
Joint Advanced Student School 2008 1

Efficient Synthesis of Production Schedules by
Optimization of Timed Automata

Inga Krause

Institute of Automatic Control Engineering
Technische Universität München

inga.krause@mytum.de

Content 2

Content

• Motivation
• Scheduling
• Timed Automata
• Mixed Integer Linear Programming
• Algorithm of the Optimized Timed Automata
• Search Heuristics & Reduction of the Search Tree
• Experiments & Results
• Evaluation & Summary

Motivation 3

Motivation

• Production can follow different paths
Efficient operations in manufacturing or processing systems

• Allocation of resources to production steps (operations)
Profit is maximized / costs minimized

(in the following algorithm: minimizing the makespan)

• Conflicts arising from exclusive resource usage

• Application domains: telecommunications systems, real-time
operation systems, robot assembly, chemical industry …

Scheduling 4

Job-shop Scheduling

• Scheduling
– Set of operations “O”, resources “R” and jobs “J”
– A mapping for the duration of each operation & the assignment of

operations to jobs
– A schedule which assigns a start time to each operation

• Job-shop scheduling as a limitation of scheduling
– Covering and Non-Preemption
– Mutual exclusion
– Operations ordered within a job

• Limitation because efficient algorithms for medium- to large-size
problems still do not exist

But solution very challenging & extendable for other classes

Scheduling 5

Methods to Schedule Operations

• Constraint programming
• Genetic algorithms
• Mathematical programming, e.g. mixed-integer linear programming

(MILP) Software: Cplex
• Reachability algorithms for models given as timed automata (TA)

Software: Kronos, IF, Uppaal, etc.

Scheduling 6

Methods to Schedule Operations

• Constraint programming
• Genetic algorithms
• Mathematical programming, e.g. mixed-integer linear programming

(MILP) Software: Cplex
• Reachability algorithms for models given as timed automata (TA)

Software: Kronos, IF, Uppaal, etc.

Scheduling 7

Methods to Schedule Operations

• Constraint programming
• Genetic algorithms
• Mathematical programming, e.g. mixed-integer linear programming

(MILP) Software: Cplex
• Reachability algorithms for models given as timed automata (TA)

Software: Kronos, IF, Uppaal, etc.

Optimization of timed automata: combination of MILP and TA

Scheduling 8

Methods to Schedule Operations

• Optimization of timed automata
– Combination of MILP and TA
– Reduction of the scheduling complexity by:

• The embedded MILP is updated iteratively
• Extends the notion of non-lazy execution

– Software TAopt

Timed Automata 9

Timed Automata

• Job-shop Scheduling modeled by TA (makespan minimization)
– Job automata

• nodes/locations for each operation
• operation j is waiting for the resource (=oj) or occupying it (=ōj)
• Final location for job i (=fi)
• Clocks ci monitor time to occupy a resource
• Transitions starting an operation and finishing it (labeled with α and Φ)

Timed Automata 10

Timed Automata

• Job Scheduling modeled by TA
– Resource automatas to enable mutual exclusion

• For each resource
• Locations: idle and busy
• Synchronisations with labels α and Φ

Timed Automata 11

• TA is defined as a tuple (L, l0, E, inv)
– L: finite set of locations (including initial location l0)
– Inv: L B(C) “Invariants”
– E ⊆ L x B(C) x Act x P(C) x L “Transitions”

• B(C): constraints formulated for a set C of clocks
• Act: set of actions/labels (ai)
• P(C): set of reset assignments

• The semantics of a timed automaton are defined as a labeled
transition system (Q,(l0,u0),Δ) consists of the state space Q with
pairs (l,u) and a transition relation Δ

• A trace of an automaton = sequence of states and transitions

Timed Automata

Timed Automata 12

• Reachability Analysis
– Tree encodes reachable states symbolically as pairs (l,Z)

with location l and set Z of clock valuation in l
– Determine logic properties of TA by exploring reachability

tree
– Extension including cost

• find path which minimizes cost
• Software tools: Uppaal CORA, IF, TAopt

Timed Automata

Algorithm of the Optimized Timed Automata 13

d=3

c

≥b

2

1
Algorithm of the Optimized Timed Automata

I. Solve relaxed MILP model M with starting node and return b, x
II. Calculates priority p for a node with (b, c, d, x)

• b = lower bound
• c = cost
• d = depth of current node
• x = values of the relaxed decision variables

III. Waiting list W consists of starting node (l, u, b, c, d, p) = (l0, 0, b0, c0, 0, p0)

Now repeat until search tree exploration has been finished and W is empty:
1. Select node from W after chosen heuristic rule and add it to the path P
2. From selected node determine all possible successors S in the TA model A
3. Drop successors with “laziness”
4. Drop already visited nodes

Now repeat with the remaining nodes in S until every node has been explored
(determine new upper bound c* when arriving the target location l*)
a. Update the model M (past nodes and transitions are fixed now)
b. Solve relaxed MILP with the updated model (b’, x’)
c. Calculate priority p’ of node (b’, c’, d’, x’)
d. Add node (l’, u’, b’, c’, d’, p’) to the list W and take next node of S

5. S is empty

Mixed-Integer Linear Programming 14

Algebraic Mixed-Integer Linear Programming Formulation

• Formulation
– binary variables: sequences of operations on the same resource

(with p(o,o’)=1 if operation o should be started first, 0 otherwise)
– Continuous variables: starting dates of operations, duration of

the operations, time horizon H
– Equations for execution order, mutual exclusion, time horizon
– Inequalities for all operations to minimize problem (makespan)

Example:

Time horizon: H=100
Execution order: s(o1)+2 ≤ s(o2)
Mutual exclusion: p(o1,o3) + p(o3, o1) =1
Makespan: min Ψ with
s(ō2) + d(ō2) ≥ Ψ, s(ō3)+d(ō2) ≥ Ψ‘

Mixed-Integer Linear Programming 15

Algebraic Mixed-Integer Linear Programming Formulation

• Result of solved MILP model with current state:
– Solution vector x of relaxed decision variables
– Lower bound to prune reachability tree

Mixed-Integer Linear Programming 16

Timed Automata with embedded LP

• Structure of the implementation

Search Heuristics 17

Search Heuristics

• Selection criteria for next node
• Based on node attributes (b, c, d, p)
• Influence the search tree exploration towards the optimum
• Determine the performance of finding the optimum
• Combination of selection criteria often useful

Select node with
highest priority p
(evaluation of LP-
solution vector x)

Select on
random
distributed
priorities p

Select node
with lowest
bound b

Select node with
minimal cost c

Select node with
maximal/minimal
depth d

Compute PriorityRandom
Search

Best-Lower-
Bound
Search

Min-Cost Search
(Best-First
Search)

Depth-First Search
or Breadth-First
Search

Search Heuristics 18

Search Heuristics

• Selection criteria for next node
• Based on node attributes (b, c, d, p)
• Influence the search tree exploration towards the optimum
• Determine the performance of finding the optimum
• Combination of selection criteria often useful

Select node with
highest priority p
(evaluation of LP-
solution vector x)

Select on
random
distributed
priorities p

Select node
with lowest
bound b

Select node with
minimal cost c

Select node with
maximal/minimal
depth d

Compute PriorityRandom
Search

Best-Lower-
Bound
Search

Min-Cost Search
(Best-First
Search)

Depth-First Search
or Breadth-First
Search

Search Heuristics Example 19

Search Heuristics Example (1)

• Best-lower-bound heuristics to find optimal path from o1o3 to f1f2

Search Heuristics Example 20

Search Heuristics Example (2)

• Nodes are represented by location of both job automata l1 and l2,
accumulated cost c and lower bound: (l1, l2, c, b)

Reduction of the Search Tree 21

Reduction of the Search Tree

• Properties of traces:
– Immediate

• Traces do not exhibit periods of useless waiting (no task is started although
resources available)

• Optimal trace always immediate in the case of makespan and tardiness
minimization

• For general cost functions waiting before/after operations can be
advantageous

– Weak non-lazy
• Stricter criterion than immediate
• Time gaps/holes which are large enough to be filled with an enabled operation

are forbidden

Reduction of the Search Tree 22

Reduction of the Search Tree

• Properties of traces:
– Strong non-lazy / greedy strategy

• Even more restrictive: whenever list of successor states is not empty, waiting is
forbidden in the current state (l,u)

• If no new operations can be started
• Not always optimal (see figure: left strongly non-lazy, right weakly non-lazy)

Experiments 23

Experiments (1)

• Two kind of test series:

– Series A:
• randomly small instance with no. of operation = no. of resources for each job
• Duration of operation uniformly distributed over {1, 2, …,6}
• Operations randomly assigned to the resources for each job

– Series B:
• Set of job-shop benchmark instances

Experiments 24

Experiments (2)

• Software used:

– TAopt (with Cplex to solve the embedded LP problem)
• cost-optimal reachability algorithm for TA employing branch-and-bound
• computation of lower bounds from embedded LP problems
• various node selection criteria (like Depth-First Search etc.)
• weak and strong non-laziness

– Cplex (pure MILP solving)

– Kronos (pure TA without lower costs)

Results 25

Results with series A (1)

• Number of explored nodes for
– different no. of jobs and

resources
– Different search tree

reduction techniques
• branch-and-bound techniques

with embedded LP
• weak or strong non-laziness

bb = Branch and bound
wnl = weak-non-laziness
snl = strong non-laziness

Results 26

Results with series A (2)

• Heuristics
– min c is bad choice
– Combined criteria

are preferable, in
particular the
combination of min
b & max d

Search strategies:
(c=cost, b=lower bound,
c=upper bound, d=depth)
(a) = min c
(b) = max d
(c) = max d, min c
(d) = max d, min b
(e) = max d, min c
(f) = min b
(g) = min b, min c
(h) = min b, max d
(i) = min b, max d, min c

Results 27

Results with series A (2)

• Heuristics
– min c is bad choice
– Combined criteria

are preferable, in
particular the
combination of min
b & max d

Search strategies:
(c=cost, b=lower bound,
c=upper bound, d=depth)
(a) = min c
(b) = max d
(c) = max d, min c
(d) = max d, min b
(e) = max d, min c
(f) = min b
(g) = min b, min c
(h) = min b, max d
(i) = min b, max d, min c

Results 28

Results with series B

• Comparison of software in finding the optimum within 1 hour
computation time
– Cplex: the best for small instances
– TAopt: the best for big instances
– Kronos: no solution for small instances, half of the time better

solutions than TAopt

• Comparison of upper bounds using TAopt and Cplex
– TAopt: slightly more time to find a first feasible solution than

Cplex
– TAopt: significantly lower upper bounds

Evaluation 29

Evaluation

• Extension to more general scheduling problems possible:
– Alternative production paths
– Parallel production paths
– Timing constraints
– Changeover procedures
– Restricted working times
– Size of material stocks
– Consumption of material and production of another material

Summary 30

Summary

• Recent approach of combining reachability analysis of TAs with
branch-and-bound principle and non-lazy traces

• Results of TA for several samples even better than pure MILP

• Problem formulation for TA-based methods more intuitive

• Benefits of minimizing search larger than the increase of additional
computation time per node

• Smaller memory consumption through pruning

References 31

References

• S. Panek, S. Engell, and O. Stursberg. Scheduling and Planning with Timed Automata. In
16th Europ. Symp. on Computer-Aided Process Engineering, pages 1973-1978, 2006

• S. Panek, O. Stursberg, and S. Engell. Efficient Synthesis of Production Schedules by
Optimization of Timed Automata. Control Engineering Practice, 14(10):1183-1197, 2006

• S. Panek, O. Stursberg, and S. Engell. Optimization of Timed Automata Models using Mixed-
Integer Programming. In Formal Modeling And Analysis of Timed Systems, volume 2791 of
LNCS, pages 73-87. Springer, 2004.

• S. Panek, O. Stursberg, and S. Engell. Job-Shop Scheduling by Combining Reachability
Analysis with Linear Programming. In 7th Int. IFAC Workshop on Discrete Event Systems,
page 199-204, 2004

• J. Kallrath. Combined strategic and operational planning – an MILP success story in chem.
Ind.. OR Spectrum 24, pages 315-241, 2002

• Y. Abdeddaim and O. Maler. Job-shop scheduling using timed automata in Computer Aided
Verification (CAV). volume 2102 of LNCS, pages 478-492, Springer , 2001

• E. Kondili, C. Pantelides, and R. Sargent. A general algorithm for short-term sched. of batch
operations – MILP formulation. Comp. Chem. Eng. 17, pages 211-227, 1993

