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FEM study of the faults activation   
 

1. Introduction 
 

The present work considers coupled processes of elastic deformation and pore fluid 
diffusion in saturated porous media. The particularity of the problem is presence of an interior 
surface along which the parameters of the media may discontinue. The problem of this kind 
appears in various engineering applications. For example this approach can be used while 
subsidence of rocks under building foundation or sliding of bed near oil well. “Kols’kay” well 
geologic profile is presented on figure 1. Its depth is about 12 kilometers. As it’s easy to see, the 
surface under this field consists of various soils. Their positional relationship could influence on 
the form of the bore. Sliding of soil layers may cause clipping of bore hole. So the problem of 
predicting of soil motion is very important engineering application. 

 

 
   Figure 1: “Kols’kay” well geologic profile 
 

The surface of media discontinue is referred as ‘interface surface’ or simply ‘interface’ in this 
text. We use in this work the interface element concept described by Goodman [1]. The interface 
area of infinitesimal thickness is introduced in the present work in variational problem 
formulation. And so the interface element appears naturally in the process of finite element 



 

 

discretization. Interface element properties are determined by interface conditions. Sufficient 
normal forces are supposed to appear in the contact layer, which provide normal displacement 
continuity. It is ensured by choice of large values of the elastic stiffness of the interface element. 
This stiffness may be interpreted from mathematical point of view as the penalty parameter. The 
forces appearing along interface area are limited by the Mohr-Coulomb law. It may lead to the 
slipping effect.  As the result the problem becomes a nonlinear one. Besides elastic properties 
described above the interface layer is attributed with significant permeability, which may be 
interpreted as the penalty parameter for pore pressure as well. This property ensures pressure 
continuity on interface. For numerical solution of this problem in-house software based on Block 
Thomas' algorithm was developed. 
 

 

2. Mathematical model 

 2.1 Governing equations 
The equations describing coupled processes of elastic deformation and pore fluid 

diffusion in fluid-infiltrated elastic solids are as follows [2]: 
The continuity equation: 
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The equilibrium equation: 

pbdivG ∇=∇+∆ uu γ                                                                   (2.2) 
where p – the pore pressure of fluid, u – the displacement vector of the solid skeleton. The above 
equations contain following parameters: k is the coefficient of permeability, µ is the viscosity of 
the pore fluid, G is the shear modulus, b is the Biot’s constant. Values M and γ are defined by 
expressions  
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where K is the bulk modulus of the overall skeleton (the drained bulk modulus), Ku is the bulk 
modulus under undrained conditions (the undrained bulk modulus). The Biot’s constant may by 
written as (2.4), where Ks is the averaged bulk modulus of the solid grains. Note that 10 ≤≤ b  
and b will be near its upper limit for soil-like materials, since then K<< Ks. 
  

  2.2 Variational formulation of the problem. 
 
Let Ω be a domain in Rm (m=2 or 3), S is its boundary, and n is external normal to S. Suppose 
that the following formulas are valid for vectors u and q, defined in Ω  together with their first 
derivatives.  
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Multiply (2.2) scalarwise by vector-function q of the same class as u and integrate on domain Ω 
with boundary S using introduced formulas and grouping the integrals:  
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Designate    ( ) ( ) FnFIuuF =−+∇= n
T bpdivG ,γ .             (2.8)                              

         
It is a stress acting normally to boundary S. The first summand herein is elastic stress, the second 
one is the stress occurring due to material volume change and the third summand is pore pressure 
of filling fluid. The stress occurring due to material volume change acts uniformly in all 
directions like pressure.  
Inserting (2.8) into (2.7) write finally 
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Using the similar approach, one can get variational formulation of continuity equation: 
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This is a flux of fluid through boundary S directed normally to this boundary. The first term 
expresses the flow caused by a pressure difference, and the second one is fluid transfer together 
with a medium displacement (convective component). Inserting (2.11) into (2.10) we can write 
finally: 
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2.3 Interface model 
 

Let two domains be Ω1 with a boundary S1 and Ω2 with a boundary S2, adjoining in an area Sc 
referred as the interface area (fig. 2). Remaining 
(external) boundary is cSSSS \21 U= . Designate external 

normals to areas Ω1 and Ω2 as n1 и n2. In the interface 
boundary n1 = – n2 = n. Values of quantities will be 
marked with superscript "+" if they are computed from 
side of normal n positive direction (i.e. from side of area 
Ω2), or with the superscript "–" if they are computed 
from side of normal n negative direction (i.e. from the 
side of area Ω1). 
 
 

 

 
  Figure 2: Interface model 
 

 



 

 

 

 

Write equation (2.9) separately for each domain and sum up obtained equalities.  
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Suppose that the interface is an infinitely thin flat layer with stiffness C and porosity D.  
Force acting from the side of interface area on body Ω2 (in direction n1)  
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Force acting from the side of interface area on body Ω1 (in direction n2) 
)(22

+− −−== uuCnFF 2n          (2.15) 

Turn with this expressions to normal n. Since n1 = n, and n2 = – n  
)(1
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Note that normal forces appeared to be equal as it should be.  
 
Inserting (2.16) into (2.13) we get equation: 
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Write equation (2.12) separately for each domain and sum up obtained equalities. We get 
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Flux from contact area into Ω2 (in n1 direction)   
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and flux from contact area into Ω1 (in n2 direction)  
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Turning to normal n we get 
)( −++− −== ppDQQ nn         (2.21) 

Thus the fluxes through the boundary are equal and the pressures are different. Pressure 
continuity is achieved by choice of sufficient high value of D. 
Inserting flow expressions into (2.17) one can get: 
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Equations (2.17) and (2.22) are basic ones for application of finite elements method (FEM). 
 

      2.4 Slip computation 

Displacement and pressure equations obtained earlier contain terms taking into account 
relation of displacements and pressure on different interface sides of the domain Ω. Note 
difference in properties of possible displacement and pressure discontinuities on the interface. 
Pressure discontinuity on the interface occurs in the result of supposed finite permeability D of 
the interface elements at their zero thickness. It depends on fluid flow through the interface and 
is completely defined in the result of linear problem solution if the displacement equations are 
linear as well. Displacement discontinuity has other characteristics on the supposed interface 
which appears in this case as a plane of possible relative slide of the volume parts. Complexity of 
these characteristics is caused by strong nonlinearity of Coulomb – Mohr law leading to 
necessity of iteration process creation for solution of the problem of displacement and pressure 
field determination. In the considered case stiffness matrix has the following form:  
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Sliding effect is supposed corresponding to Coulomb – Mohr law that the relative slide of two 
ground layers takes place in a point of the plane of possible slide when the following term is 
satisfied   

          HnS CK +≥ |||| σσ          (2.24) 

Here σn is normal stress in the interface, σS is tangential stress in the interface, K is friction 
coefficient, СН is cohesion stress. Let two ground layers be connected by an interface element 
having zero thickness but elastic properties. Suppose further that the ground located on both 
sides of the interface and the interface element can not shift relating each other in common 
nodes. Compute the stressed state of the system exposed to actions of predetermined forces 
supposing that the interface element and the ground have linear elastic properties. This problem 
is solved by the finite elements method.  
Contact element properties are changing in the case of sliding. We put zero values for tangential 
components of stiffness matrix sC = 0. So points on the top and on the bottom of the contact 

layer move independently. According to considered technique we define 3 basic steps of slip 
computation: 
- Find deflected mode of considered body. 
- Examine obtained solution for sliding (with reference to Mohr- Coulomb law).  
- Following calculations using new form of stiffness matrix (in a case of sliding). 
The second and the third step would repeat until sliding is possible. 
 

  2.5 Effect of nonuniform permeability 
 

Nonuniform permeability effect can appear as a result of destruction of rock in contact 
layer. In case of sliding the last component of (2.18) will separate into 2 summands, where the 
second one is corresponding to the effect of nonuniform permeability: 
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[ ]slslsl BAS ,=  – sliding area. 

3. Results 
 

Numerical simulations of various geotechnical processes where obtained with developed 
in-house software. In some simulations results of our own code were compared with ANSYS. 
But in general cases commercial programs can’t produce geotechnical calculations. Fore 
example effect of nonuniform permeability is not included in some computational programs.  
So as to illustrate the effect of nonuniform permeability let’s consider the establishment of linear 
pore pressure distribution with following conditions setting: 
- The considered body is a cube (fig. 3) with horizontal contact layer. 
-          Designate initial conditions for pore pressure inside domain to be equal to zero. 
- Designate values of pore pressure on lateral sides to be fixed. 
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    Figure 3: Boundary and initial conditions 
 

Sliding of contact layer elements is caused by presence of the external load (fig. 4). Asymmetry 
distribution of sliding elements (fig. 4) is caused by unequal pore pressure values on the lateral 
sides. The gradient of pressure appeared during the process of establishment of linear 
distribution of pressure. From mathematical point of view this gradient plays role of additional 
force which is causing asymmetry distribution of sliding elements over the contact layer (fig. 4). 

         
 

Figure 4:  View from above on contact layer elements. 
 



 

 

  
 

 Figure 5:  Distribution of pore pressure over lines 1 and 2. 
 
Line number 1 is corresponding to sliding area, and line number 2 - to area where contact 
elements are still sticking. It’s easy to see that establishment of pore pressure occurs more 
quickly in area where sliding elements appeared (left graph on fig. 5). This happens because of 
effect of nouniform (additional) permeability. 

    

  4. Conclusions and further researches 
 
 

At the moment various geotechnical phenomena where included in our own code. The 
developed mathematical model successfully realizes geomechanical processes like pore pressure 
distribution, nonuniform permeability and sliding in contact layer of course. The work is 
ongoing. As the next step of this research we propose developing of parallel version of this 
software.  
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