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11  INTRODUCTION 

1 Introduction 

With the rapid development of artificial intelligence, autonomous robots, sensors, 
automatic control, and computer vision systems, multi-robot systems have been widely 
applied to various real-world applications such as search and rescue, surveillance, 
collaborative exploration, and exploration of large and unmapped areas. One of the most 
important aspects, which have been search, is the formation control in multi-robots 
systems. The research in this area was inspired by biological phenomena like flocks of 
birds in flight. A very famous model, the so-called boids was developed by Reynolds, 
where each bird has his how strategy of movement and only local information available. 
However a collective behaviour is obtained. This strategy has three components: 
separation, steer to avoid crowding; alignment, steer toward the average heading of 
neighbors; cohesion, steer toward the average position of neighbors. Using these 
biological phenomena, we can use them to control real technical systems, in order to 
achieve formation in multi-robot systems. In this report, we will study the agreement or 
rendezvous problem. The main goal is to find a control law such that all robots converge 
to a common position by using only local sensor information. In the first part, we will 
introduce the formation in cyclic pursuit for the fully actuated point of mass model und 
especially stabilization to a point, then the stabilization to more general geometric 
pattern. Then we will show conditions under which we can avoid collisions in this 
system. In the second more realistic case, we will study the formation for unicycle and 
local information controller with which we can achieve convergence. 

2 Formations in cyclic pursuit. 

2.1 Model Description 

We considered n numbered robots modelled as points in complex plane: z1,…,zn with the 
kinematic model: 
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4  FORMATIONS IN CYCLIC PURSUIT. 

We assume that the robots are fully actuated that mean they can move in all directions. 
But this is a restriction to the reality since “real” robots can not move in all directions. 

Let us now assume that robot I is able to measure the position of robot i+1. We then get 
the following equations for the output of the system: 

 

For this system, we define the centroid of the points z1,…,zn  as the point z0 with: 

 

The control law is steer over toward the next robot (closed loop controller). Figure (2.1) 
shows the case n=4.  

 
Figure 2.1: Cyclic Pursuit 
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11  FORMATIONS IN CYCLIC PURSUIT. 

 

That mean:  

 

 

2.2 Stabilization to a point 

For the previous model, we assume that the matrix M has almost one eigenvalue at the 
origin since the rows sum of M is zero.  

The other eigenvalues of M have negativ real parts. 

Then it follows that for initial locations of the agents, the centroid of the point is 
stationary and every zi converge to this centroid (agreement problem).  

That mean we achieve convergence of all the robots to a point. 
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6  FORMATIONS IN CYCLIC PURSUIT. 

The following simulation shows the behaviour of four robots: 

 

 

2.3 Stabilization to general geometric pattern 

In the last paragraph, we considered that each robot pursues the next robot position and 
we achieve convergence to a point. In this case the points converge to a common 
location, namely to a point.  

In this following paragraph, we considerer that each robot pursuit the position of the 
next position, displaced by a certain vector. 

 

 

 
 

Figure 2.2: Convergence in a four robot system 
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11  FORMATIONS IN CYCLIC PURSUIT. 

 
Let us assume that, d is the unique vector satisfying: Md + c = 0. Then it follows that: 
 
 

We have reduced our problem to the convergence to a point and we can formulate the 
following theorem: 

 

Concerning the previous system, assume the centroid of the points c1,…,cn is at the  

 origin. Let d denote the unique vector satisfying Md + c = 0. Then for every n initial     

 positions of the robots, the centroid of the points z1,…,zn is stationary and robot i  

 converges to this centroid displaced by di.  

The following simulation shows an example of convergence to a triangle for 6 robots: 

 

 

 
 

 
(2.6) 

Figure 2.3: Convergence of a 6 robot-system to a triangle 
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8  FORMATIONS IN CYCLIC PURSUIT. 

2.4 Collision avoiding 

In the last part, we study convergence to a general geometric pattern, but was is with 
collision? We didn’t make sure that the robots do not collide during the formation. 
Before we take this in consideration, let us define a counter clockwise star formation.  

2.4.1 Definition 
N point are said to be arranged in a counter clockwise star formation 

if ri > 0 and αi > 0 for all i = 1, . . . ,n and                    

 
Now let us come back to collision avoidance. In [1], the following theorem is formulated 
as a necessary condition for collision avoidance: 

2.4.2 Theorem 
Suppose n > 2 distinct points initially are arranged in a counter clockwise 

 

 
 
 
Figure 2.4: Points in counter clockwise star formation 
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11  FORMATIONS IN UNICYCLE 

star formation. Under cyclic pursuit they remain in a counter clockwise star formation.  

(In particular, they never collide).  

 

We have now proved that we can achieve converge to general geometric pattern with a 
cinematic point model of the robots; we can also avoid collisions. But in this case we 
assume that we have fully actuated robots; that mean the robots can move in all 
directions. This case is not really realistic, since real robots can not move in all direction. 
For this reason, we introduce the unicycle model. 

3 Formations in unicycle 

3.1 Model description 

We now consider a group of n wheeled vehicles also called unicycle. Each unicycle(See 
Figure 3) in the (x,y) plane with the heading angle θ. It can only move in the direction of 
its heading. This constraint is called a nonholonomic constraint und can be expressed by: 

 

 

 

 
 

 
Figure 3.1: Unicycle 
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10  FORMATIONS IN UNICYCLE 

Each unicycle is can be describe by: 

 

 

 

 

Where vi is the velocity of the unicycle. 

We then construct a  

 

 

We construct a moving frame    ,   the Frenet-Serret frame, that is fixed on the vehicle. 
Let ri be the unit vector tangent to the trajectory at the current location of the vehicle and 
let si be ri rotated by 

Thus,                   since the vehicle is moving at the speed vi. 

Since vehicle i can only get the relative positions of a subgroup Ni of vehicles with 
respect to its own Frenet-Serret frame: 

 

 

 

 
 

 
 
Figure 3.2: Frenet-Serret Frame 
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11  FORMATIONS IN UNICYCLE 

Before we speak about the feasibility of  convergence in the unicycle model, let us start 
with some definitions and background. 

3.2 Local information controller 

A controller (vi,wi), i=1,…,n, is said to be a local information controller if:  
 
  
 
 
 

3.3 Background about graph theory 

A graph G = (V,E) is defined to be a pair of sets V and E. V is the set of a limited 
number of nodes and E is the set of arcs. 

There are two important types of graphs: the directed graph (digraph) where the links 
between the nodes are just in one direction and the undirected graph where the links are 
in the both directions. 

Several matrix can be associated with a directed graph: 

• The adjacency matrix A = (aij): If there is an arc from node i to node j then the 
entry aij equals 1, otherwise 0. 

• The degree matrix D = (dij) is defined to be a n×n diagonal matrix where the 
diagonal entry dii is the out-degree of node i. 

• Finally the graph Laplacian is the matrix defined as L=D−A.  

If there is a path in G from one node i to another node j, then j is said to be reachable 
from i written. If not, j is said to be not reachable from i. 

If a node is reachable from every other node in G, then we say it is globally reachable. 

A sensor digraph (directed graph) models the information flow, where a link from node i 
to node j indicates that vehicle i can sense the position of vehicle j. 

3.4 Problem Statement 

We now come back to our main topic, namely is it possible to achieve convergence for 
unicycle? The problem can be formulated in this way: 

Find a local information controller such that for all 

i=1,…,n and for all t0:  
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12  FORMATIONS IN UNICYCLE 

 

3.5 Solution 

The information flow is central to solve the previous problem since the vehicles are 
coupled through the sensor information flow. 
 
In fact the information flow produce a kind of symmetry in the systems equations with 
respect to the x and y coordinates. 
 
 
It can be proven that (see [2]), the problem of convergence can be solved if and only if 
the graph has a globally reachable node. An algebraic characterization of this property is 
that, the Laplacian L of the graph has a simple eigenvalue 0. 
 
Moreover, we can find a local information controller, so that convergence is achieved. 
The proof is constructive.  
 
The idea is that each robot use a control strategy based on his knowledge of the position 
of his neighbors. As we have seen it before, an unicycle i can only get the relative 
positions of a subgroup Ni of vehicles with respect to its own Frenet-Serret frame  
 
 
 
 
We then use the controller: 
 
 
 
 
 
 
 
The robot i follows the position of his neighbors and his velocity is vi(t):. He also turn 
permanently around his own center, so that his velocity is not zero. 
 
 
As we can see in the example below, xim=0, when the axes ri of the two robots are 
parallel. That mean vi = 0. If the robots did not permanently turn around their axes using 
ωi(t), they would not move. 
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The following simulations show the convergence to a cycle: 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 3.3: robot axes are parallel. No information available 

 
                                                                   

Figure 3.4: Convergence to a cycle 
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14  SUMMARY 

4 Summary 

In this report, we investigated the formation control properties in multi-robots systems. 
We first started with the cyclic pursuit case and then study the feasibility of convergence 
for the more realistic unicycle model. We have given necessary and sufficient conditions 
for convergence and to avoid collisions in these systems. Furthermore we developed a 
constructive method to find out a controller for the system. Further researches treat the 
question of, how to provide better controller, who do not keep the unicycles wiggling. 
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