Efficient Synthesis of Production Schedules by Optimization of Timed Automata

Inga Krause

Institute of Automatic Control Engineering Technische Universität München

inga.krause@mytum.de

Content

- Motivation
- Scheduling
- Timed Automata
- Mixed Integer Linear Programming
- Algorithm of the Optimized Timed Automata
- Search Heuristics & Reduction of the Search Tree
- Experiments & Results
- Evaluation & Summary

Motivation

- Production can follow different paths
 → Efficient operations in manufacturing or processing systems
- Allocation of resources to production steps (operations)
 → Profit is maximized / costs minimized
 (in the following algorithm: minimizing the makespan)
- Conflicts arising from exclusive resource usage
- Application domains: telecommunications systems, real-time operation systems, robot assembly, chemical industry ...

Job-shop Scheduling

- Scheduling
 - Set of operations "O", resources "R" and jobs "J"
 - A mapping for the duration of each operation & the assignment of operations to jobs
 - A schedule which assigns a start time to each operation
- Job-shop scheduling as a limitation of scheduling
 - Covering and Non-Preemption
 - Mutual exclusion
 - Operations ordered within a job
- Limitation because efficient algorithms for medium- to large-size problems still do not exist

 \rightarrow But solution very challenging & extendable for other classes

- Constraint programming
- Genetic algorithms
- Mathematical programming, e.g. mixed-integer linear programming (MILP) → Software: Cplex
- Reachability algorithms for models given as timed automata (TA)
 →Software: Kronos, IF, Uppaal, etc.

- Constraint programming
- Genetic algorithms
- Mathematical programming, e.g. mixed-integer linear programming (MILP) → Software: Cplex
- Reachability algorithms for models given as timed automata (TA)
 →Software: Kronos, IF, Uppaal, etc.

6

- Constraint programming
- Genetic algorithms
- Mathematical programming, e.g. mixed-integer linear programming (MILP) → Software: Cplex
- Reachability algorithms for models given as timed automata (TA)
 →Software: Kronos, IF, Uppaal, etc.

Optimization of timed automata: combination of MILP and TA

- Optimization of timed automata
 - Combination of MILP and TA
 - Reduction of the scheduling complexity by:
 - The embedded MILP is updated iteratively
 - Extends the notion of non-lazy execution
 - Software TAopt

- Job-shop Scheduling modeled by TA (makespan minimization)
 - Job automata
 - nodes/locations for each operation
 - operation j is waiting for the resource $(=o_i)$ or occupying it $(=\bar{o}_i)$
 - Final location for job i (=f_i)
 - Clocks c_i monitor time to occupy a resource
 - Transitions starting an operation and finishing it (labeled with α and Φ)

- Job Scheduling modeled by TA
 - Resource automatas to enable mutual exclusion
 - For each resource
 - Locations: idle and busy
 - Synchronisations with labels α and Φ

- TA is defined as a tuple (L, I_0 , E, inv)
 - L: finite set of locations (including initial location I_0)
 - − Inv: $L \rightarrow B(C)$ "Invariants"
 - $E \subseteq L \times B(C) \times Act \times P(C) \times L$ "Transitions"
 - B(C): constraints formulated for a set C of clocks
 - Act: set of actions/labels (a_i)
 - P(C): set of reset assignments

- The semantics of a timed automaton are defined as a labeled transition system (Q,(I₀,u₀),Δ) consists of the state space Q with pairs (I,u) and a transition relation Δ
- A trace of an automaton = sequence of states and transitions

$$\rho = (l_0, u_0) \xrightarrow{a_1} (l_1, u_1) \xrightarrow{a_2} \dots$$

11

- Reachability Analysis
 - Tree encodes reachable states symbolically as pairs (I,Z) with location I and set Z of clock valuation in I
 - Determine logic properties of TA by exploring reachability tree
 - Extension including cost
 - find path which minimizes cost
 - Software tools: Uppaal CORA, IF, TAopt

Algorithm of the Optimized Timed Automata

d=3

- I. Solve relaxed MILP model M with starting node and return b, x
- II. Calculates priority p for a node with (b, c, d, x)
 - b = lower bound
 - c = cost
 - d = depth of current node
 - x = values of the relaxed decision variables
- III. Waiting list W consists of starting node (I, u, b, c, d, p) = (I₀, 0, b₀, c₀, 0, p₀)

Now repeat until search tree exploration has been finished and W is empty:

- 1. Select node from W after chosen heuristic rule and add it to the path P ←
- 2. From selected node determine all possible successors S in the TA model A
- 3. Drop successors with "laziness"
- 4. Drop already visited nodes

Now repeat with the remaining nodes in S until every node has been explored (determine new upper bound c* when arriving the target location I*)

- a. Update the model M (past nodes and transitions are fixed now) +
- b. Solve relaxed MILP with the updated model (\rightarrow b', x')
- c. Calculate priority p' of node (b', c', d', x')
- d. Add node (I', u', b', c', d', p') to the list W and take next node of S

5. S is empty –

13

≥h

Algebraic Mixed-Integer Linear Programming Formulation

- Formulation
 - binary variables: sequences of operations on the same resource (with p(o,o')=1 if operation o should be started first, 0 otherwise)
 - Continuous variables: starting dates of operations, duration of the operations, time horizon H
 - Equations for execution order, mutual exclusion, time horizon
 - Inequalities for all operations to minimize problem (makespan)

Algebraic Mixed-Integer Linear Programming Formulation

- Result of solved MILP model with current state:
 - Solution vector x of relaxed decision variables
 - Lower bound to prune reachability tree

Timed Automata with embedded LP

• Structure of the implementation

Mixed-Integer Linear Programming

Search Heuristics

- Selection criteria for next node
- Based on node attributes (b, c, d, p)
- Influence the search tree exploration towards the optimum
- Determine the performance of finding the optimum
- Combination of selection criteria often useful

Depth-First Search or Breadth-First Search	Min-Cost Search (Best-First Search)	Best-Lower- Bound Search	Random Search	Compute Priority
Select node with maximal/minimal depth d	Select node with minimal cost c	Select node with lowest bound b	Select on random distributed priorities p	Select node with highest priority p (evaluation of LP- solution vector x)

Search Heuristics

- Selection criteria for next node
- Based on node attributes (b, c, d, p)
- Influence the search tree exploration towards the optimum
- Determine the performance of finding the optimum
- Combination of selection criteria often useful

Depth-First Search or Breadth-First Search	Min-Cost Search (Best-First Search)	Best-Lower- Bound Search	Random Search	Compute Priority
Select node with maximal/minimal depth d	Select node with minimal cost c	Select node with lowest bound b	Select on random distributed priorities p	Select node with highest priority p (evaluation of LP- solution vector x)

Search Heuristics Example (1)

• Best-lower-bound heuristics to find optimal path from $o_1 o_3$ to $f_1 f_2$

 r_2

Ø

19

 ϕ_3

 r_1

Search Heuristics Example (2)

 Nodes are represented by location of both job automata I₁ and I₂, accumulated cost c and lower bound: (I₁, I₂, c, b)

Reduction of the Search Tree

- Properties of traces:
 - Immediate
 - Traces do not exhibit periods of useless waiting (no task is started although resources available)
 - Optimal trace always immediate in the case of makespan and tardiness minimization
 - For general cost functions waiting before/after operations can be advantageous

- Weak non-lazy
 - Stricter criterion than immediate
 - Time gaps/holes which are large enough to be filled with an enabled operation are forbidden

Reduction of the Search Tree

- Properties of traces:
 - Strong non-lazy / greedy strategy
 - Even more restrictive: whenever list of successor states is not empty, waiting is forbidden in the current state (I,u)
 - If no new operations can be started
 - Not always optimal (see figure: left strongly non-lazy, right weakly non-lazy)

Reduction of the Search Tree

Experiments (1)

- Two kind of test series:
 - Series A:
 - randomly small instance with no. of operation = no. of resources for each job
 - Duration of operation uniformly distributed over {1, 2, ...,6}
 - Operations randomly assigned to the resources for each job
 - Series B:
 - Set of job-shop benchmark instances

Experiments (2)

- Software used:
 - TAopt (with Cplex to solve the embedded LP problem)
 - cost-optimal reachability algorithm for TA employing branch-and-bound
 - computation of lower bounds from embedded LP problems
 - various node selection criteria (like Depth-First Search etc.)
 - weak and strong non-laziness
 - Cplex (pure MILP solving)
 - Kronos (pure TA without lower costs)

Results with series A (1)

Number of explored nodes for
 different no. of jobs and
resources
 Different search tree
reduction techniques
 branch-and-bound techniques with embedded LP
 weak or strong non-laziness
bb = Branch and bound
wnl = weak-non-laziness
snl = strong non-laziness

Т

$\mathrm{Jobs}/$				
Res	pure	bb	wnl	snl
2/2	31	12	27	25
3/2	214	87	218	95
4/2	1074	189	641	233
5/2	6343	2367	3155	1042
6/2	37553	15949	46943	5803
2/3	62	19	38	21
3/3	741	142	284	73
4/3	7445	1631	1165	366
5/3	87365	13843	34772	3392
6/3	549324	65934	316120	1182
2/4	126	26	72	39
3/4	2631	582	722	103^{*}
4/4	35172	4677	5189	641
5/4	451290	28394	50163	3004
6/4	5253234	1032669	738293	9503^{*}

25

Results

Results with series A (2)

 Heuristics 										
 min c is bad choice 	Jobs/Res	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)
	2/2	21	12	12	12	12	12	12	12	12
 Combined criteria 	3/2	96	42	42	42	42	58	83	42	42
are preferable, in particular the	4/2	211	89	89	53	53	61	98	40	40
combination of min	5/2	843	415	415	386	386	422	519	378	378
b & max d	6/2	4810	2562	2562	1058	1058	1202	1983	1061	1047
	2/3	19	19	19	19	19	19	19	19	19
Search strategies:	3/3	54	58	58	58	58	47	47	47	47
(c=cost, b=lower bound,	4/3	282	143	143	114	114	147	158	114	114
c=upper bound, d=depth) (a) = min c	5/3	2417	831	831	648	648	1038	1177	508	508
(b) = max d	6/3	12640	1906	1906	1851	1851	2677	3511	2118	2070
(c) = max d, min c	2/4	27	27	27	27	27	27	27	27	27
 (d) = max d, min b (e) = max d, min c 	3/4	75	75	75	42	42	42	42	42	42
(f) = min b	4/4	410	232	232	99	99	151	168	99	99
(g) = min b, min c	5/4	1628	638	638	446	446	493	721	434	434
 (h) = min b, max d (i) = min b, max d, min c 	6/4	6379	4045	4045	3919	3919	4079	6051	3817	3794

Results

Results with series A (2)

 Heuristics 										
 min c is bad choice 	$\rm Jobs/Res$	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)
	2/2	21	12	12	12	12	12	12	12	12
 Combined criteria Combined criteria 	3/2	96	42	42	42	42	58	83	42	42
are preferable, in particular the	4/2	211	89	89	53	53	61	98	40	40
combination of min	5/2	843	415	415	386	386	422	519	378	378
b & max d	6/2	4810	2562	2562	1058	1058	1202	1983	1061	1047
	2/3	19	19	19	19	19	19	19	19	19
Search strategies:	3/3	54	58	58	58	58	47	47	47	47
(c=cost, b=lower bound,	4/3	282	143	143	114	114	147	158	114	114
c=upper bound, d=depth) (a) = min c	5/3	2417	831	831	648	648	1038	1177	508	508
(b) = max d	6/3	12640	1906	1906	1851	1851	2677	3511	2118	2070
(c) = max d, min c	2/4	27	27	27	27	27	27	27	27	27
 (d) = max d, min b (e) = max d, min c 	3/4	75	75	75	42	42	42	42	42	42
(f) = min b	4/4	410	232	232	99	99	151	168	99	99
(g) = min b, min c	5/4	1628	638	638	446	446	493	721	434	434
 (h) = min b, max d (i) = min b, max d, min c 	6/4	6379	4045	4045	3919	3919	4079	6051	3817	3794

Results

27

Results with series B

- Comparison of software in finding the optimum within 1 hour computation time
 - Cplex: the best for small instances
 - TAopt: the best for big instances
 - Kronos: no solution for small instances, half of the time better solutions than TAopt
- Comparison of upper bounds using TAopt and Cplex
 - TAopt: slightly more time to find a first feasible solution than Cplex
 - TAopt: significantly lower upper bounds

Evaluation

- Extension to more general scheduling problems possible:
 - Alternative production paths
 - Parallel production paths
 - Timing constraints
 - Changeover procedures
 - Restricted working times
 - Size of material stocks
 - Consumption of material and production of another material

Summary

- Recent approach of combining reachability analysis of TAs with branch-and-bound principle and non-lazy traces
- Results of TA for several samples even better than pure MILP
- Problem formulation for TA-based methods more intuitive
- Benefits of minimizing search larger than the increase of additional computation time per node
- Smaller memory consumption through pruning

References

- S. Panek, S. Engell, and O. Stursberg. Scheduling and Planning with Timed Automata. In *16th Europ. Symp. on Computer-Aided Process Engineering*, pages 1973-1978, 2006
- S. Panek, O. Stursberg, and S. Engell. Efficient Synthesis of Production Schedules by Optimization of Timed Automata. *Control Engineering Practice*, 14(10):1183-1197, 2006
- S. Panek, O. Stursberg, and S. Engell. Optimization of Timed Automata Models using Mixed-Integer Programming. In *Formal Modeling And Analysis of Timed Systems*, volume 2791 of LNCS, pages 73-87. Springer, 2004.
- S. Panek, O. Stursberg, and S. Engell. Job-Shop Scheduling by Combining Reachability Analysis with Linear Programming. In *7th Int. IFAC Workshop on Discrete Event Systems*, page 199-204, 2004
- J. Kallrath. Combined strategic and operational planning an MILP success story in chem. Ind.. OR Spectrum 24, pages 315-241, 2002
- Y. Abdeddaim and O. Maler. Job-shop scheduling using timed automata in *Computer Aided Verification (CAV)*. volume 2102 of LNCS, pages 478-492, Springer , 2001
- E. Kondili, C. Pantelides, and R. Sargent. A general algorithm for short-term sched. of batch operations MILP formulation. *Comp. Chem. Eng.* 17, pages 211-227, 1993

