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Motivation

• Production can follow different paths
Efficient operations in manufacturing or processing systems

• Allocation of resources to production steps (operations)
Profit is maximized / costs minimized

(in the following algorithm: minimizing the makespan)

• Conflicts arising from exclusive resource usage

• Application domains: telecommunications systems, real-time 
operation systems, robot assembly, chemical industry …
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Job-shop Scheduling

• Scheduling
– Set of operations “O”, resources “R” and jobs “J”
– A mapping for the duration of each operation & the assignment of

operations to jobs
– A schedule which assigns a start time to each operation

• Job-shop scheduling as a limitation of scheduling
– Covering and Non-Preemption
– Mutual exclusion
– Operations ordered within a job

• Limitation because efficient algorithms for medium- to large-size 
problems still do not exist

But solution very challenging & extendable for other classes
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Methods to Schedule Operations

• Constraint programming
• Genetic algorithms
• Mathematical programming, e.g. mixed-integer linear programming 

(MILP) Software: Cplex
• Reachability algorithms for models given as timed automata (TA) 

Software: Kronos, IF, Uppaal, etc.
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Methods to Schedule Operations

• Constraint programming
• Genetic algorithms
• Mathematical programming, e.g. mixed-integer linear programming 

(MILP) Software: Cplex
• Reachability algorithms for models given as timed automata (TA) 

Software: Kronos, IF, Uppaal, etc.

Optimization of timed automata: combination of MILP and TA
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Methods to Schedule Operations

• Optimization of timed automata
– Combination of MILP and TA
– Reduction of the scheduling complexity by:

• The embedded MILP is updated iteratively
• Extends the notion of non-lazy execution

– Software TAopt
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Timed Automata

• Job-shop Scheduling modeled by TA (makespan minimization)
– Job automata

• nodes/locations for each operation
• operation j is waiting for the resource (=oj) or occupying it (=ōj)
• Final location for job i (=fi)
• Clocks ci monitor time to occupy a resource
• Transitions starting an operation and finishing it (labeled with α and Φ)
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Timed Automata

• Job Scheduling modeled by TA
– Resource automatas to enable mutual exclusion

• For each resource
• Locations: idle and busy
• Synchronisations with labels α and Φ
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• TA is defined as a tuple (L, l0, E, inv)
– L: finite set of locations (including initial location l0)
– Inv: L B(C)   “Invariants”
– E ⊆ L x B(C) x Act x P(C) x L     “Transitions”

• B(C): constraints formulated for a set C of clocks
• Act: set of actions/labels (ai)
• P(C): set of reset assignments

• The semantics of a timed automaton are defined as a labeled 
transition system (Q,(l0,u0),Δ) consists of the state space Q with 
pairs (l,u) and a transition relation Δ

• A trace of an automaton = sequence of states and transitions

Timed Automata
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• Reachability Analysis
– Tree encodes reachable states symbolically as pairs (l,Z) 

with location l and set Z of clock valuation in l
– Determine logic properties of TA by exploring reachability

tree
– Extension including cost

• find path which minimizes cost
• Software tools: Uppaal CORA, IF, TAopt

Timed Automata
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Algorithm of the Optimized Timed Automata

I. Solve relaxed MILP model M with starting node and return b, x
II. Calculates priority p for a node with (b, c, d, x)

• b = lower bound
• c = cost
• d = depth of current node
• x = values of the relaxed decision variables

III. Waiting list W consists of starting node (l, u, b, c, d, p) = (l0, 0, b0, c0, 0, p0)

Now repeat until search tree exploration has been finished and W is empty:
1. Select node from W after chosen heuristic rule and add it to the path P
2. From selected node determine all possible successors S in the TA model A
3. Drop successors with “laziness”
4. Drop already visited nodes

Now repeat with the remaining nodes in S until every node has been explored
(determine new upper bound c* when arriving the target location l*)
a. Update the model M (past nodes and transitions are fixed now)
b. Solve relaxed MILP with the updated model ( b’, x’)
c. Calculate priority p’ of node (b’, c’, d’, x’)
d. Add node (l’, u’, b’, c’, d’, p’) to the list W and take next node of S

5. S is empty 
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Algebraic Mixed-Integer Linear Programming Formulation

• Formulation
– binary variables: sequences of operations on the same resource

(with p(o,o’)=1 if operation o should be started first, 0 otherwise)
– Continuous variables: starting dates of operations, duration of 

the operations, time horizon H
– Equations for execution order, mutual exclusion, time horizon
– Inequalities for all operations to minimize problem (makespan)

Example:

Time horizon: H=100
Execution order: s(o1)+2 ≤ s(o2)
Mutual exclusion: p(o1,o3) + p(o3, o1) =1
Makespan: min Ψ with
s(ō2) + d(ō2) ≥ Ψ, s(ō3)+d(ō2) ≥ Ψ‘
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Algebraic Mixed-Integer Linear Programming Formulation

• Result of solved MILP model with current state:
– Solution vector x of relaxed decision variables
– Lower bound to prune reachability tree
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Timed Automata with embedded LP

• Structure of the implementation
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Search Heuristics

• Selection criteria for next node
• Based on node attributes (b, c, d, p)
• Influence the search tree exploration towards the optimum
• Determine the performance of finding the optimum
• Combination of selection criteria often useful

Select node with
highest priority p
(evaluation of LP-
solution vector x)

Select on 
random
distributed
priorities p

Select node
with lowest
bound b

Select node with
minimal cost c

Select node with
maximal/minimal 
depth d

Compute PriorityRandom
Search

Best-Lower-
Bound
Search

Min-Cost Search
(Best-First 
Search)

Depth-First Search
or Breadth-First
Search
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Search Heuristics Example (1)

• Best-lower-bound heuristics to find optimal path from o1o3 to f1f2
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Search Heuristics Example (2)

• Nodes are represented by location of both job automata l1 and l2, 
accumulated cost c and lower bound: (l1, l2, c, b)
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Reduction of the Search Tree

• Properties of traces:
– Immediate

• Traces do not exhibit periods of useless waiting (no task is started although 
resources available)

• Optimal trace always immediate in the case of makespan and tardiness 
minimization

• For general cost functions waiting before/after operations can be 
advantageous

– Weak non-lazy
• Stricter criterion than immediate
• Time gaps/holes which are large enough to be filled with an enabled operation 

are forbidden



Reduction of the Search Tree 22

Reduction of the Search Tree

• Properties of traces:
– Strong non-lazy / greedy strategy

• Even more restrictive: whenever list of successor states is not empty, waiting is 
forbidden in the current state (l,u)

• If no new operations can be started
• Not always optimal (see figure: left strongly non-lazy, right weakly non-lazy)
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Experiments (1)

• Two kind of test series:

– Series A:
• randomly small instance with no. of operation = no. of resources for each job
• Duration of operation uniformly distributed over {1, 2, …,6}
• Operations randomly assigned to the resources for each job

– Series B:
• Set of job-shop benchmark instances
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Experiments (2)

• Software used:

– TAopt (with Cplex to solve the embedded LP problem)
• cost-optimal reachability algorithm for TA employing branch-and-bound
• computation of lower bounds from embedded LP problems
• various node selection criteria (like Depth-First Search etc.)
• weak and strong non-laziness

– Cplex (pure MILP solving)

– Kronos (pure TA without lower costs)
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Results with series A (1)

• Number of explored nodes for
– different no. of jobs and 

resources
– Different search tree 

reduction techniques 
• branch-and-bound techniques 

with embedded LP
• weak or strong non-laziness

bb = Branch and bound
wnl = weak-non-laziness
snl = strong non-laziness
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Results with series A (2)

• Heuristics
– min c is bad choice
– Combined criteria 

are preferable, in 
particular the 
combination of min 
b & max d

Search strategies:
(c=cost, b=lower bound,
c=upper bound, d=depth)
(a) = min c
(b) = max d
(c) = max d, min c
(d) = max d, min b
(e) = max d, min c
(f) = min b
(g) = min b, min c
(h) = min b, max d
(i) = min b, max d, min c
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Results with series B

• Comparison of software in finding the optimum within 1 hour 
computation time
– Cplex: the best for small instances
– TAopt: the best for big instances
– Kronos: no solution for small instances, half of the time better 

solutions than TAopt

• Comparison of upper bounds using TAopt and Cplex
– TAopt: slightly more time to find a first feasible solution than 

Cplex
– TAopt: significantly lower upper bounds
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Evaluation

• Extension to more general scheduling problems possible:
– Alternative production paths
– Parallel production paths
– Timing constraints
– Changeover procedures
– Restricted working times
– Size of material stocks
– Consumption of material and production of another material



Summary 30

Summary

• Recent approach of combining reachability analysis of TAs with
branch-and-bound principle and non-lazy traces

• Results of TA for several samples even better than pure MILP

• Problem formulation for TA-based methods more intuitive

• Benefits of minimizing search larger than the increase of additional 
computation time per node

• Smaller memory consumption through pruning
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