Optimization of Hybrid Control Systems in Manufacturing*

Michael Fall

Institute of Automatic Control Engineering Technische Universität München

michael.fall@mytum.de

*D. Pepyne and C. Cassandras: Optimal Control of Hybrid Systems in Manufacturing Proceedings of the IEEE, Vol. 88, No.7, July 2000

Joint Advanced Student School 2008

Content

- 1. Introduction
- 2. Modeling of hybrid systems for a single-stage manufacturing process
- 3. Formulation of the optimal control problem
- 4. Analysis of the optimization problem
- 5. Solution of the optimization problem using a Backward Recursive Algorithm
- 6. Conclusion

Problems related to Manufacturing Processes

- Consider the manufacturing process of a metal-making company:
- Metal strips undergo various operations during the production process (rolling, milling, machining metals,...)

Supervisory control: which operations? sequence of operations?

- Example process: oven heating with a defined *heating profile*
 - 1. Slowly heating of ingots to a desired temperature
 - 2. Holding the metal-strips at a certain temperature level
 - 3. Controlled cooling (annealing)

Time consuming processes to achieve a certain **quality**

Process related control: When to switch operation times?

Integration of process control into the plant-wide scheduling.

A Hybrid System Framework for Manufacturing

How to achieve the integration of process control into plant-wide scheduling?

- Suitable *process model* required
 - Trade off job completion times vs. quality aspects
 - Applicable to various processes
 - Deal with discrete events and continuous states

Solution Approach: Introduction of a *Hybrid System Framework*

- Generalization:
 - Representation of certain tasks <-> "Jobs"
 - Devices to process on tasks <-> "Servers"
- *Hybrid* nature of the system
 - Description of physical characteristic (shape, functionality, quality)
 - Description of process start and stop times

General remarks on Hybrid Systems

• Example: A simple thermostat as a hybrid system

Hybrid System: combination of event-driven with time-driven dynamics

- Discrete states: Q={0,1}
- Transitions depending on continuous variables
- In each state: continuous dynamics and constraints $z \in IR^N$

- In General, various types of modeling framework for hybrid systems:
 - Queuing system framework
 - Extension of event-driven models to allow time-driven activities

Modeling of a Single-Stage Manufacturing Process

Representation of a manufacturing process as a *single-server queuing system* Structure **EVENT-DRIVEN** $x_i = \max x_{i-1} + s_i(u_i)$ **COMPONENT** - Infinite storage capacity - Non-preemptive server Part Part Departures Arrivals 17 Queuing discipline $a_i, z_i(a_i)$ $x_i, z_i(x_i)$ - First-Come-First-Served TIME-DRIVEN $\blacktriangleright \dot{z}_i(t) = g_i(z_i, u_i, t)$ Ui . COMPONENT Principle (FCFS) Queuing system dynamics: Physical state: **Temporal state:** Time-driven differential Discrete event dynamics to equations during job describe start and stop processing **Hybrid** times model **Goal**: To formulate and solve optimal control problems that trade off cost on the physical and temporal states Modeling of Hybrid Systems 6

Control Policy for a Hybrid System Framework

Control Policy:

Determine how the jobs are being processed through the system optimally

(Assume: Job sequence / job arrival times assigned by an external source)

- Sub-problems that need to be solved:
 - 1. Compute control trajectories for optimally steering the physical system state
 - 2. Choose the optimal processing time for each job
 - 3. Determine the order of job-processing
 - 4. Consider the sequence of servers for each job

-> nonlinear optimal control

- -> discrete-event dynamic system performance
- -> scheduling methods
- All 4 subproblems are tightly coupled together in a hybrid system

Interpretation of the Hybrid System Framework

Discrete event system with time-driven dynamics:

• Time driven dynamics:

 $\dot{z}_i(t) = g_i(z_i, u_i, t)$ $z_i(\tau_i) = \zeta_i$

 $z_i(t)$: dynamics of the physical states u_i:control variable -> time-**in**dependent ζ_i :initial state; τ_i :processing start time

8

• Event-driven dynamics: evolution of the temporal states

$$x_i = \tau_i + s_i(u_i) = \max(x_{i-1}, a_i) + s_i(u_i)$$

 $x_i(t)$: job completion times $s_i(u_i)$:processing time

Interpretation of the Hybrid System Framework

 a_{i} ; job arrival times x_{i} ; job completion times

- Exogenous (uncontrolled) arrival events, controlled departure events
- Each job must be processed until it reaches a certain quality level "Stopping rule":

$$s_i(u_i) = \min[t \ge 0: z_i(\tau_i + t) = \int_{\tau_i}^{\tau_{i+t}} g_i(s, u_i, t) ds + \zeta_i \in \Gamma_i] \qquad \qquad \Gamma_i: \text{ desired quality "level"}$$

- Consider Job1:
 - Job arrival time: a_1
 - Job removal from the server: x_1

during Interval (a_1, x_1) job execution according to:

$$\dot{z}_1(t) = g_1(z_1, u_1, t)$$

Formulation of the Optimal Control Problem

- Conflicting optimization goals:
 - Quality aspects to satisfy customer demands
 - Job completion deadlines

Hybrid system framework: Time/Quality tradeoffs

Optimal Control objective:
 Choose a control policy π={u₁,..., u_N} to minimize an objective cost function:

$$\min_{\pi} J = \sum_{i=1}^{N} [\Theta_i(u_i) + \Psi_i(x_i)]$$

- J: cost function
- Θ_i : cost on control u_i
- Ψ_i : cost on job completion x_i

- Multistage optimization problem
- No explicit cost on $z_i(t)$, but the stopping rule $z_i(t) = \Gamma_i$ counts!

Formulation of the Optimal Control Problem

Class 1 problems:

- control $u_{(i)}$ is interpreted as the processing time
- $J(\Theta_i, \Psi_i)$ trades off quality vs. Job completion times
- Conditions:
 - Θ_{i} , Ψ_{i} : strictly convex, monotonically decreasing

 $S_i(u_i) = u_i$

- $s_i(.)$ is linear with $s_i(u_i) = \alpha u_i$
- Example:

$$\Theta_i(u_i) = \frac{1}{u_i}$$
$$\Psi_i(x_i) = (x_i - \delta_i)^2$$

 u_{i} : processing time

 x_i job completion time

 δ_i : due date for each job

- Physical state z_i : interpreted as the job-quality
- Cost on poor quality + cost on missing the due-date

Formulation of the Optimal Control Problem

Class 2 problems:

- control *u(i)* is interpreted as the effort applied to a job
- $J(\Theta_i, \Psi_i)$ trades off job completion times Θ_i vs. processing speed
- Conditions:
 - Ψ_i strictly convex, monotonically increasing
 - $s_i(.)$ is strictly convex, monotonically decreasing
- Example: $s_i(u_i) = \frac{q}{u_i}$

$$u_i$$

$$\Theta_i(u_i) = u_i^2$$

$$\Psi_i(x_i) = \begin{cases} 0, & x_i < \delta_i \\ (x_i - \delta_i)^2, & x_i \ge \delta_i \end{cases}$$

q: desired quality level u_i : ...e.g. energy x_i : job completion time \overline{o}_i : due date for each job

- Quadratic cost on the effort applied to the job (typical approach) + penalizing tardiness

Optimization Problem

$$\min_{\pi} J = \sum_{i=1}^{N} \left[\Theta_i(u_i) + \Psi_i(x_i) \right]$$

Analysis of the Optimization Problem

Basic variational calculus techniques:

• General Form of the cost function for a discrete-time optimal control problems

$$J(x,\lambda,u) = \sum_{i=1}^{N} \{L_i(x_i,u_i) + \lambda_i[\max(x_{i-1},a_i) + s_i(u_i) - x_i]\}$$
 λ : N-dim. vector for the co-state

• Necessary Conditions for Optimality (maximum principle):

• Stationary condition: $\frac{\partial J}{\partial u_i} = 0 \implies \frac{\partial L_i(x_i, u_i)}{\partial u_i} + \lambda_i \frac{ds_i(u_i)}{du_i} = 0$ • State equation: $\frac{\partial J}{\partial \lambda_i} = 0 \implies x_i = \max(a_i, x_{i-1}) + s_i(u_i)$ • Co-state equation: $\frac{\partial J}{\partial x_i} = 0 \implies \lambda_i = \frac{\partial L(x_i, u_i)}{\partial x_i} + \lambda_{i+1} \frac{d\max(x_i, a_{i+1})}{dx_i}$

Analysis

Discussion of possible solutions on the Optimization Problem

- Bellmann Principle / Dynamic Programming (DP)
 - Algorithm based on recursion and memorization
 - Enormous computational effort to search over the whole policy space for jobs i=1...N
- Two-point boundary-value problem (TPBVP):
 - Nondifferentiability introduced by event-generation mechanism
 - Consideration of the max function:

$$\frac{\partial J}{\partial x} = 0 \implies \frac{d}{dx_i} \max(x_i, a_{i+1}) = \begin{cases} 0, \text{ if } x_i < a_{i+1} & a_i \text{ : job arrival times} \\ 1, \text{ if } x_i > a_{i+1} & x_i \text{ : job completion times} \end{cases}$$

• First order approximations might end-up in a local minimum

Introduction of Nonsmooth Optimization with Lipschitz-continuous functions.

Example for a Nonsmooth Cost Function

• Class-1 Example with N=2

$$\min_{\pi} J = \sum_{i=1}^{N} [\Theta_i(u_i) + \Psi_i(x_i)]$$

$$\Theta_{1}(u_{1}) = \frac{1}{u_{1}}; \quad u_{2}(u_{2}) = \frac{1}{u_{2}};$$

$$\Psi_{1}(x_{1}) = x_{1}^{2}, \quad \Psi_{2}(x_{2}) = (x_{2} - 30)^{2}$$

$$J(u_{1}, u_{2}) = \frac{1}{u_{1}} + \frac{1}{u_{2}} + (2 + u_{1})^{2} + [\max(2 + u_{1}, 3) + u_{2} - 30]$$

- Surface is not differentiable across the "crease" where $x_1 = a_2$
- J(.) is *not* convex! (although Θ_{i} , Ψ_{i} != strictly convex)
- Points of non-differentiability form a critical component in the analysis Goal: Exclusion of these jobs

Example for a Nonsmooth Cost Function

• Introduction of critical jobs:

A job *i*=1...*N* is called critical if $x_i = a_{i+1}$

a_i: job arrival times *x_i:* job completion times

Consequences for the cost function:

$$\frac{\partial J}{\partial \lambda_i} = 0 \implies x_i = \max(a_i, x_{i-1}) + s_i(u_i)$$

 If there are no critical jobs: -> standard gradient-based methods (TPBV-solvers) otherwise: -> "Chattering" across the crease at the minimum

Nonsmooth Optimization

- Objective:
 - To develop a solution that is able to deal with the introduced nondifferentiability
 - Optimization of Lipschitz continuous functions

 $|f(x) - f(y)| \le K |x - y|$ K: open subset of /R^N

• Lipschitz functions: are continuous, but need not be differentiable everywhere

$$x_{i} = \max(x_{i-1}, a_{i}) + s_{i}(u_{i}) \qquad is Lipschitz$$
$$\min_{\pi} J = \sum_{i=1}^{N} [\Theta_{i}(u_{i}) + \Psi_{i}(x_{i})] \qquad is also Lipschitz (\sum theorem)$$

In General, Cost Functions in Hybrid Optimal Control problems have discontinuities, but are Lipschitz

Nonsmooth Optimization

How to determine a global extremum?

- Reminder: Continuously differentiable (smooth) functions
 - Necessary condition for a point to be a local extremum:
 - Global extremum: Hesse-Matrix + boundary conditions!
 - Use of gradient-based methods possible
- Lipschitz continuous functions
 - Necessary conditions for the optimum as a generalization of the gradient
 - Introduction of the subdifferential $\partial f(u)$ of f at u: $\partial f(u)$
 - Most important property: if u is a local extremum of f, then: $0 \in \partial f(u)$

Solving the optimization problem requires deriving an expression for the subdifferential $J(u_1, ..., u_N)$.

Subdifferential Derivation

• Example:

How to use the subdifferential in our optimization problem?

- Provides a way to check for the optimal solution
- Event-driven dynamics enable a simple elevation of the subdifferential
- Using the left and right derivatives of J(.) it can be shown that the optimal control sequence u_i is unique

Subdifferential Derivation

Helpful definitions when evaluating the subdifferential

- Introduction of a *sample path* consisting of:
 - departure times in response to given arrival times

20

- Evaluation of the subdifferential $\partial J(u_1, \dots, u_N)$ $\zeta_i^- = \lim_{x_{m(i)} \uparrow a_{m(i)+1}} \frac{\partial J}{\partial u_i}; \qquad \zeta_i^+ = \lim_{x_{m(i)} \downarrow a_{m(i)+1}} \frac{\partial J}{\partial u_i}$
- Optimal Control Sequence i=1...N must satisfy: $0 \in [\zeta_i^-, \zeta_i^+] \in \Re^1$

Solution of the Optimization Problem

Decoupling properties

• Decomposition of the optimal state trajectory into fully decoupled segments

$$\min_{u_1...u_N} J = \sum_{i=1}^N J_i = \min(\min_{u_1...u_P} J_P = \sum_{i=1}^P J_i, ..., \min_{u_P...u_Q} J_Q = \sum_{i=P+1}^Q J_i); \quad P,Q < N$$

- Decoupling properties according to the event-generating mechanism
 - Idle period decoupling property
 - Optimal control u_i^* : dependent on number of Jobs and on arrival times a_i
 - Controls u_i for individual busy periods can be calculated independently
 - Block related decoupling property
 - Controls u_i for jobs before/after a critical job are independent
- Idea: Solving of the large optimization problem as a series of smaller (independent) subproblems (restrict the number of degrees of freedom)

Critical Job Identification

- For practical problems: Almost any sample path will contain critical jobs
- Considering a busy period containing jobs i=1...B (starting with arrival time a_1)

- Optimal job departure times x_{i,B} are only dependent on a₁ and B
 -> Pre-Computation of optimal departure times x_{i,B} is possible! (i=1,...,B-1)
- Introduction of the critical interval [x_{i,B},x_{i,i}]
 Lemma: if any a_{i+1} e [x_{i,B},x_{i,i}] then: interval will will include at least one critical job
- Determination of critical jobs:

Lemma: Depending on job arrival times and on pre-computation optimal times -> statement *whether or not* a job is critical

Critical Job Identification

Example: *job1, ..., job3*

a_i: Job arrival times

 $X_{i,B}$: Pre-computed optimal job departure times (i=1... B-1)

Number of jobs on the sample path

Index of the *i-th* job to be processed

• Arrival time of job a_2 relative to the critical interval $[x_{1,2}, x_{1,1}]$ allows to identify whether job1

1) is critical or not

2) does end the first busy period

3) is included in a busy period containing at the least job 1 and 2

Critical Job Identification

Solution of the Optimization Problem

A Recursive Backward Algorithm

- Essential Idea:
 - Decomposition of the overall nonsmooth optimization problem into (smooth) subproblems with reduced dimensionality
 - Use of standard gradient-based solvers for individual subproblems (TPBVP)
 - Calculate each subblock by using terminal constraints (TC)
- Role of critical jobs (points of non-differentiability)

- Two independent solutions (one for each block)
- Necessary condition: Identification of the busy period structure

Determining the busy period structure

Problem: Find a systematic way to identify the busy period structure

- General Approach:
 - Search for the optimal solution over all busy and block periods
 - exhaustive computational effort:

For jobs N=1...N: 2^{N-1} different busy period structures

 2^{B-1} possible block structures (for jobs *j*=1...*B* in a block)

- -> infeasible except for small problems
- Approach by D. Pepyne / C.Cassandras:
 - Identification of the busy period structure by implementing sign-checks
 - Calculation for each job in backward recursive manner
 - Use of efficient gradient-based-methods

A Backward Recursive Algorithm

- Example with N=5 jobs:
- Class-1 cost with a nonlinear service function $s_i(u_i)$: $x_i = \max(a_i, x_{i-1}) + u_i^2$ J: cost Function $\Theta_i: cost on control <math>u_i$ $\Psi_i: cost on job completion <math>x_i$
- J(.) is strictly convex -> unique global extremum does exist!
- Input:
 - arrival times a₁,...a₅
 - TCs to identify critical jobs
- Recursive manner: starting with Job N and adding one by one previous jobs
- Implementation of the Algorithm using MATLAB

A Backward Recursive Algorithm

1. Initialization: Solve $P_{5,5}(0)$ to obtain u_5^* and x_5^*

2. Introduction of Job 4: calculate optimal control u_4^* and u_5^* (jobs in isolation)

Coupling properties:

- Computation of the Quantities $\zeta_{4,5}$ and $\ \zeta_{4,5}\text{+}$ sign test
- $\zeta_{4,5}$, $\zeta_{4,5}$ > 0: Decoupling of Job 4+5 into separate busy periods

- Idle Period Decoupling: no need to recalculate u₅*

3. Introduction of job 3

- $\zeta_{4,5}$, $\zeta_{4,5}$ < 0: Merge of job 3 into busy period of job 4

4. Continue with job2 ...

Solution of the Optimization Problem

Conclusion

- Solution of a general optimal control problem related to manufacturing processes
- Introduction of a hybrid system framework combining time-driven with event-driven dynamics
- Quality / time tradeoffs related to manufacturing process lead to a nonsmooth optimization problem
- Solution approach: *Divide and Conquer Scheme*
- Extension towards multistage processes

References

 D. Pepyne and C. Cassandras: Optimal Control of Hybrid Systems in Manufacturing

Proceedings of the IEEE, Vol. 88, No.7, July 2000

- C. Cassandras, D. Pepyne, Y. Wardi: Optimal Control of a Class of Hybrid Systems IEEE Transactions on Automatic Control
- O. Stursberg: Script on lecture "Discrete Event and Hybrid Systems" Technical University of Munich

