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Problems related to Manufacturing Processes

« Consider the manufacturing process of a metal-making company:
« Metal strips undergo various operations during the production process

(rolling, milling, machining metals,...)

Supervisory control. which operations?
sequence of operations?

« Example process: oven heating with a defined heating profile

1. Slowly heating of ingots to a desired temperature Time consuming
2. Holding the metal-strips at a certain temperature level processes to achieve

3. Controlled cooling (annealing) a certain quality

Process related control: When to switch operation times?

Integration of process control into the plant-wide scheduling.
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A Hybrid System Framework for Manufacturing
How to achieve the integration of process control into plant-wide scheduling?
« Suitable process model required

— Trade off job completion times vs. quality aspects

— Applicable to various processes
— Deal with discrete events and continuous states

Solution Approach: Introduction of a Hybrid System Framework

« Generalization:
— Representation of certain tasks <-> ,Jobs"
— Devices to process on tasks  <->  Servers”

« Hybrid nature of the system

— Description of physical characteristic (shape, functionality, quality)
— Description of process start and stop times
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General remarks on Hybrid Systems

 Example: A simple thermostat as a hybrid system

Hybrid System: combination of event-driven with time-driven dynamics

— Discrete states: Q={0,1}
— Transitions depending on continuous variables
— In each state: continuous dynamics and constraints z /RN

* In General, various types of modeling framework for hybrid systems:

— Queuing system framework
— Extension of event-driven models to allow time-driven activities
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Modeling of a Single-Stage Manufacturing Process

« Representation of a manufacturing process as a single-server queuing system

EVENT-DRIVEN G Structure
COMPONENT .. .

- Infinite storage capacity
- Non-preemptive server

= Queuing discipline

TIME-DRIVEN : R - First-Come-First-Served
COMPONENT I Principle (FCFS)

* Queuing system dynamics:

Physical state:
Time-driven differential
equations during job
processing

Temporal state:
Discrete event dynamics to
describe start and stop
times

Hybrid
model

v

Goal: To formulate and solve optimal control problems that trade
off cost on the physical and temporal states
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Control Policy for a Hybrid System Framework

Control Policy:

Determine how the jobs are being processed through the system optimally

(Assume: Job sequence / job arrival times assigned by an external source)
* Sub-problems that need to be solved:

1. Compute control trajectories for optimally

. , -> nonlinear optimal control
steering the physical system state

2. Choose the optimal processing time for each job  _> djscrete-event dynamic
system performance

3. Determine the order of job-processing
4. Consider the sequence of servers for each job -> scheduling methods

« All 4 subproblems are tightly coupled together in a hybrid system
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Interpretation of the Hybrid System Framework

Discrete event system with time-driven dynamics:

Physical State, z

) z= 72;, %)
a, . /f /
I time
a1 X,] X2 Xi Xivy = filXilist) g
« Time driven dynamics: z(t): dynamics of the physical states
Zi(t):gi(zi’ui’t) : : :
u;:control variable -> time-independent
z,(;)=¢

Cinitial state; t,:processing start time

« Event-driven dynamics: evolution of the temporal states

Xx;(t): job completion times
Xi :Ti +S| (ul) — maX(Xi_l,ai)—I—Si (ul) /() J P

s,(u,:processing time
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Interpretation of the Hybrid System Framework

Physical State, z
A Z.J - gi(ZI_su!-;t)

[ a;. job arrival times
/\ x;: job completion times

, time
a 1 X11 b ) Xi Xiv1 = filXi,Uist) g

« Exogenous (uncontrolled) arrival events, controlled departure events
« Each job must be processed until it reaches a certain quality level
,otopping rule®:

ss(U)=min[t>0:z(z, +1) = Igi(s,ui 1)ds+ ¢ el] [: desired quality ,level”

e Consider Job1: | |
— Job arrival time: a, } during Interval (a4, x,) job

— Job removal from the server: x, e'xecut|on according to:
Zl(t) = 91(21’ ul’t)

TI.ITI Hybrid System Framework 9




Formulation of the Optimal Control Problem

Conflicting optimization goals:

— Quality aspects to satisfy customer demands } Hybrid system framework:

— Job completion deadlines Time/Quality tradeoffs

« Optimal Control objective:
Choose a control policy m={u,,..., u,} to minimize an objective cost function:

N J: cost function
min = izzl:[@‘ (U) + ¥ (x)] ©,: cost on control u,

WY.: cost on job completion X;

« Multistage optimization problem
* No explicit cost on z(t), but the stopping rule z(t)=T. counts!
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Formulation of the Optimal Control Problem

Class 1 problems:

mﬂin J = ZN:[(’Di(ui) +LPi(Xi)]

e control g IS interpreted as the processing time
« J(O, W) trades off quality vs. Job completion times
 (Conditions:

- 0, Y. strictly convex, monotonically decreasing
- §(.) is linear with s(u)=au,

«  Example: s.(u)=u
®i(ui) — l
\Pi(xi) = (Xi _5i)2

— Physical state z;: interpreted as the job-quality
— Cost on poor quality + cost on missing the due-date

u;: processing time
x;. job completion time

O,: due date for each job
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Formulation of the Optimal Control Problem

Class 2 problems:

mﬂin J = ZN:[@i (u) + ¥ (x)]

« control u(i) is interpreted as the effort applied to a job
« J(O, W) trades off job completion times O, vs. processing speed
« Conditions:

— W strictly convex, monotonically increasing
— s(.) is strictly convex, monotonically decreasing

« Example: s (u,) = ] . .
u. q. desired quality level
®,(u,)=u’ u; ...e.g. energy
0, X; <O, X job completion time
\Ili (XI) - 2
(X, —0.)", X =0, d.: due date for each job

— Quadratic cost on the effort applied to the job (typical approach) + penalizing tardiness
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Analysis of the Optimization Problem

Basic variational calculus techniques:

« General Form of the cost function for a discrete-time optimal control problems

J(x,4,u) = ZN:{Li (x.,u.)+ A[max(x._,,a)+s (u)—x]} A: N-dim. vector

for the co-state

* Necessary Conditions for Optimality (maximum principle):

- Stationary condition: ﬂ -0 = oL (Xi’u‘) + A ds‘ (ui) =0
ou. ou. du,
oJ
- State equation: Y =0 = X =max(a;,x_)+s;(U,)
- 220 — 1= oL(x;, ;) A d max(x;,a;,,)
 Co-state equation: OX. ! OX * dx.
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Discussion of possible solutions on the Optimization Problem

« Bellmann Principle / Dynamic Programming (DP)

— Algorithm based on recursion and memorization
— Enormous computational effort to search over the whole policy space for jobs i=1...N

« Two-point boundary-value problem (TPBVP):

— Nondifferentiability introduced by event-generation mechanism
— Consideration of the max function:

—=0 = —max(x,a,,) =

OX

0J d 0,if x, <a., a; job arrival times
1Lif x. >a_, x.: job completion times

* First order approximations might end-up in a local minimum

Introduction of Nonsmooth Optimization with Lipschitz-continuous functions.
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Example for a Nonsmooth Cost Function

J(.) ;
« Class-1 Example with N=2 B OO
" AN
N 37 P R
mﬂinJ :Z[®i(ui)+qji(xi)] 2| ‘% N
i1 -

1 1
O.Uu)=—; uu,)=—; 2
1 (up) " o (Uy) ;

2

Yi(x) = X12’ W, (%) = (X, _30)2

J(u,u,) = —+i+ (2+u,)? +[max(2+u,,3)+u, —30]°
| ul u2

« Surface is not differentiable across the “crease” where x,=a,

« J(.) is not convex! (although O, W. != strictly convex)

« Points of non-differentiability form a critical component in the analysis
Goal: Exclusion of these jobs
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Example for a Nonsmooth Cost Function

« Introduction of critical jobs:
a;’ job arrival times

A job i=7...Nis called critical if x=a,,,

x;: job completion times
— Consequences for the cost function:

0J
—=0 = x =max(a,X_,)+S: (U
c’Mi I (I |—l) |( |)

— If there are no critical jobs: -> standard gradient-based methods (TPBV-solvers)

otherwise: -> “Chattering“ across the crease at the minimum

I AT i Siete, =
L

== gz 0, 6)

I
T /
d, '
. i; time .
i g X ey = i )+ ox g
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Nonsmooth Optimization
« Objective:

— To develop a solution that is able to deal with the introduced non-
differentiability

— Optimization of Lipschitz continuous functions

| F(xX)-f(y)<KK|x-Y] K: open subset of /RN

« Lipschitz functions: are continuous, but need not be differentiable everywhere

X, = max(x._,a)+s;(u,) IS Lipschitz
N
minJ =) [0, (u;) + ¥, (x)] isalso Lipschitz (> theorem)
d i=1

* In General, Cost Functions in Hybrid Optimal Control problems have
discontinuities, but are Lipschitz
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Nonsmooth Optimization
How to determine a global extremum?
— Reminder: Continuously differentiable (smooth) functions

« Necessary condition for a point to be a local extremum:  of (x)
* Global extremum: Hesse-Matrix + boundary conditions! OX
» Use of gradient-based methods possible |

=0

— Lipschitz continuous functions

* Necessary conditions for the optimum as a generalization of the gradient
« Introduction of the subdifferential ¢ f(u) of f at u: of (u)
« Most important property: if u is a local extremum of f, then: o < Af (u)

Solving the optimization problem requires deriving an expression for the
subdifferential J(u,, ...uy).
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Subdifferential Derivation

« Example:
y f(X)=|x| lim of (x) _ _1;\ subdifferential
xT0” 8)( _r
|- o) 1.> of (u) =[-11]
0 X oL ox =t ') 0eof (u)

How to use the subdifferential in our optimization problem?

« Provides a way to check for the optimal solution
« Event-driven dynamics enable a simple elevation of the subdifferential

« Using the left and right derivatives of J(.) it can be shown that the optimal control
sequence u; is unique
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Subdifferential Derivation

Helpful definitions when evaluating the subdifferential

* Introduction of a sample path consisting of: a;: job arrival times

— departure times in response to given arrival times : : :
X;: Job completion times

— idle periods < busy >
di+1 dm+1 An(i)+1
— busy periods v v
idle idle
Xk-1 Xk Xm Xm+1 Xn1  Xp X
ak
. . . . a). N
»  Evaluation of the subdifferential oJ(u,, ...uy) ¢ = lim P & = lim N

«  Optimal Control Sequence i=1...N must satisfy: () e [é’i_ : é’f] e R
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Decoupling properties

« Decomposition of the optimal state trajectory into fully decoupled segments

minJ :iJi =min(minJ, :iJi,...,m_iun J, = iJi); P,Q<N

i=P+1

* Decoupling properties according to the event-generating mechanism

— ldle period decoupling property
« Optimal control u.* : dependent on number of Jobs and on arrival times a;
« Controls u, for individual busy periods can be calculated independently

— Block related decoupling property
+ Controls u; for jobs before/after a critical job are independent

« Idea: Solving of the large optimization problem as a series of smaller (independent)
subproblems (restrict the number of degrees of freedom)
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Critical Job Identification

* For practical problems: Almost any sample path will contain critical jobs
« Considering a busy period containing jobs /=17...B (starting with arrival time a,)

» busy q
ar a, Are1 Ag+1 a; job arrival times
v \ x.: job completion times
X1,8 Xm,B XB-1,8 XB X

— Optimal job departure times x; ; are only dependent on a, and B
-> Pre-Computation of optimal departure times x; ; is possible! (i=1,...,B-1)

* Introduction of the critical interval [x; g,X;;
Lemma: if any a,,; e [X;g,X;;] then: interval will will include at least one critical job

« Determination of critical jobs:

Lemma: Depending on job arrival times and on pre-computation optimal times ->
statement whether or not a job is critical
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Critical Job Identification

laz
ot i A

X1,2 X711

Example: job1, ..., job3

:

as
l Time

a.. Job arrival times

Xi,BQDre-computed optimal job departure times (i=1... B-1)
\ — Number of jobs on the sample path

S Index of the i-th job to be processed

* Arrival time of job a, relative to the critical interval [x, ,,X, 4] allows to identify
whether job1

1) is critical or not
2) does end the first busy period
3) is included in a busy period containing at the least job 1 and 2
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Critical Job Identification

Example: job1, ..., job3

ay laz

a;’ job arrival times

X;: Job completion times

a3
l Time

t——

X1,3 X1,2 X1,1 X23 X2,2 X33
« Ifa,<x,;&&a,<x;; -
and X, ; < @, < Xy 5 Job1 is critical
) - +
e Ifx;<a,<Xx4, } a sign-check needs i "¢ <0
. _ o
and X, 3 < a3 < X, to be implemented: e[/, &)
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A Recursive Backward Algorithm

« Essential |Idea:

- Decomposition of the overall nonsmooth optimization problem into (smooth)
subproblems with reduced dimensionality

- Use of standard gradient-based solvers for individual subproblems (TPBVP)
- Calculate each subblock by using terminal constraints (TC)

« Role of critical jobs (points of non-differentiability)

df (k1 A+t
Example l l

I BLOCK2

Xm(k) Xn(k)

<-——-oe-- BUSY PERIOD -------- >

— Two independent solutions (one for each block)
— Necessary condition: Identification of the busy period structure
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Determining the busy period structure

Problem: Find a systematic way to identify the busy period structure

« General Approach:
— Search for the optimal solution over all busy and block periods

— exhaustive computational effort:
For jobs N=1...N: 2N-1 different busy period structures
28-1 possible block structures (for jobs j=1...B in a block)

-> infeasible except for small problems

« Approach by D. Pepyne / C.Cassandras:

|dentification of the busy period structure by implementing sign-checks
- Calculation for each job in backward recursive manner
- Use of efficient gradient-based-methods
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A Backward Recursive Algorithm

« Example with N=5 jobs:

: s 1 .
- Class-1 cost with a nonlinear minJ =>[—+ x’] J: cost Function
ul,..u5 i !
service function s;(u)): t U
subjectto: X =max(a,X_)+U; W.: cost on job completion x;

©.: cost on control u.

- J(.) is strictly convex -> unique global extremum does exist!
- Input:

- arrival times a,,...a;

- TCs to identify critical jobs

- Recursive manner: starting with Job N and adding one by one previous jobs
- Implementation of the Algorithm using MATLAB
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A Backward Recursive Algorithm
1. Initialization: Solve P; 5(0) to obtain

Ca5=0.8,C ,5=4.8 u:* and x.*
\ 5 5
® \ 2. Introduction of Job 4: calculate
“ optimal control u,* and u:* (jobs in
() bg08 %, m08 isolation)

" Coupling properties:

- Computation of the Quantities ¢, 5

@ "af';""'%.f‘l-z and (45t sign test
/ - € 45 C 45> 0: Decoupling of Job 4+5
(e | / | I | into separate busy periods
] - -
© e 37,8 02| - Idle Period Decoupling: no need to
| I// I I recalculate u*
@ v | 3. Introduction of job 3

L] I |
| -C 45 € 45<0: Merge of job 3 into busy

C33=-3.4, £ 34=-1.2 period of job 4
4. Continue with job2 ...
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Conclusion

« Solution of a general optimal control problem related to
manufacturing processes

 Introduction of a hybrid system framework combining time-driven with
event-driven dynamics

« Quality / time tradeoffs related to manufacturing process lead to a
nonsmooth optimization problem

« Solution approach: Divide and Conquer Scheme

« Extension towards multistage processes
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