Author: Ulanov Alexander

E-MAIL: ulanov.alexander @gmail.com
|CQ NUMBER: 268865339

Skype name: ulanov.alexander

FEM study of the faults activation

1. Introduction

The present work considers coupled processes sfieldeformation and pore fluid
diffusion in saturated porous media. The partiétylaof the problem is presence of an interior
surface along which the parameters of the media disgontinue. The problem of this kind
appears in various engineering applications. Fangle this approach can be used while
subsidence of rocks under building foundation atirsy) of bed near oil well. “Kols’kay” well
geologic profile is presented on figure 1. Its theijgtabout 12 kilometers. As it's easy to see, the
surface under this field consists of various sdilseir positional relationship could influence on
the form of the bore. Sliding of soil layers maysa clipping of bore hole. So the problem of
predicting of soil motion is very important engineg application.
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Figure 1: “Kols’kay” well geologic profile

The surface of media discontinue is referred aerface surface’ or simply ‘interface’ in this
text. We use in this work the interface elementcemb described by Goodman [1]. The interface
area of infinitesimal thickness is introduced ire tipresent work in variational problem
formulation. And so the interface element appeatmally in the process of finite element



discretization. Interface element properties arerdened by interface conditions. Sufficient
normal forces are supposed to appear in the colaget, which provide normal displacement
continuity. It is ensured by choice of large valoéshe elastic stiffness of the interface element.
This stiffness may be interpreted from mathemapcaht of view as the penalty parameter. The
forces appearing along interface area are limitethb Mohr-Coulomb law. It may lead to the
slipping effect. As the result the problem becoraesonlinear one. Besides elastic properties
described above the interface layer is attributéith wignificant permeability, which may be
interpreted as the penalty parameter for pore presas well. This property ensures pressure
continuity on interface. For numerical solutiontlois problem in-house software based on Block
Thomas' algorithm was developed.

2. Mathematical model

2.1 Governing equations

The equations describing coupled processes ofielagformation and pore fluid
diffusion in fluid-infiltrated elastic solids ares &llows [2]:
The continuity equation:

M % —EAp = —bgdivu
The equilibrium equation:
GAu + ydivu = blp 2.2)

where p — the pore pressure of fluid;- the displacement vector of the solid skeletdre @bove
equations contain following parameters: k is thefiicient of permeabilityp is the viscosity of
the pore fluid, G is the shear modulbsis the Biot's constant. Values M anpdare defined by
expressions
b? G
M = y: K+—

KoK 3 (2.3)

(2.4)

whereK is the bulk modulus of the overall skeleton (thained bulk modulus)Xu is the bulk
modulus under undrained conditions (the undraingll imodulus). The Biot’s constant may by
written as (2.4), wher&s is the averaged bulk modulus of the solid grai@te thatO<b<1
andb will be near its upper limit for soil-like matelsa since theiK<< Ks.

2.2 Variational formulation of the problem.

Let Q be a domain in R(m=2 or 3), S is its boundary, and n is exterrahmal to S. Suppose
that the following formulas are valid for vectorsand g, defined irQ together with their first
derivatives.

iAu [dQ =—j(Du)T :quQ+i‘;‘; [gds (2.5)

Q

jmf [0dQ :—j fdiquQ+j£ fq Chds (2.6)
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Multiply (2.2) scalarwise by vector-function g dfet same class as u and integrate on dofain
with boundary S using introduced formulas and giogiphe integrals:

J'(G(Du)T - Oq + ydivudivg - bpdivq)iQ —f(G(Du)T + (ydlivu — bp)l )n [ds=0
o s 2.7)

Designate F=G(0Ou)" +()divu-bp)l, F, =Fn. (2.8)

It is a stress acting normally to boundary S. Tiret sSummand herein is elastic stress, the second
one is the stress occurring due to material volah@ge and the third summand is pore pressure
of filling fluid. The stress occurring due to ma#rvolume change acts uniformly in all
directions like pressure.

Inserting (2.8) into (2.7) write finally

J'(G(Du)T - Oq + ydivudivg - bpdivq)jQ —an [ds =0 (2.9)
Q S
Using the similar approach, one can get variatibmahulation of continuity equation:
0 k ou kop , 0du
M— dQ - || ——0Op+b— |MqdQ +¢| ———+b—"[h |qds=0 2.10
Al I( u’ atj | ﬂ won " )q (210
Designate Q, = (—5 Op + ba—uj (h (2.11)
7 ot

This is a flux of fluid through boundary S directedrmally to this boundary. The first term
expresses the flow caused by a pressure differamckthe second one is fluid transfer together
with a medium displacement (convective compondngerting (2.11) into (2.10) we can write
finally:

du
ot

MaJ-pqu—J'(—kDp+b jD]]qu+§ands:O (2.12)
atQ Q /J S

2.3 Interface model

Let two domains b&1 with a boundary S1 ar@d2 with a boundary S2, adjoining in an area Sc
referred as the interface area (fig. 2). Remaining

(external) boundary 8=S,US, \ S,. Designate external

normals to areaQ1 andQ2 asnl u n2. In the interface
boundary nl =—n2 =n. Values of quantities will be
marked with superscript "+" if they are computednir
side of normal n positive direction (i.e. from sioearea
Q2), or with the superscript "-" if they are compulte
from side of normal n negative direction (i.e. frahe
side of are®21).

Figure 2: Interface model



Write equation (2.9) separately for each domainsamd up obtained equalities.
J.(G(Du)T : Oq + ydivudivg - bpdivq)jQ —IFn [Gds - J'(Fn‘ o -F' m*)ds =0. (2.13)
Q S S

Suppose that the interface is an infinitely that fayer with stiffness C and porosity D.
Force acting from the side of interface area orylfeg(in directionn;)

F, =Fn,=-C(u” -u") (2.14)
Force acting from the side of interface area orylied(in directionny)
F, =Fn,=-C(u” -u") (2.15)
Turn with this expressions to normral Sincen; =n, andn, = —n
F.=Fn=-C(u” -u"), F, =F,n=-C(u" -u"). (2.16)

Note that normal forces appeared to be equalsimiild be.

Inserting (2.16) into (2.13) we get equation:
[(6(0u)" : 0g + divudivg - bpdiva p - [ F, fds - [C(u* ~u™) g’ -q7)ds=0. (2.17)
Q S S

Write equation (2.12) separately for each domathsam up obtained equalities. We get

0 k ou L e

M atipqu i( /Jmp+batjqu9+£ands+S[(an Qiq Jds=0 (2.18)
Flux from contact area intQ; (in ny direction)

Q, =-D(p” - p") (2.19)
and flux from contact area inf@, (in n, direction)

Q, =-D(p"-p") (2.20)
Turning to normah we get

Q. =Qy =D(p"-p) (2.21)

Thus the fluxes through the boundary are equal #ed pressures are different. Pressure
continuity is achieved by choice of sufficient higilue ofD.
Inserting flow expressions into (2.17) one can get:

0 k ou b Ny
MJ'pqu—J'(—Dp+b]D]]qu+J'ands—J'D(p -p ) —-q)ds=0. (2.22)
oty A ot < 5

Equations (2.17) and (2.22) are basic ones foregtmn of finite elements method (FEM).

2.4 Slip computation

Displacement and pressure equations obtained eadrgain terms taking into account
relation of displacements and pressure on differetdrface sides of the doma. Note
difference in properties of possible displacemerd pressure discontinuities on the interface.
Pressure discontinuity on the interface occurderesult of supposed finite permeabilRyof
the interface elements at their zero thicknesgeftends on fluid flow through the interface and
is completely defined in the result of linear perbl solution if the displacement equations are
linear as well. Displacement discontinuity has otblearacteristics on the supposed interface
which appears in this case as a plane of possldéwve slide of the volume parts. Complexity of
these characteristics is caused by strong nonitgeaf Coulomb — Mohr law leading to
necessity of iteration process creation for sotutid the problem of displacement and pressure
field determination. In the considered case st&fnmatrix has the following form:



@)

. 0
C,

0

o O

0
0
C. (2.23)
Sliding effect is supposed corresponding to Coulemdohr law that the relative slide of two
ground layers takes place in a point of the plahpassible slide when the following term is
satisfied

los|2K|o, |+C, (2.24)
Here g, is normal stress in the interfacg; is tangential stress in the interfadé,is friction
coefficient, Cy is cohesion stress. Let two ground layers be adedeby an interface element
having zero thickness but elastic properties. Sspdarther that the ground located on both
sides of the interface and the interface elementraat shift relating each other in common
nodes. Compute the stressed state of the systeosexpgo actions of predetermined forces
supposing that the interface element and the gréwaneé linear elastic properties. This problem
is solved by the finite elements method.
Contact element properties are changing in the caskding. We put zero values for tangential
components of stiffness matri® = 0. So points on the top and on the bottom ofdbwtact

layer move independently. According to considemchhique we define 3 basic steps of slip
computation:

- Find deflected mode of considered body.

- Examine obtained solution for sliding (with reface to Mohr- Coulomb law).

- Following calculations using new form of stiffrsasatrix (in a case of sliding).

The second and the third step would repeat uidiihg) is possible.

2.5 Effect of nonuniform per meability

Nonuniform permeability effect can appear as altefudestruction of rock in contact
layer. In case of sliding the last component o182 .will separate into 2 summands, where the
second one is corresponding to the effect of ndatmipermeability:

[(Qa -Qia")ax = [D,(p - p o —q‘)dQ+41ﬂ [0, (p+p)m,, (@ +q o

(2.25)
S, Z[Ag, Bd] — sliding area.

3. Reaults

Numerical simulations of various geotechnical psses where obtained with developed
in-house software. In some simulations resultswfavn code were compared with ANSYS.
But in general cases commercial programs can’t ymedgeotechnical calculations. Fore
example effect of nonuniform permeability is natluded in some computational programs.

So as to illustrate the effect of nonuniform perhila let’'s consider the establishment of linear
pore pressure distribution with following condit®setting:

- The considered body is a cube (fig. 3) with hamial contact layer.

- Designate initial conditions for poreepsure inside domain to be equal to zero.

- Designate values of pore pressure on lateratsmbe fixed.



Boundary and
p=0 initial conditions

Figure 3: Boundary and initial conditions

Sliding of contact layer elements is caused byemes of the external load (fig. 4). Asymmetry
distribution of sliding elements (fig. 4) is caudeyg unequal pore pressure values on the lateral
sides. The gradient of pressure appeared duringptibeess of establishment of linear
distribution of pressure. From mathematical poihview this gradient plays role of additional
force which is causing asymmetry distribution adlisig elements over the contact layer (fig. 4).

@  Sliding elements of
contact layer

External load

Line Ne1 Line Ne2

Figure 4: View from above on contact layer eleraent
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Figure 5: Distribution of pore pressure over $irfeand 2.

Line number 1 is corresponding to sliding area, &nd number 2 - to area where contact
elements are still sticking. It's easy to see thstablishment of pore pressure occurs more
quickly in area where sliding elements appeareftl giaph on fig. 5). This happens because of
effect of nouniform (additional) permeability.

4. Conclusions and further resear ches

At the moment various geotechnical phenomena wimstaded in our own code. The
developed mathematical model successfully realipesnechanical processes like pore pressure
distribution, nonuniform permeability and sliding icontact layer of course. The work is
ongoing. As the next step of this research we wepdeveloping of parallel version of this
software.
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