror model.  
 



Mirror surface pressure distributions 
Рronounced low-pressure region develops at the top of the model, which can inspire early flow separation. 
We have found indications of transient and multi-point separation and reattachment in this region. This can 
be seen in Figure 3 where several local and unsteady separation zones appear. Intensive fluctuations of 
pressure in this region have also been predicted. Оn that this region produces considerable amount of noise. 
Worth noting, appearance of multiple and unsteady separation zones has yet to be further investigated to 
ensure its physical, not numerical mechanism. It could be done by mesh refinement in the streamwise 
direction.  
 
The sound propagation equation 
The acoustic analogy is derived by rearrangement of the continuity and momentum equations, 

where  
is the stress tensor including pressure, p , and viscous stresses, 

 
It is assumed that in a confined region, Ω, fluid flow field is known from this equations. 
Whilst the fluid (having pressure 0p  and density 0ρ ) is at rest beyond Ω. The following equation can be 

derived 

 

Subtracting  from both sides of last equation yields 
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where   is the Lighthill’s tensor, and is the speed of sound in the 
quiescent fluid. 
Equation (1) is similar to that of acoustic wave propagation, the right hand side appears to be the source of 
the acoustic perturbations. The Lighthill’s analogy is therefore formulated as follows: density fluctuations in 
an arbitrarily moving real compressible fluid are the same as those in a uniform quiescent fluid subject to the 
imposed stresses as expressed by the right hand side of Eq. (1). Thus, in the Lighthill’s acoustic analogy, the 
actual flow is replaced by the Tij distribution produced by the actual flow. Then, Eq. (1) governs the sound 
propagation in a uniform acoustic medium at rest, subject to the Tij forcing. 
Equation for Lighthill’s tensor can be further rearranged neglecting molecular viscosity and thermal 
conductivity. In the ideal isentropic fluid µ = 0 and pcp 2

0=  therefore the Lighthill’s tensor is reduced to 

jiij uuT ρ=~ where density is non-uniform due to the acoustic perturbations. However, in low-Mach number 

flows, it can be reasonably assumed that 0ρρ = , and Eq. (1) simplifies to 
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The latter can be treated as the equation of sound (i.e. density fluctuations) propagation in a quiescent media, 
and the right hand side of Eq. (2) is the expression for source of sound produced by the flow in the region Ω . 
Equation (2) is also valid for perturbed density, 0

~ ρρρ −=  

Solving Eq. (2) is possible after the flow field is determined in Ω . That allows the sound pressure, 
)(~

0
2
0 ρρ −= cp  to be obtained. 

 

Solutions to the sound propagation equation 
The solution of Eq. (2) is the convolution of the right hand side with the Green function, 
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where  is the distance between the source point y and the observer position x, and the square 
brackets indicate that the bracketed quantity is taken at the retarded time,  . If an observer at x is 
in the far field then terms of order of  and  can be neglected and Eq. (3) is rewritten as 
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For a numerical implementation of Lighthill’s analogy, the temporal formulation (4) is more appropriate 
than that in Eq. (3) which is based on the spatial derivatives of Tij . Note, neither Eq. (3) no Eq. (4) consider 
the effects of solid walls. 
To overcome the latter limitation, the solution to Eq. (2) was extended by Curle [8] to include the effects of 
solid walls at rest. He solved Eq. (2) thereby obtaining the Kirchhoff formula, 
 

 
the equivalent and more convenient equation can be derived: 

 
Where Tij is the stress tensor, and ijT~  is the Lighthill’s tensor. Equation results in an important conclusion. 

Indeed, it shows that sound generation is determined by three contributing sources. The first integral 
represents monopole sources distributed over the surface S. The second one corresponds to dipole sources 
also distributed over the surface S. This term includes sound refraction and diffraction at the surface. Finally, 
the third integral represents the quadrupole sound emission in the region of Ω . 
Note, the surface S can be either permeable or solid; if S is a solid immovable wall then 0=jiuu , and 

equation simplifies: 

 
The above formulated Lighthill’s analogy can now be extended: density fluctuations in an arbitrarily real 
compressible fluid moving inside the region Ω that contains solid walls are the same as those in a uniform 
quiescent fluid affected by the dipoles distributed over the wall surface S and the quadrupoles distributed in 
the volume of Ω . 
Last equation can be simplified by neglecting effects of viscosity: 

 



Acoustic pressure and sound pressure level in air sensor locations 
Acoustic pressures have been calculated and sound pressure level have been predicted for some cases: 30 
m/s and 40m/s wind speed, coarse and fine grid. The analysis of results indicates that reasonable agreement 
between predicted and measured SPL has been obtained although the predicted ones are underestimated, 
particularly for frequencies greater 
1 kHz.  
 

Acoustic pressure and sound pressure level in surface microphone locations 
Measured SPL frequency distributions are qualitatively different for the microphones located inside  and 
outside the recirculating zone behind the mirror model. Signals recorded inside the recirculating zone are 
determined by pressure fluctuations at the table surface, whilst those recorded outside the recirculating zone 
are mainly due to the external noise.  

 

 
Figure 1. The computational domain 

 
(a) Coarse grid      (b) Fine grid 

Figure 2. Surface pressure resolution with two grids. 

  
Figure 3. Early separation zone at the top of mirror. Velocity vectors colored by velocity magnitude 


