Supervisory Control of Manufacturing Systems with Time Specifications

Alexander Schaub

Institute of Automatic Control Engineering Technische Universität München

Bibliography

- P.C.Y. Chen, W.M. Wonham. Stable supervisory control of flexible manufacturing systems with fixed supply and demand rates. Int. J. Prod. Res., 2001, Vol. 39, No.2, 347-368.
- B.A. Brandin and W.M. Wonham. Supervisory Control of Timed Discrete-Event Systems. IEEE Transactions on Automatic Control, Vol. 39, No. 2, February 1994.
- 3. P.J.G. Ramagde, W.M. Wonham. The control of Discrete Event Systems. Proceedings of the IEEE, Vol 77, No.1, January 1989.

Example 00000

Overview

• Introduction

- **Methods:** DES, TDES, Supervisory Control, Synchronization Operators, Procedure Scheme.
- **CNC Machine:** Model, Specifications, Resulting Supervisor, Activities.
- Conclusions

Example 00000

Introduction

Manufacturing system:

- Flexible: different tasks on different types of parts.
- Reconfigurable processors: it takes time to initialize another task.
- Limited buffers.
- Fixed supply and demand rate.
- Hard-real-time: completion of a task within a given deadline is guaranteed.

Supervisory controller manages the system.

Both modeled as timed discrete-event systems. Formal constructive method to:

- 1. decide whether a stable supervisory control exists.
- 2. compute the stable supervisory control, if it exists.

Discrete Event Systems

 $G_{act} = (\Sigma_{act}, A, \delta_{act}, a_0, A_m)$

- Σ_{act} : finite alphabet of event labels (events)
- A: Activity set containing activities a (states).
- δ_{act} : Activity transition function.

$$\delta_{act}: \Sigma_{act} \times A \to A$$

- Activity transition $\sigma: a' = \delta_{act}(\sigma, a)$.
- *a*₀: initial activity.
- $A_m \subseteq A$: subset of marker activities.

Timed Discrete-Event Systems

- $G = (\Sigma, Q, \delta, q_0, Q_m)$
 - $q_0 \in Q$, $Q_m \subseteq Q$
 - Discrete time event *tick*: $\Sigma := \Sigma_{act} \cup \{tick\}$
 - Lower l_{σ} and upper u_{σ} time bounds for each transition σ .
 - Two possible types:
 - 1. prospective events σ_{spe} with $0 \leq l_{\sigma} \leq u_{\sigma} < \infty$
 - 2. remote events σ_{rem} with $0 \leq l_{\sigma} < u_{\sigma} = \infty$
 - Timed event triples $\Sigma_{tim} := \{(\sigma, l_{\sigma}, u_{\sigma}) | \sigma \in \Sigma_{act} \}$
 - Every state q is related to an activity and a timer: $q = (a, \{t_{\sigma} | \sigma \in \Sigma_{act}\})$

Example of Timed Discrete-Event Systems

$$G_{act} = (\Sigma_{act}, A, \delta_{act}, a_0, A_m)$$

- $\Sigma_{act} = \{\alpha, \beta\}$
- $a_0 = 0$

•
$$\delta_{act}(\alpha, 0) = \delta_{act}(\beta, 0) = 0$$

• $A = A_m = \{0\}$

Introduction 0 Methods 00000000000 Example 00000 Conclusions 0

Example of Timed Discrete-Event Systems

Introduction 0 Methods 00000000000000 Example 00000 Conclusions 0

Supervisory Control of DES

- Inclusion of all possible transition sequences of (T)DES G in its language L(G).
- Representation of the supervisor by an automaton ${\cal V}$ monitoring G.
- Disablement of certain events in transition structure of G to meet certain specifications.
- Differentiation between *controllable* and *uncontrollable* events: $\Sigma_{act} = \Sigma_c \cup \Sigma_u$
- Possibility to *force* some events Σ_{for} .

Supervisory Control of DES

- Specification of the control input for every possible string w of G by a supervisor map $s:\ \kappa=s(w)$
- Closed loop behavior of the system L(V|G) =: K
 - 1. $\epsilon \in K$
 - 2. $w\sigma \in K$ iff $w \in K, \sigma \in V(w), w\sigma \in L$

Introduction 0 Methods 00000000000 Example 00000 Conclusions 0

Example for Supervisory Control of DES

- Supremal controllable language K^{\uparrow} : largest controllable language $K^{\uparrow} \subseteq K$.
- $\Sigma_c = \{\alpha, \beta\},\$ $\Sigma_u = \{\lambda\}.$
- $L = (\alpha(\alpha\alpha + \beta)(\lambda + \alpha) + \beta(\alpha\lambda + \alpha\alpha + \lambda))\beta^*$
- $L_m = (\alpha(\alpha\alpha + \beta)\alpha + \beta(\alpha\alpha + \lambda))\beta^*$
- $\bullet \ \ K^{\uparrow} = (\alpha \alpha + \beta) \lambda \beta^{*}$

• K is called controllable if: $\overline{K}\Sigma_u \cap L \subseteq \overline{K}$

Introduction 0 Methods 00000000000000 Example 00000 Conclusions 0

Supervisory Control of TDES

- Considering time bounds (l_{σ}, u_{σ}) as specifications.
- Minimal restrictive supervisor: disabling certain events only if necessary → creation of largest possible subset of legal sequences.
- Software TTCT available to create, combine TDESs and to compute the supremal controllable sublanguage of a given language.
- Creation of a supervisory TDES by three main steps: *sync,meet* and *supcon*

Parallelisation of Generators (sync)

- Synchronization of two TDESs: $G_3 = G_1 ||G_2|$
- For all $\sigma \in \Sigma_{3,act} : \sigma \in (\Sigma_{1,act} \Sigma_{2,act}) \cup (\Sigma_{2,act} \Sigma_{1,act})$
- Timed events must be synchronisable:

1.
$$\sigma \in \Sigma_{1,act} \cap \Sigma_{2,act}$$

2.
$$(l_{\sigma}, u_{\sigma}) = (\max(l_{1,\sigma}, l_{2,\sigma}), \min(u_{1,\sigma}, u_{2,\sigma}))$$

Example 00000

Example: the Endangered Pedestrian

- $G = (\Sigma, Q, \delta, q_0, Q_m)$
- $\mathsf{PED} = (\{j\}, \{r, c\}, \{[r, j, c]\}, r, \{c\}); \Sigma_{tim} = (j, 1, \infty):$
- j = 'jump', r = 'road', c = 'curb'.

- CAR = $(\{p\}, \{a, g\}, \{[a, p, g]\}, a, \{g\}; \Sigma_{tim} = (p, 2, 2):$
- p = 'pass', a = 'approaching', g = 'gone by'.

Introduction 0 Methods 0000000000000 Example 00000 Conclusions 0

Example: the Endangered Pedestrian

- j = 'jump', p = 'pass'.
- $CP = sync(CAR, PED), \Sigma_{for} = \{j\}.$
- TDES of CP:

Introduction 0 Methods 0000000000000 Example 00000 Conclusions 0

Restriction of Synchronization on Common Symbols (meet)

- $G_3 = G_1 \sqcap G_2$
- Finding a TDES fulfilling all conditions of different TDESs simultaneously.
- Special case of sync with $\Sigma_1 = \Sigma_2$.

Example: Saving the Pedestrian

- For safety: *Jump* before the car *passes*.
- $$\begin{split} \mathsf{SAVE} &= (\{j,p\},\{s0,s1,s2\},\{[s0,j,s1],[s1,p,s2]\},s0,\{s2\}),\\ \Sigma_{tim} &= \{(j,0,\infty),(p,0,\infty)\}: \end{split}$$
- j = 'jump', p = 'pass'.

Introduction 0 Methods 000000000000000 Example 00000 Conclusions 0

Example: Saving the Pedestrian

- Adding the safety specification to the endangered pedestrian example.
- CPSAVE = meet(CP, SAVE):

Introduction 0 Methods 00000000000000 Example 00000 Conclusions 0

Computation of K^{\uparrow} (supcon)

- Finding the supremal controllable sublanguage for a certain model TDES G and its specification TDES S.
- supcon: $V = \Phi(G, S)$
- Every contained sequence observes the specifications.
- Erasure of all undesired transitions paths.
- Possibility of an empty supervisor \rightarrow specifications too hard.

Example 00000

Procedure for computing a supervisor

Introduction 0 Methods 0000000000 Example

Conclusions 0

Task

- Output Buffers Input Buffers Processor **S**1 d₁ M₁ = 5 N₁ = 3 $c_1 = 2$ $c_2 = 1$ \mathbf{s}_2 d: M₂ = 6 $N_2 = 5$ Setup time an a₁ a_2 0 a. 0 1 a₁ 0 0 _ a₂ 1 0
- Processor P, input buffers F_1, F_2 and output buffers H_1, H_2 .
- Input rates: $s_1 = 0.5 \text{ parts/min}, s_2 = 1/3 \text{ parts/min}.$
- Output rates: $d_1 = 1/3$ parts/min, $d_2 = 0.25$ parts/min.

Introduction 0 Methods 000000000000 Example •0000 Conclusions 0

Introduction 0 Methods 000000000000 Example

Conclusions 0

• Input buffer G_{F_1} ($\alpha_1 =$ 'request', $\beta_1 =$ 'enter'):

• Output buffer G_{H_1} ($\alpha_3 =$ 'leave', $\beta_3 =$ 'fetched'):

Introduction 0

model

buffer

operation

setup

change

part

processing

Methods 000000000000000 Example 00000 Conclusions 0

• Processor reconfiguration G_r ($\lambda =$ 'reconfig', $\mu =$ 'finished reconfig'):

Introduction 0 Methods 00000000000 Example 00000 Conclusions 0

Introduction 0 Methods 00000000000 Example

Conclusions 0

Introduction 0 Methods 000000000000 Example

Conclusions 0

• Output buffer specification S_{H_1} ($\alpha_3 =$ 'leave', $\sigma_1 =$ 'finished producing'):

Introduction 0 Methods 00000000000 Example 00000 Conclusions 0

• Proper configuration of processor S_P ($\gamma =$ 'produce', $\lambda =$ 'reconfig', $\mu =$ 'finished reconfig'):

Introduction 0 Methods 00000000000 Example 00000 Conclusions 0

 Output specification for type-1 parts S_{O1} (α₃ = 'leave', β₃ = 'fetched'):

*: t, α_1 , β_1 , α_2 , β_2 , α_4 , β_4 , γ_1 , σ_1 , γ_2 , σ_2 , λ_{01} , μ_{01} , λ_{10} , μ_{10} , λ_{02} , μ_{02} , λ_{20} , μ_{20}

Introduction 0 Methods 00000000000 Example 00000 Conclusions 0

Resulting Supervisor

- sync all models: $G_w = G_{F_1} \| G_{F_2} \| G_{H_1} \| G_{H_2} \| G_p \| G_r$.
- Model G_w consists of 35280 states and 129792 transitions.
- Receiving V by repeated application of supcon: $V = \Phi(\Phi(\Phi(G_w, S_p), S_{F_1} \sqcap S_{F_2}), S_{H_1} \sqcap S_{H_2}), S_{O_1} \sqcap S_{O_2}).$
- Supervisor V consists of 2538 states and 5945 transitions.
- One possible sequence: $\alpha_1\beta_2\alpha_2\sigma_1\gamma_1tt\beta_1\alpha_1\sigma_1\lambda_{10}\mu_{10}\lambda_{02}t...$

Example's Activities

• Level of type-1 part input buffer:

• Level of type-2 part input buffer:

Introduction 0 Methods 0000000000000 Example 0000● Conclusions 0

Example's Activities

• Level of type-1 part output buffer:

•

Introduction 0 Methods 000000000000000 Example 0000● Conclusions 0

Example's Activities

• Processor activity under supervisory control:

Introduction 0 Methods 00000000000000 Example 00000 Conclusions 0

Conclusions

- Ability to find a supervisor containing all safe sequences.
- Minimally restrictive controller \rightarrow optimization possibility.
- Computation of the supremal controllable sublanguage in polynomial time.
- Disadvantage: exponential increase of the number of states of a composite TDES.
- Suggested solution in the paper:
 - modular synthesis: set of concurrently operating modular supervisors.

Example 00000

