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Chapter 1

Introduction

The intension of [3] is to introduce a formal constructive method to decide first if a
stable supervisory control exists for a given manufacturing system. Moreover, the
second step is to compute the stable supervisory control if it exists. It is even possi-
ble to state every ’safe’ sequence that will not harm any of the given specifications
and constraints.
Nevertheless, a few requirements must be conformed by the manufacturing systems
in order to make the introduced procedure of finding the stable supervisory control
possible.
First of all the manufacturing system is flexible and consists of reconfigurable pro-
cessors, whereas processor denotes rather an executing unit than a cpu, and buffers
with limited capacities. Flexible in this case means that the system can execute dif-
ferent tasks on different types of parts, whereas the processor must be reconfigured
to perform another kind of task. This reconfiguration process takes a certain time
and a possible example could be a setup process of a computer-numerical-control
(CNC) machine. Before executing another task the tools must be changed e.g. for
a rougher milling.
Another requirement is the fixed supply and demand rate, which characterizes the
dynamics of the system. The supply rate expresses how many new parts of a kind
enter the system per time and the demand rate denotes the output of the single
types of parts. Since the rates are static, time constraints are entailed on the pro-
cessor. Input buffers must be emptied and output buffers must be filled in due time.
Stability of such a manufacturing system means that the capacity of the individual
buffers of the system must not be exceeded during operation.
The task of the supervisory controller is to achieve the stability of the system and
to ensure that the specifications are maintained. It decides when to start processing
which part and when to reconfigure a processor.
An important requirement is the hard-real-time characteristic. This means that such
a manufacturing system must guarantee the completion of a given task by a specific
deadline. It is not sufficient to execute a task properly, but the time bounds must
be kept, too. The supply rate of one part per t1 minutes and demand rate of one
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part per t2 minutes imply that the intake or delivery of a part must occur in narrow
time slots. An earlier or later point in time is strictly forbidden. The hard-real-time
approach to manufacturing is not usual, but provides some advantages according to
[3]:

1. Manufacturing resources can be more efficiently allocated due to the known
exact time and the known duration of utilization of a device.

2. The fact that the completion by specific deadlines of a manufacturing tasks is
guaranteed permits a more efficient planning of enterprise-wide activities.

3. The whole production flow becomes more manageable as problems caused by
tardiness of task execution can be avoided.

1.1 Discrete-Event Systems

The underlying approach is based on the theory of discrete-event systems (DESs)(see
[18],[15]). A DES can be described as a tuple:

G = (Σ, Q, δ, q0, Qm) (1.1)

Here Σ denotes a finite alphabet of event labels. Those events indicates e.g. the
occurrence of a physical phenomenon that caused a change in state. Furthermore,
Q is the set of all states q of the DES.
δ stands for the activity transition function and maps a state in combination with
an event to a state, which can be the same state, δ : Σ × Q → Q.
A transition is a triple [q, σ, q′] with q, q′ ∈ Q and σ ∈ Σ. This results in a′ = δ(σ, a).
Moreover, q0 ∈ Q denotes the initial state and Qm ⊆ Q is the subset of marker states.
Marker states are for examples states that should be entered during a process to
achieve its goal.

1.2 Further Readings

The state of research of this topic is discussed in [3] and many further readings are
given. First of all nearly the complete theory of TDES was developed by W.M.
Wonham and his colleagues e.g. see [2], [15], [14], [19], and [18].
According to [3] the control of manufacturing systems has been an intensive re-
search field for nearly the last fifty years with its origin found in [7], [9]. Those
investigations concentrate on the development of methods for managing the activi-
ties of various resources to receive a manufacturing system, which operates optimal,
whereas there is still a certain tolerance, like missing a deadline by a certain amount
of time, permitted. Consequently, there is no hard-real-time. The optimality crite-
ria cover the whole range from minimum processing time to maximum utilization of
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resources or to least penalty paid for completing a task before the deadline or for
missing the deadline, see e.g.[13], [8], [12], [4], [1], [17] and [10].
In [17] for example the problem of a single-machine earliness-tardiness scheduling
for a given common due date with tolerances is investigated. It is optimized by
minimizing the mean absolute deviation of job completion times with the due date
tolerance varying from job to job. Furthermore, [13] presents a class of manufactur-
ing policies for manufacturing systems with fixed process sequences of parts, with
specific rates for producing parts, whereas there is a certain tolerance for deviations,
and with considerable reconfiguration times.
Different formal techniques have been developed to model, analyze, and control the
behavior of more complex manufacturing systems. Those techniques use for example
max-plus algebra [5] or Petri nets [6].
Moreover, a hard-real-time environment is still an open problem for managing man-
ufacturing operations, although the first research works were made in the seventies
[11].
Of course many more methods, approaches or theories about controlling manufac-
turing systems can be found in control literature.

The method, which is discussed in this report, for computing a stable supervisory
is based on timed discrete-event systems (TDES). The step from DES to TDES is
made at the beginning of the following chapter. After that a few synchronization
operations on (T)DES are explained and an overview of the procedure of computing
supervisory control is given. In the third chapter a stable supervisory controller for
a computer-numerical-control (CNC) machine is computed to illustrate the method.
Finally, some conclusions are drawn from the discussed papers.
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Chapter 2

Supervisory Control of TDES

2.1 Timed Discrete-Event Systems

The extension from a discrete-event system to a timed discrete-event system (TDES)
is made for example in [2].
Firstly, a DES is considered with Gact = (Σact, A, δact, a0, Am). For a better differ-
entiation to the TDES the single components of the DES are symbolized with an
additional ′act′ for activity. And the states and state set are denoted by a respec-
tively A. Activities have a duration in time and events are instantaneous.

A discrete time event tick is now added to the finite alphabet of event labels:
Σ := Σact ∪ {tick}. Every transition label σ ∈ Σact is equipped with a lower time
bound lσ ∈ N and an upper time bound uσ ∈ N ∪ {∞}.

There are two possible kinds of transition labels Σact = Σspe ∪ Σrem:

1. prospective events σspe with 0 ≤ lσ ≤ uσ < ∞

2. remote events σrem with 0 ≤ lσ < uσ = ∞

The time bounds can be interpreted as a delay for lσ , in communication or in control
enforcement, and as a hard deadline for uσ, burdened by specification or physical
constraints [2].

Furthermore, the timed events are a triple (σ, lσ, uσ) and Σtim := {(σ, lσ, uσ)|σ ∈
Σact}.
To describe the state set

Q := A × u{Tσ|σ ∈ Σact} (2.1)

a time interval Tσ is defined as:

Tσ =

{

[0, uσ] if σ ∈ Σspe

[0, lσ] if σ ∈ Σrem
(2.2)
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Consequently, a state is described as:

q := {a, {tσ|σ ∈ Σspe}} with a ∈ A, tσ ∈ Tσ (2.3)

For a prospective event σ every activity a, in which the occurrence of an event σ
is defined δact(σ, a)!, needs a separate state at every discrete time point until the
upper time bound is reached. For remote events it is only important to know when
the lσ is reached and every time step after the lower time bound does not need to
be considered separately as uσ = ∞. The initial state is

q0 := {a0, {tσ0|σ ∈ Σspe}} with a0 ∈ A, tσ0 :=

{

uσ if σ ∈ Σspe

lσ if σ ∈ Σrem
(2.4)

Whereas tσ0 is the default value of a timer. The marker state subset contains all
marker states, which consist of marker activities in combination with valid timers.

Qm ⊆:= Am × u{Tσ|σ ∈ Σact} (2.5)

Although the state transition function looks similar to the DES case a few more
rules must be defined concerning the transitions. The time event tick only occurs at
real time moments t = n with n ∈ N. There are three cases that a transition δ(σ, q)
can be taken:

1. σ = tick and no deadline of a prospective event in q is zero. Otherwise the
prospective event would occur.

2. σ is prospective, a is the current activity state q = (a, ), there exists an activity
transition δact(σ, a)! and the timer is within the bounds 0 ≤ tσ ≤ uσ − lσ.

3. σ is remote, a is the current activity state q = (a, ), there exists an activity
transition δact(σ, a)! and the timer tσ = 0.

An event is enabled if δ(σ, a)! and eligible if in addition δ(σ, q)!, which cannot happen
prior to lσ ticks. In a TDES only eligible events can occur. If σ ∈ Σact is enabled

the timer tσ is decreased with every tick, whereas the tick has no influence to any
activity component, until

• it reaches zero.

• or σ is disabled because of the occurrence of some eligible transition.

• or the time is reseted to its default value with the occurrence of σ.

Finally the tuple of a TDES is obtained by combination of all preceding definitions:

G = (Σ, Q, δ, q0, Qm) (2.6)
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2.2 Extending a DES to a TDES

The impact of introducing discrete time is visualized by the following example.
Firstly, there is just a simple DES Gact = (Σact, A, δact, a0, Am) (see Figure 2.1)
with:

• Σact = {α, β}, a0 = 0

• δact(α, 0) = δact(β, 0) = 0

• A = Am = {0}

An entering arrow symbolizes the initial state and a leaving arrow denotes a marker
state. This DES consists just of a single state ′0′ with a self-loop that is taken at
the occurrence of either the event α or β.

Figure 2.1: DES

Now both events are considered as timed events. The lower time bound lσα of alpha
is 1 and the upper time bound uσα is 1, too. Consequently, α must happen after
the first tick and before the second tick after being activated. The time slot of β
is a bit larger, as it has to occur between the second and the third tick after being
enabled. The resulting tuples of the timed events are (α, 1, 1) and (β, 2, 3).
The state set of generator G does not consist of only one state but eight states.
Q = {′0′}×{0, 1}×{0, 1, 2, 3} means that the activity ′0′ can be combined with two
discrete times of tα and four discrete times of tβ. Hence, the state set of the TDES
generator has the size |Q| = 8.
An enabled but not eligible event is called pending. The event tick is always pre-
empted by the events α, β ∈ Σact if one of those has an imminent deadline. The
resulting TDES is shown in Figure 2.2 and the timer values for each state can be
looked up in Table 2.1. Considering the event α, it is pending at states 0, 2, 5, 7
and eligible at states 1, 3, 4, 6. The event β is pending at 0, 1, 2, 4 and eligible at
3, 5, 6, 7.

State 0 1 2 3 4 5 6 7
[tα, tβ] [1,3] [0,2] [1,2] [0,1] [0,3] [1,1] [0,0] [1,0]

Table 2.1: TDES timers
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Figure 2.2: TDES

2.3 Supervisory Control of Discrete-Event Sys-

tems

A supervisory controller disables certain events in the transition structure of a
(T)DES G in order to meet certain specifications. The supervisor is usually repre-
sented by an automaton V, which monitors G ([3],[15],[2]).
Considering the disabling of events the alphabet of event labels is divided into con-

trollable and uncontrollable events Σact = Σc∪Σu. Moreover, there are also forcible
events Σfor. A forcible event can be forced to occur, as the name says, but the differ-
ence to controllable events is that they are not necessarily preventable. Controllable
events can be also forcible as well as uncontrollable events can be forcible. In [2]
the author gives the example that ’landing’ a plane is a forcible event, but you can
not prevent it from landing for ever and so it is not a controllable event.

The supervisory map s specifies the control input κ for every output sequence of
transitions w of G: κ = s(w). All possible transition sequences of a (T)DES G are
included in its language L(G).
The closed-loop behavior of the system as shown in Figure 2.3 is denoted by L(V |G) :=
K, whereas:

• ε ∈ K, ε expresses that no changes are made (null event).

• wκ ∈ K iff w ∈ K,κ ∈ V (w), wκ ∈ L
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Figure 2.3: Supervisor TDES

The goal is to find the supremal controllable language K↑, which is the largest
controllable language K↑ ⊆ K. It is defined as controllable if: KΣu ∩ L ⊆ K. This
means, that if an arbitrary uncontrollable event is combined with the supremal
controllable language the intersection with the language of the generator G must
still be a subset of the supremal controllable language.
The following example, shown in 2.4 and taken from [16], illustrates this:

• Σc = {α, β}, Σu = {λ}, q0 := z1, Qm = {z6}.

• L = (α(αα + β)(λ + α) + β(αλ + αα + λ))β∗. Language of the generator

• Lm = (α(αα + β)α + β(αα + λ))β∗. Language of the marker states.

• K↑ = (αα + β)λβ∗.

The only unsafe state is z5, consequently the desired K should contain all possible
paths between all safe states. If K is tested for stability by adding an uncontrollable
event, it can be seen that the resulting language is no longer subset of K. An
occurrence of λ in state z4 would lead to the unsafe state and this transition can
not be prevented since λ ∈ Σu. Hence, the state z4 must be excluded from K.
The resulting DES, containing z1, z2, z3, z6, is described by the supremal controllable
language K↑. β∗ in a language expresses that β can occur arbitrarily often, including
zero times.

A supervisory controller of TDES must also consider time bounds (lσ, uσ) as speci-
fications.
Furthermore, a minimal restrictive supervisor will be computed in the process from
[3]. This means that the supervisor disables certain events only if necessary and
therefore creates the largest possible subset of legal sequences.
The computation of the supremal controllable language can be executed automat-
ically by a program called TTCT, which was developed by W.M. Wonham, one of
the authors of [3], [15], [2] and [18].
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Figure 2.4: Supremal Controllable Language

2.4 Parallelization of Generators

The formal constructive method to compute a supervisory controller, introduced in
[3], requires certain synchronization operations on (T)DESs. The first one is the par-
allelization of generators G3 = G1‖G2. In TTCT it is called sync or synchronization.

Both alphabets are combined by:

σ ∈ Σ3,act : σ ∈ (Σ1,act − Σ2,act) ∪ (Σ2,act − Σ1,act) (2.7)

This guarantees that an event contributes to Σ3,act only once if it is contained in
both Σ1,act, Σ2,act.
Timed events must be synchronizable:

1. σ ∈ Σ1,act ∩ Σ2,act

2. (lσ, uσ) = (max(l1,σ, l2,σ), min(u1,σ, u2,σ))

If the maximal lower time bound is higher than the minimal upper time bound the
parallelization of the generators is not possible. The tick event must occur always
at the same continuous time in both automata, which is more a problem of real
systems. A detailed definition of sync can be found for example in [18].

To illustrate this operator two TDES will be combined by the sync operator in
the following example, which was described in [2], to model the TDES of both to-
gether.
In this scenario a pedestrian walks on the road and a car is approaching very fast.
To avoid a collision the pedestrian should jump on the curb. The TDES of the
pedestrian is PED = ({j}, {r, c}, {[r, j, c]}, r, {c}) (Figure 2.5):
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• j: is the event “jump on the curb”.

• r, c: are the states “on the road” and “on the curb”.

• [r, j, c]: denotes the transition from the road to the curb by jumping.

• r: is also the initial state. The pedestrian walks on the road first.

• c: the curb is the marker state, which should be reached.

• Σtim = (j, 1,∞): is the whole notation for the timed event. The pedestrian
needs at least one tick of reaction time before he jumps and has no upper time
bound for jumping.

Figure 2.5: TDES of the Pedestrian

The behavior of the car can be expressed by CAR = ({p}, {a, g}, {[a, p, g]}, a, {g}
(Figure 2.6):

• p: is the event “car passes”.

• a, g: are the states “car is approaching” and “car has gone by”.

• [a, p, g]: denotes the transition from the approach to being gone by after the
occurrence of passing.

• a: is also the initial state. The car is approaching first.

• g: is the marker state.

• Σtim = (p, 2, 2): is the whole notation for the timed event. Nothing can prevent
the car from passing after two tick.

Figure 2.6: TDES of the Car

Both TDES are now combined to model the whole scenario CP = CAR||PED, with
Σfor = {j}. This TDES is shown in Figure 2.7, whereas the red state is a strongly
undesired state, which stands for the case that the car passes before the pedestrian
jumps and consequently hits him. Moreover it can be seen, that the car still must
pass after two tick and the pedestrian can jump after one tick.
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Figure 2.7: Combined TDES

2.5 Restriction of Synchronization on Common

Symbols

The second operator, denoted by meet in TTCT, is a restriction of synchronization
on common symbols and denoted by G3 = G1 u G2. If two TDESs are combined
with this operation the resulting TDES will consist only of states and transitions
that exist in each parent TDES. The meet is described as a special case of sync
with Σ1 = Σ2 in [2]. Every event that is not contained in both G1 and G2 will be
blocked by meet.

The endangered pedestrian example from the preceding section is now extended to
illustrate the functionality of meet. A safety specification is introduced, which ex-
presses that the jump must occur before the car passes. The number of ticks before,
between and after those events is arbitrary.
The corresponding TDES is SAVE = ({j, p}, {s0, s1, s2}, {[s0, j, s1], [s1, p, s2]}, s0, {s2})
(Figure 2.8):

• j, p: are the events “jump” and “car passes” as in the example of Section 2.4.

• s0, s1, s2: are just the states before jumping, before passing and and after
passing.

• [s0, j, s1], [s1, p, s2]: denote the activity transitions between the single states.

• s0: is also the initial state. The jump has not happened yet.

• s2: is the marker state, which is reached if first j and then p have occurred.
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• Σtim = {(j, 0,∞), (p, 0,∞)} is the whole notation for the timed events. Both
events are remote and can occur immediately after being activated.

Figure 2.8: TDES of Safety Specification

The meet operation is applied to the combined TDES CP (see Figure 2.7), which
stands for the car-pedestrian scenario, and the safety specification SAVE: CPSAV E
= CP u SAV E.

Figure 2.9: CPSAV E

Obviously, the red state and its transitions from Figure 2.7 are not contained in
Figure 2.9, as they are not contained in the specifications. The jump will now occur
always before the car passes.

2.6 Computation of the Supremal Controllable Sub-

language

The computation of the supremal controllable sublanguage K↑ is discussed generally
in Section 2.3. It is here mentioned again in the context of the formal constructive
method to find a supervisory control for a manufacturing system [3].
The task is to find the supremal controllable sublanguage for a certain TDES gen-
erator G and its specification S, which are modeled as TDES as well. It exists a
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command supcon in TTCT for this task: V = Φ(G,S).
Every sequence, which is contained in V observes the specification and all undesired
transition paths are erased. There is the possibility that V is empty. Consequently,
the constraints or specifications were chosen too hard and a supervisory control is
simply not feasible. The solution would be an ease of the specifications if possible.
A very general description of the supcon operation is given in [3]. Namely, that for
a TDES G and its set of specifications S, a minimally restrictive supervisor V can
be computed by an iterative algorithm based on a fix point characterization of a
certain operator [14].
Moreover, it is possible to show that V is the largest fix point of this operator.
The maximum number of iterations needed to compute V is finite, and a worst-case
bound can be calculated [14].

2.7 Procedure for Computing a Supervisor

Figure 2.10 shows the procedure, which was developed in [3], for computing a su-
pervisor of a manufacturing system as described in Chapter 1.

Figure 2.10: Computing Procedure for V

First of all the single parts of the manufacturing system are modeled by TDESs.
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The operations of the input and output buffers must be defined. As the processing
unit is flexible and it is able to execute different tasks, not only the part processing
must be modeled, but also the setup change from one configuration to another. All
those different TDESs are combined with sync in order to create the workcell model
TDES Gw, which contains all single parts of the system simultaneously.
Furthermore, the features and constraints of the system must be specified. First
the capacities of the single input and output buffers, as all buffers are limited, are
set. To process parts of a given type, the processor must be in the corresponding
configuration. To ensure this and to avoid being stuck in an infinite reconfigura-
tion loop [3], the processor configuration must be specified, too. Another important
specification is the desired output rate. It is obvious that all specifications must be
fulfilled concurrently and hence the meet operation combines all single specification
TDES to the workcell specification Sw.
After the computation of the workcell model Gw and its specification Sw, the supcon
is executed for the controller synthesis and produces the TDES of V , which repre-
sents the minimally restrictive supervisor of Gw with respect to Sw.
After selecting a sequence from V , it can be executed on-line on a real-time controller
to control the workcell activities.
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Chapter 3

Supervisory Control for a CNC

Machine

In order to illustrate the procedure from Chapter 2.7 an example from [3] is discussed
in this chapter. The supervisory control is computed for the CNC machine in Figure
3.1 that processes two different types of parts and has the following settings:

Figure 3.1: CNC Machine

• Processor P with processing time c1 = 2 for type-1 parts and c2 = 1 for type-2
parts.

• Input buffers F1 with capacity M1 = 5 and F2 with capacity M2 = 6.

• Output buffers H1 with capacity N1 = 3 and H2 with capacity N2 = 5.
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• Input rates: s1 = 0.5 parts/min, s2 = 1/3 parts/min.

• Output rates: d1 = 1/3 parts/min, d2 = 0.25 parts/min.

• The time between two ticks is exact one minute.

The setup time table in Figure 3.1 shows the time that is required to reconfigure
from one processor configuration to another, whereas a0 is the neutral and initial
configuration. The processor cannot change from ai to aj directly. It must reach
firstly the neutral state. Hence the reconfiguration actually means ai to a0 to aj.

3.1 TDES of the Model

As described in Chapter 2.7 the TDESs to model the single parts are created. It
should be said at this point, that if two or more TDESs have the same structure,
e.g. the model of the input buffer 1 GF1

and the one of input buffer 2 GF2
, only one

of those will be discussed.
Figure 3.2 shows the input buffer GF1

, whereas α1 stands for “requesting a raw
part of type-1” and β1 means that it has “physically entered the buffer”. Between
those two events are two ticks and hence the input rate s1 is 0.5 parts/min. The
straight line perpendicular to the transition arrow of α1 denotes that this event is
controllable. Again an entering arrow symbolizes the initial state and a leaving
arrow denotes a marker state.

Figure 3.2: Input Buffer GF1

The TDES model of the output buffer GH1
can be seen in Figure 3.3 and α3 expresses

that the part has “left the buffer” and that it was “fetched” is denoted by event
β3. At the very beginning there is no part available in the output buffer. This fact
is modeled by the self-loop for the tick event at the initial transition. After the
first part has left the buffer this initial state will not be reached again to safe the
outputrate d1 = 1/3 parts/min. There must always be three ticks between α3 and
β3.
Furthermore, the TDES of the setup change is shown by Figure 3.4. The event λi0

stands for “start reconfiguration from ai to a0” and µi0 that the “reconfiguration is
finished”. It can be seen that the configuration from a0 to a1 and back takes no time
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Figure 3.3: Output Buffer GH1

and from a0 to a2 or the other way around one tick or one minute, respectively. λij

is a controllable event.

Figure 3.4: Setup Change

The part processing itself is modeled by Gp in Figure 3.5, where as the controllable
event γi denotes the start of “producing part i” and σi denotes that the “producing
has finished”. There are exact ci ticks between those two events , e.g. two for parts
of type-1.

3.2 TDES of the Specification

The following TDESs are created to set the specifications of the system. First of
all the buffers’ capacities are specified like output buffer SH1

in Figure 3.6. The
events are of course the same as for the modeling TDESs. Again α3 means that
the part has “left the buffer” and σ1 denotes that the “producing has finished”.
As N1 = 3 σ1 = can occur three times before a part must leave the buffer. There
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Figure 3.5: Part Processing

are self-loops defined for all other possible events, even if they do not affect the
output specification directly. The reason is that if they are not prohibited, they
must be defined in order to obtain a correct result of the meet operation, since only
transitions are considered that are part of all TDESs. At the last state β3, γ1 are
not defined. As no part of type-1 has recently left the buffer, no type-1 part can be
fetched (β3) and as the buffer is full, it is not allowed to start processing another
type-1 part (γ1).

Figure 3.6: Output Buffer Specification SH1

The specification of the processor configuration SP can be seen in Figure 3.7. In the
initial state nearly all events are defined except γ or σ, as nothing can be produced
in this initial configuration. µi denotes that “reconfiguration i is finished” and the
“start producing part type-i”denotes the transition to the next state. In this state
the “completion of the i part processing” σi is defined and the processing of new
parts of type-i can be started until the processor is “reconfigured to the neutral
configuration” λi0. One remarkable thing of this specification is that it prevents
the processor from being stuck in an infinite reconfiguration loop, which is possible
as some reconfiguration processes do not take time [3], e.g. a1 to a0. Again in
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every state all transition events that are not prohibited are defined even if just in a
self-loop, as this is necessary for the meet operation.

Figure 3.7: Processor Configuration SP

The output specification for type-1 parts SO1
is shown in Figure 3.7, whereas α3

stands for “part of type-1 has left the outputbuffer” and β3 means that it was
“fetched”. The states of this TDES look very similar, but β3 is not defined in the
first state, as if nothing has left the buffer nothing could be fetched. The requirement
for on-time delivery can be expressed as:

γi(t) =

{

0 t ≤ t0
(t − t0)di t > t0

and γi(τ) = Di (3.1)

Whereas t0 is the time, when the output buffer is activated for the very first time
and τ ≥ t0 > 0 is the production period. The marked state is reached after Di

consecutive αHi
events. In this case D1 = 3 parts of type-1 have been delivered at

the time, when the marker state is reached. As this TDES will be combined with
the other specification TDESs by meet, in every state all not prohibited events must
be defined.

Figure 3.8: Output Specification SO1
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3.3 Resulting Supervisor

The first step to receive the resulting supervisor is the parallelization of all the single
generators, which model the input and output buffers, the part processing and the
setup change.

Gw = GF1
‖GF2

‖GH1
‖GH2

‖Gp‖Gr (3.2)

The workcell model Gw consists of 35280 states and 129792 transitions.
The next step could be the computation of the workcell specifications Sw by applying
the operation of restriction of synchronization on common symbols (meet) to all
single specifications like input and output buffer capacities, output requirements
and processor reconfiguration.

Sw = SF1
u SF2

u SO1
u SO2

u SH1
u SH2

u SP (3.3)

But in [3] the approach is a bit different, as the computation of the supremal con-
trollable sublanguage (supcon) is applied iteratively first to Gw and the processor
reconfiguration specification Sp, then the resulting TDES is combined with the meet
of the input buffer specifications by supcon and so on:

V = Φ(Φ(Φ(Φ(Gw, Sp), SF1
u SF2

), SH1
u SH2

), SO1
u SO2

) (3.4)

According to [3] this is done due to memory limitations. The resulting supervisor
V consists of 2538 states and 5945 transitions.
One possible sequence starts with: α1β2α2σ1γ1ttβ1α1σ1λ10µ10λ02t...

3.4 Simulated Activities

In this section the activities of the simulated system from [3], which is controlled by
the supervisor V , are shown. The following Figures 3.9-3.12 show the level of type-1
part input buffer, level of type-2 part input buffer, level of type-1 part output buffer
and level of type-2 part output buffer. It can be easily seen that the capacities are
never exceeded and thus the specifications are held.

Figure 3.9: Level of type-1 Part Input Buffer
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Figure 3.10: Level of type-2 Part Input Buffer

Figure 3.11: Level of type-1 Part Output Buffer

Figure 3.12: Level of type-2 Part Output Buffer

The processor activity under supervisory control is illustrated in Figure 3.13. First
of all the processor configures from the initial neutral setup a0 to a1, which is
instantaneous as shown in Figure 3.1, and then starts processing parts of type-
1. At time step 8 it reconfigures back into the neutral configuration to be able to
change to a2, what takes one tick. The CNC machine is now processing parts of
type-2 until it reconfigures from a2 to a0 and then into a1 to process type-1 parts
again.
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Figure 3.13: Processor Scheduling
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Chapter 4

Conclusions

The formal constructive method, which is introduced in [3] and based on the theory
of TDES ([2], [15], and [18]), is able to decide firstly if a stable supervisory control
exists for a given manufacturing system and if it exists, the method has the ability
to find the supervisor V , which contains all safe sequences.
Furthermore the supervisor is a minimally restrictive controller. It only erases tran-
sitions if it is absolutely necessary. Consequently, there is an optimization possibility
of the supervisor by adding another specification like e.g. that the workcell should
produce a certain mix of parts with a minimum number of reconfigurations [3].
An advantage is that the computation of the supremal controllable sublanguage is
made in polynomial time [2].
Unfortunately, there is an exponential increase of the number of states of a com-
posite TDES by using sync. A solution, which is suggested in [3], for this problem
is called modular synthesis. This means a set of concurrently operating modular
supervisors. Every part of the system has its own supervisor and the goal is to
achieve an overall result as if there was just a single global supervisor.
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