
Joint Advanced Student School 2008

Optimization of Hybrid Control Systems in 
Manufacturing*

Michael Fall

Institute of Automatic Control Engineering
Technische Universität München

michael.fall@mytum.de

*D. Pepyne and C. Cassandras: Optimal Control of Hybrid Systems in Manufacturing

Proceedings of the IEEE, Vol. 88, No.7, July 2000



2

Content

1. Introduction
2. Modeling of hybrid systems for a single-stage manufacturing process
3. Formulation of the optimal control problem
4. Analysis of the optimization problem
5. Solution of the optimization problem using a Backward Recursive 

Algorithm
6. Conclusion



Control Scheme in Manufacturing 3

Problems related to Manufacturing Processes  

• Consider the manufacturing process of a metal-making company:
• Metal strips undergo various operations during the production process

(rolling, milling, machining metals,...)

• Example process: oven heating with a defined heating profile

1. Slowly heating of ingots to a desired temperature
2. Holding the metal-strips at a certain temperature level
3. Controlled cooling (annealing)

Time consuming
processes to achieve 
a certain quality

Supervisory control: which operations?
sequence of operations?

Process related control: When to switch operation times?

Integration of  process control into the plant-wide scheduling.
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A Hybrid System Framework for Manufacturing

How to achieve the integration of process control into plant-wide scheduling?

• Suitable process model required

– Trade off job completion times vs. quality aspects  
– Applicable to various processes
– Deal with discrete events and continuous states 

• Generalization:
– Representation of certain tasks <-> „Jobs“
– Devices to process on tasks      <-> „Servers“

• Hybrid nature of the system
– Description of physical characteristic (shape, functionality, quality)
– Description of process start and stop times

Solution Approach: Introduction of a Hybrid System Framework
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General remarks on Hybrid Systems

• Example: A simple thermostat as a hybrid system

Hybrid System: combination of event-driven with time-driven dynamics
– Discrete states: Q={0,1}
– Transitions depending on continuous variables 
– In each state: continuous dynamics and constraints z ∈IRN

• In General, various types of modeling framework for hybrid systems:
– Queuing system framework
– Extension of event-driven models to allow time-driven activities
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Modeling of a Single-Stage Manufacturing Process

• Representation of a manufacturing process as a single-server queuing system

• Queuing system dynamics:

Structure
- Infinite storage capacity
- Non-preemptive server

Queuing discipline
- First-Come-First-Served  
Principle (FCFS)

Hybrid 
model

Temporal state: 
Discrete event dynamics to 

describe start and stop 
times

Physical state: 
Time-driven differential 

equations during job 
processing

Goal: To formulate and solve optimal control problems that trade 
off cost on the physical and temporal states
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Control Policy for a Hybrid System Framework

(Assume: Job sequence / job arrival times assigned by an external source)

• Sub-problems that need to be solved:

1. Compute control trajectories for optimally 
steering the physical system state

2. Choose the optimal processing time for each job

3. Determine the order of job-processing
4. Consider the sequence of servers for each job

• All 4 subproblems are tightly coupled together in a hybrid system

-> scheduling methods

-> nonlinear optimal control

-> discrete-event dynamic     
system performance

Control Policy:

Determine how the jobs are being processed through the system optimally
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Interpretation of the Hybrid System Framework

Discrete event system with time-driven dynamics:

• Time driven dynamics:

• Event-driven dynamics: evolution of the temporal states
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Interpretation of the Hybrid System Framework

• Exogenous (uncontrolled) arrival events, controlled departure events
• Each job must be processed until it reaches a certain quality level

„Stopping rule“:

• Consider Job1:
– Job arrival time: a1

– Job removal from the server: x1
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Formulation of the Optimal Control Problem

• Conflicting optimization goals:

– Quality aspects to satisfy customer demands
– Job completion deadlines

• Optimal Control objective:
Choose a control policy π={u1,..., uN} to minimize an objective cost function: 

• Multistage optimization problem
• No explicit cost on zi(t), but the stopping rule zi(t)= Γi counts!
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J: cost function

Θi: cost on control ui 

Ψi: cost on job completion xi
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Formulation of the Optimal Control Problem

Class 1 problems:

• control u(i) is interpreted as the processing time
• J(Θi, Ψi) trades off quality vs. Job completion times
• Conditions:

- Θi, Ψi : strictly convex, monotonically decreasing
- si(.) is linear with si(ui)=αui

• Example:

– Physical state zi: interpreted as the job-quality
– Cost on poor quality + cost on missing the due-date
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Formulation of the Optimal Control Problem

Class 2 problems:

• control u(i) is interpreted as the effort applied to a job
• J(Θi, Ψi) trades off job completion times Θi vs. processing speed
• Conditions:

– Ψi strictly convex, monotonically increasing
– si(.) is strictly convex, monotonically decreasing

• Example:

– Quadratic cost on the effort applied to the job (typical approach) + penalizing tardiness
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Analysis of the Optimization Problem

Basic variational calculus techniques:

• General Form of the cost function for a discrete-time optimal control problems

• Necessary Conditions for Optimality (maximum principle):

• Stationary condition:

• State equation:

• Co-state equation:
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Discussion of possible solutions on the Optimization Problem  

• Bellmann Principle / Dynamic Programming (DP)

– Algorithm based on recursion and memorization
– Enormous computational effort to search over the whole policy space for jobs i=1...N

• Two-point boundary-value problem (TPBVP):

– Nondifferentiability introduced by event-generation mechanism
– Consideration of  the max function:

• First order approximations might end-up in a local minimum
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Example for a Nonsmooth Cost Function

• Class-1 Example with N=2

• Surface is not differentiable across the “crease” where x1=a2

• J(.) is not convex! (although Θi, Ψi != strictly convex)
• Points of non-differentiability form a critical component in the analysis

Goal: Exclusion of these jobs 
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Example for a Nonsmooth Cost Function

• Introduction of critical jobs: 

– Consequences for the cost function:

– If there are no critical jobs: -> standard gradient-based methods (TPBV-solvers)
otherwise: -> “Chattering“ across the crease at the minimum

A job i=1…N is called critical if xi=ai+1

time

ai: job arrival times

xi: job completion times 
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Nonsmooth Optimization

• Objective: 

– To develop a solution that is able to deal with the introduced non-
differentiability

– Optimization of Lipschitz continuous functions 

• Lipschitz functions: are continuous, but need not be differentiable everywhere

• In General, Cost Functions in Hybrid Optimal Control problems have 
discontinuities, but are Lipschitz

|||)()(| yxKyfxf −≤−

∑∑
=

−

Ψ+Θ=

+=

)()]()([min

)(),max(

1

1

theoremLipschitzalsoisxuJ

Lipschitzisusaxx
N

i
iiii

iiiii

π

K: open subset of /RN



Solution of the Optimization Problem 18

Nonsmooth Optimization

How to determine a global extremum?

– Reminder: Continuously differentiable (smooth) functions 

• Necessary condition for a point to be a local extremum:
• Global extremum: Hesse-Matrix + boundary conditions!
• Use of gradient-based methods possible

– Lipschitz continuous functions

• Necessary conditions for the optimum as a generalization of the gradient
• Introduction of the subdifferential ∂ f(u) of f at u:
• Most important property: if u is a local extremum of f, then:

Solving the optimization problem requires deriving an expression for the 
subdifferential J(u1,…uN).
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Subdifferential Derivation

• Example:

How to use the subdifferential in our optimization problem?

• Provides a way to check for the optimal solution 
• Event-driven dynamics enable a simple elevation of the subdifferential
• Using the left and right derivatives of J(.) it can be shown that the optimal control 

sequence ui is unique
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Subdifferential Derivation

Helpful definitions when evaluating the subdifferential

• Introduction of a sample path consisting of:
– departure times in response to given arrival times

– idle periods

– busy periods

• Evaluation of the subdifferential ∂J(u1,…uN)

• Optimal Control Sequence i=1…N must satisfy:
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Decoupling properties

• Decomposition of the optimal state trajectory into fully decoupled segments

• Decoupling properties according to the event-generating mechanism 

– Idle period decoupling property
• Optimal control ui* : dependent on number of Jobs and on arrival times ai

• Controls ui for individual busy periods can be calculated independently

– Block related decoupling property
• Controls ui for jobs before/after a critical job are independent

• Idea: Solving of the large optimization problem as a series of smaller (independent) 
subproblems (restrict the number of degrees of freedom)
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Critical Job Identification

• For practical problems: Almost any sample path will contain critical jobs
• Considering a busy period containing jobs i=1...B (starting with arrival time a1)

– Optimal job departure times xi,B are only dependent on a1 and B 
-> Pre-Computation of optimal departure times xi,B is possible! (i=1,...,B-1)

• Introduction of the critical interval [xi,B,xi,i]
Lemma: if any ai+1 e  [xi,B,xi,i] then: interval will will include at least one critical job

• Determination of critical jobs:
Lemma: Depending on job arrival times and on pre-computation optimal times -> 
statement whether or not a job is critical 
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ai: job arrival times
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Critical Job Identification

Example: job1, … , job3

• Arrival time of job a2 relative to the critical interval [x1,2,x1,1] allows to identify 
whether job1

1) is critical or not
2) does end the first busy period
3) is included in a busy period containing at the least job 1 and 2

ai:    Job arrival times

xi,B: Pre-computed optimal job departure times (i=1... B-1)

Time

Number of jobs on the sample path

Index of the i-th job to be processed
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Critical Job Identification

Example: job1, … , job3

• If a2 ≤ x1,3 && a2 ≤ x1,3

and x1,3 ≤ a2 ≤ x3,3

• If x1,3 ≤ a2 ≤ x1,2

and x2,3 ≤ a3 ≤ x2,2 ],[0
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Job1 is critical

a sign-check needs 
to be implemented:

ai: job arrival times

xi: job completion times 
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A Recursive Backward Algorithm

• Essential Idea:
- Decomposition of the overall nonsmooth optimization problem into (smooth) 

subproblems with reduced dimensionality
- Use of standard gradient-based solvers for individual subproblems (TPBVP)
- Calculate each subblock by using terminal constraints (TC)

• Role of critical jobs (points of non-differentiability) 

Example 

– Two independent solutions (one for each block)
– Necessary condition: Identification of the busy period structure
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Determining the busy period structure

Problem: Find a systematic way to identify the busy period structure

• General Approach: 
– Search for the optimal solution over all busy and block periods
– exhaustive computational effort: 

For jobs N=1...N: 2N-1 different busy period structures 
2B-1 possible block structures (for jobs j=1...B in a block)

-> infeasible except for small problems

• Approach by D. Pepyne / C.Cassandras:

- Identification of the busy period structure by implementing sign-checks
- Calculation for each job in backward recursive manner
- Use of efficient gradient-based-methods
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A Backward Recursive Algorithm

• Example with N=5 jobs:

- Class-1 cost with a nonlinear 
service function si(ui):

subject to:

- J(.) is strictly convex -> unique global extremum does exist!
- Input:

- arrival times a1,...a5

- TCs to identify critical jobs

- Recursive manner: starting with Job N and adding one by one previous jobs
- Implementation of the Algorithm using MATLAB
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A Backward Recursive Algorithm
1. Initialization: Solve P5,5(0) to obtain 
u5* and x5* 

2. Introduction of Job 4: calculate 
optimal control u4* and u5* (jobs in 
isolation)

Coupling properties:
- Computation of the Quantities ζ4,5
and  ζ4,5+ sign test 

- ζ 4,5, ζ 4,5 > 0: Decoupling of Job 4+5 
into separate busy periods

- Idle Period Decoupling: no need to 
recalculate u5*

3. Introduction of job 3
-ζ 4,5, ζ 4,5 < 0: Merge of job 3 into busy 
period of   job 4

4. Continue with job2 ...

ζ4,5=0.8, ζ 4,5=4.8

ζ3,3=-3.4, ζ 3,4=-1.2
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Conclusion

• Solution of a general optimal control problem related to 
manufacturing processes 

• Introduction of a hybrid system framework combining time-driven with 
event-driven dynamics

• Quality / time tradeoffs related to manufacturing process lead to a 
nonsmooth optimization problem 

• Solution approach: Divide and Conquer Scheme

• Extension towards multistage processes
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