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Introduction

« With the rapid development of artificial intelligence
autonomous robots, sensors, automatic control, and
computer vision systems, multi-robot systems have been
widely applied to various real-world applications such as
search and rescue, surveillance, collaborative exploration,
and exploration of large and unmapped areas.




Motivation
* The first robot rover exploration of Mars was in 1997. A rover, named Sojourner send

and receive information to the earth over the lander.

» Certain metallic or rocky structures and ground reflections near the antenna will
distort its radiation pattern and cause holes or null zones to form.

* This may caused poor signal reception
* The other problem is that the rover can

only send and receive information in
10m range.

/=

= praigeligida { ) OV ED [ ATTE




Motivation

* A solution could be to send with a higher signal power to have a longer

radio link.

* But power on mars is luxury!!! Otherwise, the problem of reflexions in not

longer solve.

* We can use a multi rover system!!! If we use more rovers, it is possible to
greatly enhance the strength of the signal transmitted in a given direction.
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When it's time to communicate with the lander, the rovers arrange themselves in
a suitable formation to become an antenna array in order to optimize the signal
strength.

The questions, we can are now :

- How can we get a group of robot rovers, placed initially at random, to form a
circle or other shape?

- When is the convergence to a general geometric pattern reachable?




Cyclic pursuit / agreement problem

We consider n > 1 robots with the kinematic model: Z.= u..

Whereby the robots can be model as points in the complex plane: Z,,...,Z, € C.
Let robot i be able to measure the position of robot i+1 (mod n).

Then the output of our system is: 2

yi:Zi+1'Zi,i:1,...,n'l /
Yn=121"2p. 1

The centroid of the (z,,...z,) is defined as:

Ly = (%)Zzi
i=1
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Cyclic pursuit / agreement problem

« The control law is to steer over toward the next robot (closed loop controller):

2

Zi=U;, 1=1..n
U =Ry F=1 1/
Then follows : z; = z;,; — z; 3
E.g.. for n=4

(1, =1,-17 -1 1 0 0] 4
<Z:2:Z3_22 Z=Mz,with M = ool 10

I3 =1, — 14 0O 0-1 1

2,=2,-24 1 0 0 -1
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Cyclic pursuit / agreement problem

The Matrix M has one Eigenvalue at the origin since the row sum of M is 0.
All the other Eigenvalues of M have negativ real parts.

Then it follows that for all initial locations of the agents, the centroid of the points
is stationary and every z, converge to this centroid. (agreement problem).

We can achieve convergence to a point.




Cyclic pursuit / agreement problem
*The following simulations illustrate the behavior for 4 robots:
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Cyclic pursuit / achievable formations

* Now instead of converge to a point, we can get three robots to form a triangle or

more generally for a group of robot to achieve a general pattern, by a distributed

stategy. °E>-— —
1
‘-.
T /\
2 i
c .
3.

 Our control law is modified with the virtual displacement c, then follow:

Zi =(Zi+1+Ci)—Zi, i:l,...,n—l,

Z,=2,+C,—1Z,
Z=Mz+cC
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Cyclic pursuit / achievable formations

* Let us assume that, d is the unique vector satisfying: Md +c =0.

Then follow with 7 =Mz +C: 7=M(z-d)

* We have reduced our problem to the previous case and can then formulate the
following theorem:

Theorem:

Concerning the previous system, assume the centroid of the points c,,...,c,, is at the
origin. Let d denote the unique vector satisfying Md + ¢ = 0, Then for every initial
positions of the robots, the centroid of the points z,,...z, is stationary and robot i
converges to this centroid displaced by d..
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Cyclic pursuit / results

* The next simulation shows, how to achieve an equilateral triangle
formation for six mobile agents with the virtual displacement c.

c=(—5+ iv/3,-5+ j4/3,10,10,—5— j4/3,-5— jﬁ)
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Cyclic pursuit / Collision avoiding

* Let us now consider the collision problem. Consider the n distinct points z,, . . . ,z, of

the previous example, not all colinear. Let z, be their centroid and r; be the distance
between z and the centroid.

Definition: n points are said to be arranged in a
counterclockwise star formation

ifr>0anda >0foralli=1,...,nand > o =2
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Cyclic pursuit / Collision avoiding

Theorem : Suppose n > 2 distinct points initially are arranged in a counterclockwise
star formation. Under cyclic pursuit they remain in a counterclockwise star formation.
(In particular, they never collide).
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Cyclic pursuit / Demo

« The following video shows a realization of alignment using cyclic pursuit. For robot start
randomly placed in a room und and self organise at constant speed,without supervisor

intenvention, into polygon formation. Finally, a supervisor takes control of one of the robots
(using a joystick) and leads the other through a door in the room.

'I'I.m *http//www.control.utoronto.ca 16




Stabilization to a point / Unicycle

* The robots, we have considered until now were point-mass robots and were not
really realistic sence the robots could move in all the directions (which is not really
possible for real wheeled robots for example).

» The unicycle model consider this specificity and provide us a model that take in

count this limitation.
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Stabilization to a point / Unicycle - Model description

* For this task, let us consider the n wheeled vehicles with coordinates (x,y,,8,), i=1,...,n.

The location of the vehicle in the plane is z, = [x; y]' and each vehicle has limited field

of view.
Each vehicle is described by: y N e
( f’f{:?g /{f;‘r
. Y, Wiy 2,
X; =V; c0s(&;) Gyl . ‘zxi____l,ﬁ'___lj___
ly, =v;sin(@) or ' ! ‘x;;_,{;f’
Lel = a)l ) e . -

(where v, is the velocity of the vehicle).
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Stabilization to a point / Unicycle - Model description

We construct a moving framelZ , the Frenet-Serret frame, that is fixed on the
vehicle.

« Letr, be the unit vector tangent to the trajectory at the current location of the
vehicle and let s, be r. rotated by 7/ 2.

+ Thus,Z; = V.I;, since the vehicle is moving at the speed v,
« Since vehicle i can only get the
relative positions of a subgroup
N, of vehicles with respect to its own
Frenet-Serret frame:

y

Xim :(Zm_zi)'ri

Yim = (Zm _zi)°Si

meN.
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Stabilization to a point / Local information controller- Problem Statement

* | et us now define a local information controller:

A controller (v,,w;), i=1,...,n, is said to be a local information controller if:

{Vi = 0i (t, Xjm, Yim) Im € N;j
w; = hj (t, Xim, Yim) Im e Nj’

where gj is such that {(Yme N;) z, =z }= {vj =0}
* Now we come to our main task, namly to find if possible a local information controller
such that for all (Xi (to), Y, (to)ﬂi (to))e R® ,1=1,...,nand for all

(Fzgs € R?) (Vi) lim zj(t) = 2.
t—o0

* The directed graph defined by the information flow plays a key role. We need a review

of some basic notions in graph theory.
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Background about graph theory
* A graph G = (V,E) is defined to be a pair of sets V and E.
V is the set of a limited number of nodes and E is the set of arcs.
» There are two important types of graphs: the directed

graph(digraph) and the indirected graph.

1 1
o 2 2
<\’ .\.
@) @
3 3
Directed graph Indirected graph
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Background about graph theory

Several matrix can be associated with a directed graph:

 The adjacency matrix A = (a;): If there is an arc from node i to node j then
the entry a; equals 1, otherwise 0.

* The degree matrix D = (d;) is defined to be a nxn diagonal matrix where the
diagonal entry d. is the out-degree of node i.

« Finally the graph Laplacian is the matrix defined as L=D-A.

E.g.
1 0 1 0] 1 0 0
o o 2 A=|1 1| D=[0 2
1 0 0] |0 1]
' 1-1 0
o L=D-A=-1 2 -1
3 -1 0 1
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Background about graph theory

« [f there is a path in G from one node i to another node j, then j is said to be
reachable from i written. If not,j is said to be not reachable from i.

« If a node is reachable from every other node in G, then we say it is globally
reachable. 2

- E.g.

5

« a sensor digraph (directed graph) models the information flow, where a link
from node i to node j indicates that vehicle i can sense the position of vehicle j.
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Stabilization to a point / Unicycle

* Now we come back to the unicycle.

» The information flow is central since the vehicle are coupled through the sensor

information flow.

* we assume the information flow to be static.

* |t can be proven that, the problem of convergence can be solved if and only if the
graph has a globally reachable node. An algebraic characterization of this
property, is that, the Laplacian L of the graph has a simple eigenvalue 0.

» The information flow produce a kind of symmetry in the system equations with respect
to the x and y coordinates.

» Moreover, we can find a local controller, so that the convergence is achieved.
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Stabilization to a point / Unicycle
* The idea is that each robot each permanently turn around his own center self and at
the same time to follow the centroid of his Neighbor like in cycle pursuit.

» we then use the following control law:

Vi (t) = k inm k>0 F’ F’

S mENi

wj () = cos(t)

 Using this controller, we can prove that, the convergence to a point can be achieved.
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Stabilization to a point / Unicycle

The following simulation shows the convergence to a point:
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Summary and perspectives
» The feasibility of formation for cyclic pursuit and for the more realistic case namly
unicycle were studied.
* Note that convergence to a more general geometric pattern can also be achieve and a

control law can be found.
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* The idea like by the convergence to a point.

example of cycle formation: I
20F
0.
* For further information see refences 20

Aot

B0 F

-BOF

g
00 80 -60 40 20 O 20 40 60 80 100

Tm .




References

[1] Zhiyun Lin, Mireille Broucke, and Bruce Francis, “Local Control Strategies for
Groups of Mobile Autonomous Agents” IEEE TRANSACTIONS ON AUTOMATIC
CONTROL, VOL. 49, NO. 4, APRIL 2004.

[2] Zhiyun Lin, Bruce Francis, and Manfredi Maggiore, “Necessary and Sufficient
Graphical Conditions for Formation Control of Unicycles” IEEE TRANSACTIONS
ON AUTOMATIC CONTROL, VOL. 50, NO. 1, JANUARY 2005.

3] Johannes Dold, “DIGITAL CONTROL OF MOBILE ROBOTS IN FORMATION?,
Diplom Thesis January 3, 2008

4] Bruce Francis, Distributed Control of Autonomous Mobile

Robots", ECE1635 Course Notes, Version 1.4, September 2007

5] http//www.control.utoronto.ca

Tm .



