
The Problem Hoare Rules Numerical Quadrature

Hoare Calculation and its Application

Robert Lang

TUM

March 2008 - Saint Petersburg - JASS 2008

The Problem Hoare Rules Numerical Quadrature

A �rst example

function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

How can we prove, that for x , y ∈ N0:

result(x,y) = x + y

The Problem Hoare Rules Numerical Quadrature

A �rst example

function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

How can we prove, that for x , y ∈ N0:

result(x,y) = x + y

The Problem Hoare Rules Numerical Quadrature

function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

Proof of the assertion by induction on x :

x = 0 ⇒ result(0,y) =︸︷︷︸
x==0

y , and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
⇒ result(x+1,y) =︸︷︷︸

else

result(x,y+1)

=︸︷︷︸
induction hypothese

x + (y + 1)

⇒ result(x+1,y) = x + (y + 1) = (x + 1) + y �

The Problem Hoare Rules Numerical Quadrature

function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

Proof of the assertion by induction on x :
x = 0

⇒ result(0,y) =︸︷︷︸
x==0

y , and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
⇒ result(x+1,y) =︸︷︷︸

else

result(x,y+1)

=︸︷︷︸
induction hypothese

x + (y + 1)

⇒ result(x+1,y) = x + (y + 1) = (x + 1) + y �

The Problem Hoare Rules Numerical Quadrature

function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

Proof of the assertion by induction on x :
x = 0 ⇒ result(0,y) =︸︷︷︸

x==0

y , and y = y + x

X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
⇒ result(x+1,y) =︸︷︷︸

else

result(x,y+1)

=︸︷︷︸
induction hypothese

x + (y + 1)

⇒ result(x+1,y) = x + (y + 1) = (x + 1) + y �

The Problem Hoare Rules Numerical Quadrature

function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

Proof of the assertion by induction on x :
x = 0 ⇒ result(0,y) =︸︷︷︸

x==0

y , and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
⇒ result(x+1,y) =︸︷︷︸

else

result(x,y+1)

=︸︷︷︸
induction hypothese

x + (y + 1)

⇒ result(x+1,y) = x + (y + 1) = (x + 1) + y �

The Problem Hoare Rules Numerical Quadrature

function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

Proof of the assertion by induction on x :
x = 0 ⇒ result(0,y) =︸︷︷︸

x==0

y , and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.

⇒ result(x+1,y) =︸︷︷︸
else

result(x,y+1)

=︸︷︷︸
induction hypothese

x + (y + 1)

⇒ result(x+1,y) = x + (y + 1) = (x + 1) + y �

The Problem Hoare Rules Numerical Quadrature

function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

Proof of the assertion by induction on x :
x = 0 ⇒ result(0,y) =︸︷︷︸

x==0

y , and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
⇒ result(x+1,y) =︸︷︷︸

else

result(x,y+1)

=︸︷︷︸
induction hypothese

x + (y + 1)

⇒ result(x+1,y) = x + (y + 1) = (x + 1) + y �

The Problem Hoare Rules Numerical Quadrature

function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

Proof of the assertion by induction on x :
x = 0 ⇒ result(0,y) =︸︷︷︸

x==0

y , and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
⇒ result(x+1,y) =︸︷︷︸

else

result(x,y+1)

=︸︷︷︸
induction hypothese

x + (y + 1)

⇒ result(x+1,y) = x + (y + 1) = (x + 1) + y �

The Problem Hoare Rules Numerical Quadrature

function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

Proof of the assertion by induction on x :
x = 0 ⇒ result(0,y) =︸︷︷︸

x==0

y , and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
⇒ result(x+1,y) =︸︷︷︸

else

result(x,y+1)

=︸︷︷︸
induction hypothese

x + (y + 1)

⇒ result(x+1,y) = x + (y + 1) = (x + 1) + y

�

The Problem Hoare Rules Numerical Quadrature

function result(x,y)

if x == 0

return (y);

else

result(x-1,y+1);

end

Proof of the assertion by induction on x :
x = 0 ⇒ result(0,y) =︸︷︷︸

x==0

y , and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
⇒ result(x+1,y) =︸︷︷︸

else

result(x,y+1)

=︸︷︷︸
induction hypothese

x + (y + 1)

⇒ result(x+1,y) = x + (y + 1) = (x + 1) + y �

The Problem Hoare Rules Numerical Quadrature

A second example

function result_2(x,y)

while x > 0

x = x-1;

y = y+1;

end

return y;

How can we prove, that for x , y ∈ N0:

result_2(x,y) = x + y

As easy as in the �rst example?

The Problem Hoare Rules Numerical Quadrature

A second example

function result_2(x,y)

while x > 0

x = x-1;

y = y+1;

end

return y;

How can we prove, that for x , y ∈ N0:

result_2(x,y) = x + y

As easy as in the �rst example?

The Problem Hoare Rules Numerical Quadrature

A second example

function result_2(x,y)

while x > 0

x = x-1;

y = y+1;

end

return y;

How can we prove, that for x , y ∈ N0:

result_2(x,y) = x + y

As easy as in the �rst example?

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

while x > 0

x = x-1;

y = y+1;

end

return y;

Try to prove the assertion by induction on x :

x = 0 ⇒ result_2(0,y) = y and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
result_2(x+1,y) = . . . It doesn't work!

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

while x > 0

x = x-1;

y = y+1;

end

return y;

Try to prove the assertion by induction on x :
x = 0

⇒ result_2(0,y) = y and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
result_2(x+1,y) = . . . It doesn't work!

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

while x > 0

x = x-1;

y = y+1;

end

return y;

Try to prove the assertion by induction on x :
x = 0 ⇒ result_2(0,y) = y and y = y + x

X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
result_2(x+1,y) = . . . It doesn't work!

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

while x > 0

x = x-1;

y = y+1;

end

return y;

Try to prove the assertion by induction on x :
x = 0 ⇒ result_2(0,y) = y and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
result_2(x+1,y) = . . . It doesn't work!

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

while x > 0

x = x-1;

y = y+1;

end

return y;

Try to prove the assertion by induction on x :
x = 0 ⇒ result_2(0,y) = y and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.

result_2(x+1,y) = . . . It doesn't work!

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

while x > 0

x = x-1;

y = y+1;

end

return y;

Try to prove the assertion by induction on x :
x = 0 ⇒ result_2(0,y) = y and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
result_2(x+1,y)

= . . . It doesn't work!

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

while x > 0

x = x-1;

y = y+1;

end

return y;

Try to prove the assertion by induction on x :
x = 0 ⇒ result_2(0,y) = y and y = y + x X

Let the assumption be proved for some x ∈ N0 and all y ∈ N0.
result_2(x+1,y) = . . . It doesn't work!

The Problem Hoare Rules Numerical Quadrature

What is the problem?

There's no recursive run of result_2.

Number of while-loop-iterations depends on x .

Values of x , y are changing during running time.

⇒ Mathematical methods of proof won't last!

⇒ We need new tools!

The Problem Hoare Rules Numerical Quadrature

What is the problem?

There's no recursive run of result_2.

Number of while-loop-iterations depends on x .

Values of x , y are changing during running time.

⇒ Mathematical methods of proof won't last!

⇒ We need new tools!

The Problem Hoare Rules Numerical Quadrature

What is the problem?

There's no recursive run of result_2.

Number of while-loop-iterations depends on x .

Values of x , y are changing during running time.

⇒ Mathematical methods of proof won't last!

⇒ We need new tools!

The Problem Hoare Rules Numerical Quadrature

What is the problem?

There's no recursive run of result_2.

Number of while-loop-iterations depends on x .

Values of x , y are changing during running time.

⇒ Mathematical methods of proof won't last!

⇒ We need new tools!

The Problem Hoare Rules Numerical Quadrature

What is the problem?

There's no recursive run of result_2.

Number of while-loop-iterations depends on x .

Values of x , y are changing during running time.

⇒ Mathematical methods of proof won't last!

⇒ We need new tools!

The Problem Hoare Rules Numerical Quadrature

What is the problem?

There's no recursive run of result_2.

Number of while-loop-iterations depends on x .

Values of x , y are changing during running time.

⇒ Mathematical methods of proof won't last!

⇒ We need new tools!

The Problem Hoare Rules Numerical Quadrature

Challenges

Let P be a given program. We want to prove, that

1 P terminates for all valid inputs.

2 P works for a given domain in that way it is built for.

Both tasks are as hard as the Halting Problem.

You must prove them for every single P.

In the following algorithms the termination is assumed.
⇒ We just meet challenge 2 using Hoare Calculation . . .

The Problem Hoare Rules Numerical Quadrature

Challenges

Let P be a given program. We want to prove, that

1 P terminates for all valid inputs.

2 P works for a given domain in that way it is built for.

Both tasks are as hard as the Halting Problem.

You must prove them for every single P.

In the following algorithms the termination is assumed.
⇒ We just meet challenge 2 using Hoare Calculation . . .

The Problem Hoare Rules Numerical Quadrature

Challenges

Let P be a given program. We want to prove, that

1 P terminates for all valid inputs.

2 P works for a given domain in that way it is built for.

Both tasks are as hard as the Halting Problem.

You must prove them for every single P.

In the following algorithms the termination is assumed.
⇒ We just meet challenge 2 using Hoare Calculation . . .

The Problem Hoare Rules Numerical Quadrature

Challenges

Let P be a given program. We want to prove, that

1 P terminates for all valid inputs.

2 P works for a given domain in that way it is built for.

Both tasks are as hard as the Halting Problem.

You must prove them for every single P.

In the following algorithms the termination is assumed.
⇒ We just meet challenge 2 using Hoare Calculation . . .

The Problem Hoare Rules Numerical Quadrature

Challenges

Let P be a given program. We want to prove, that

1 P terminates for all valid inputs.

2 P works for a given domain in that way it is built for.

Both tasks are as hard as the Halting Problem.

You must prove them for every single P.

In the following algorithms the termination is assumed.
⇒ We just meet challenge 2 using Hoare Calculation . . .

The Problem Hoare Rules Numerical Quadrature

Challenges

Let P be a given program. We want to prove, that

1 P terminates for all valid inputs.

2 P works for a given domain in that way it is built for.

Both tasks are as hard as the Halting Problem.

You must prove them for every single P.

In the following algorithms the termination is assumed.

⇒ We just meet challenge 2 using Hoare Calculation . . .

The Problem Hoare Rules Numerical Quadrature

Challenges

Let P be a given program. We want to prove, that

1 P terminates for all valid inputs.

2 P works for a given domain in that way it is built for.

Both tasks are as hard as the Halting Problem.

You must prove them for every single P.

In the following algorithms the termination is assumed.
⇒ We just meet challenge 2 using Hoare Calculation . . .

The Problem Hoare Rules Numerical Quadrature

C.A.R. Hoare

Sir Charles Antony Richard Hoare

(*11. January 1934 Colombo, Sri Lanka)

Source: Wikipedia, the free encyclopedia

�I conclude that there are two ways of constructing a

software design: One way is to make it so simple that

there are obviously no de�ciencies and the other way is to

make it so complicated that there are no obvious

de�ciencies.�

The Problem Hoare Rules Numerical Quadrature

C.A.R. Hoare

Sir Charles Antony Richard Hoare

(*11. January 1934 Colombo, Sri Lanka)

Source: Wikipedia, the free encyclopedia

�I conclude that there are two ways of constructing a

software design: One way is to make it so simple that

there are obviously no de�ciencies and the other way is to

make it so complicated that there are no obvious

de�ciencies.�

The Problem Hoare Rules Numerical Quadrature

C.A.R. Hoare

Sir Charles Antony Richard Hoare

(*11. January 1934 Colombo, Sri Lanka)

Source: Wikipedia, the free encyclopedia

�I conclude that there are two ways of constructing a

software design:

One way is to make it so simple that

there are obviously no de�ciencies and the other way is to

make it so complicated that there are no obvious

de�ciencies.�

The Problem Hoare Rules Numerical Quadrature

C.A.R. Hoare

Sir Charles Antony Richard Hoare

(*11. January 1934 Colombo, Sri Lanka)

Source: Wikipedia, the free encyclopedia

�I conclude that there are two ways of constructing a

software design: One way is to make it so simple that

there are obviously no de�ciencies

and the other way is to

make it so complicated that there are no obvious

de�ciencies.�

The Problem Hoare Rules Numerical Quadrature

C.A.R. Hoare

Sir Charles Antony Richard Hoare

(*11. January 1934 Colombo, Sri Lanka)

Source: Wikipedia, the free encyclopedia

�I conclude that there are two ways of constructing a

software design: One way is to make it so simple that

there are obviously no de�ciencies and the other way is to

make it so complicated that there are no obvious

de�ciencies.�

The Problem Hoare Rules Numerical Quadrature

Hoare-Triple

{P} S {Q}

P, Q predicates with values true or false

S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.

{P} S {Q} = true :⇔
If the predicate {P} is true immediately before execution of S, then
immediately S has terminated, the predicate {Q} is true.

Notation: X
Y

:⇔ X ⇒ Y

The Problem Hoare Rules Numerical Quadrature

Hoare-Triple

{P} S {Q}

P, Q predicates with values true or false

S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.

{P} S {Q} = true :⇔
If the predicate {P} is true immediately before execution of S, then
immediately S has terminated, the predicate {Q} is true.

Notation: X
Y

:⇔ X ⇒ Y

The Problem Hoare Rules Numerical Quadrature

Hoare-Triple

{P} S {Q}

P, Q predicates with values true or false

S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.

{P} S {Q} = true :⇔
If the predicate {P} is true immediately before execution of S, then
immediately S has terminated, the predicate {Q} is true.

Notation: X
Y

:⇔ X ⇒ Y

The Problem Hoare Rules Numerical Quadrature

Hoare-Triple

{P} S {Q}

P, Q predicates with values true or false

S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.

{P} S {Q} = true :⇔
If the predicate {P} is true immediately before execution of S, then
immediately S has terminated, the predicate {Q} is true.

Notation: X
Y

:⇔ X ⇒ Y

The Problem Hoare Rules Numerical Quadrature

Hoare-Triple

{P} S {Q}

P, Q predicates with values true or false

S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.

{P} S {Q} = true :⇔

If the predicate {P} is true immediately before execution of S, then
immediately S has terminated, the predicate {Q} is true.

Notation: X
Y

:⇔ X ⇒ Y

The Problem Hoare Rules Numerical Quadrature

Hoare-Triple

{P} S {Q}

P, Q predicates with values true or false

S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.

{P} S {Q} = true :⇔
If the predicate {P} is true immediately before execution of S, then
immediately S has terminated, the predicate {Q} is true.

Notation: X
Y

:⇔ X ⇒ Y

The Problem Hoare Rules Numerical Quadrature

Hoare-Triple

{P} S {Q}

P, Q predicates with values true or false

S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.

{P} S {Q} = true :⇔
If the predicate {P} is true immediately before execution of S, then
immediately S has terminated, the predicate {Q} is true.

Notation: X
Y

:⇔ X ⇒ Y

The Problem Hoare Rules Numerical Quadrature

Hoare-Triple

{P} S {Q}

P, Q predicates with values true or false

S statement, a program with correct syntax

Hoare-Triples are binary expressions with values true or false.

{P} S {Q} = true :⇔
If the predicate {P} is true immediately before execution of S, then
immediately S has terminated, the predicate {Q} is true.

Notation: X
Y

:⇔ X ⇒ Y

The Problem Hoare Rules Numerical Quadrature

Hoare Rule 1: Skip-Axiom

true
{A} skip {A}

skip means the program with no commands.

The Problem Hoare Rules Numerical Quadrature

Hoare Rule 1: Skip-Axiom

true
{A} skip {A}

skip means the program with no commands.

The Problem Hoare Rules Numerical Quadrature

Hoare Rule 2: Axiom of Assignment

true
{Aβ/x} x :=β {A}

Aβ/x is predicate A, but x instead of β.

The Problem Hoare Rules Numerical Quadrature

Hoare Rule 2: Axiom of Assignment

true
{Aβ/x} x :=β {A}

Aβ/x is predicate A, but x instead of β.

The Problem Hoare Rules Numerical Quadrature

Hoare Rule 3: Rule of Composition

{A} S1 {B} ∧ {B} S2 {C}
{A} S1,S2 {C}

The Problem Hoare Rules Numerical Quadrature

Hoare Rule 4: Rule of Conditional Branching

{A ∧ B} S1 {Q} ∧ {A ∧ ¬B} S2 {Q}
{A} if B then S1 else S2 end if {Q}

The Problem Hoare Rules Numerical Quadrature

Hoare Rule 5: Rule of Iteration

{I ∧ B} S {I}
{I} while B loop S end loop {I ∧ ¬B}

Such an I is called loop-invariant.

The Problem Hoare Rules Numerical Quadrature

Hoare Rule 5: Rule of Iteration

{I ∧ B} S {I}
{I} while B loop S end loop {I ∧ ¬B}

Such an I is called loop-invariant.

The Problem Hoare Rules Numerical Quadrature

Hoare Rule 6: Rule of Consequence

A⇒ A' ∧ {A'} S {B'} ∧ B'⇒ B

{A} S {B}

The Problem Hoare Rules Numerical Quadrature

Proof of result_2(x,y) using Hoare

function result_2(x,y) function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I}

while x > 0 while x > 0

{I ∧ B}
x = x-1; x = x-1;

y = y+1; y = y+1;

{I}
end end

{I ∧ ¬ B} (Rule of Iteration)
{Q: y = r}

return y; return y;

B: x > 0 (condition in while-loop) ⇒ ¬ B: ¬(x > 0)

loop-invariant: I: r = x + y

The Problem Hoare Rules Numerical Quadrature

Proof of result_2(x,y) using Hoare

function result_2(x,y) function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}

{I}
while x > 0 while x > 0

{I ∧ B}
x = x-1; x = x-1;

y = y+1; y = y+1;

{I}
end end

{I ∧ ¬ B} (Rule of Iteration)
{Q: y = r}

return y; return y;

B: x > 0 (condition in while-loop) ⇒ ¬ B: ¬(x > 0)

loop-invariant: I: r = x + y

The Problem Hoare Rules Numerical Quadrature

Proof of result_2(x,y) using Hoare

function result_2(x,y) function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I}

while x > 0 while x > 0

{I ∧ B}
x = x-1; x = x-1;

y = y+1; y = y+1;

{I}
end end

{I ∧ ¬ B} (Rule of Iteration)
{Q: y = r}

return y; return y;

B: x > 0 (condition in while-loop) ⇒ ¬ B: ¬(x > 0)

loop-invariant: I: r = x + y

The Problem Hoare Rules Numerical Quadrature

Proof of result_2(x,y) using Hoare

function result_2(x,y) function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I}

while x > 0 while x > 0

{I ∧ B}
x = x-1; x = x-1;

y = y+1; y = y+1;

{I}
end end

{I ∧ ¬ B} (Rule of Iteration)
{Q: y = r}

return y; return y;

B: x > 0 (condition in while-loop) ⇒ ¬ B: ¬(x > 0)

loop-invariant: I: r = x + y

The Problem Hoare Rules Numerical Quadrature

Proof of result_2(x,y) using Hoare

function result_2(x,y) function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I}

while x > 0 while x > 0

{I ∧ B}
x = x-1; x = x-1;

y = y+1; y = y+1;

{I}
end end

{I ∧ ¬ B} (Rule of Iteration)

{Q: y = r}
return y; return y;

B: x > 0 (condition in while-loop) ⇒ ¬ B: ¬(x > 0)

loop-invariant: I: r = x + y

The Problem Hoare Rules Numerical Quadrature

Proof of result_2(x,y) using Hoare

function result_2(x,y) function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I}

while x > 0 while x > 0

{I ∧ B}
x = x-1; x = x-1;

y = y+1; y = y+1;

{I}
end end

{I ∧ ¬ B} (Rule of Iteration)
{Q: y = r}

return y; return y;

B: x > 0 (condition in while-loop) ⇒ ¬ B: ¬(x > 0)

loop-invariant: I: r = x + y

The Problem Hoare Rules Numerical Quadrature

Proof of result_2(x,y) using Hoare

function result_2(x,y) function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I}

while x > 0 while x > 0

{I ∧ B}
x = x-1; x = x-1;

y = y+1; y = y+1;

{I}
end end

{I ∧ ¬ B} (Rule of Iteration)
{Q: y = r}

return y; return y;

B: x > 0 (condition in while-loop) ⇒ ¬ B: ¬(x > 0)

loop-invariant: I: r = x + y

The Problem Hoare Rules Numerical Quadrature

Proof of result_2(x,y) using Hoare

function result_2(x,y) function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I}

while x > 0 while x > 0

{I ∧ B}
x = x-1; x = x-1;

y = y+1; y = y+1;

{I}
end end

{I ∧ ¬ B} (Rule of Iteration)
{Q: y = r}

return y; return y;

B: x > 0 (condition in while-loop)

⇒ ¬ B: ¬(x > 0)

loop-invariant: I: r = x + y

The Problem Hoare Rules Numerical Quadrature

Proof of result_2(x,y) using Hoare

function result_2(x,y) function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I}

while x > 0 while x > 0

{I ∧ B}
x = x-1; x = x-1;

y = y+1; y = y+1;

{I}
end end

{I ∧ ¬ B} (Rule of Iteration)
{Q: y = r}

return y; return y;

B: x > 0 (condition in while-loop) ⇒ ¬ B: ¬(x > 0)

loop-invariant: I: r = x + y

The Problem Hoare Rules Numerical Quadrature

Proof of result_2(x,y) using Hoare

function result_2(x,y) function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I}

while x > 0 while x > 0

{I ∧ B}
x = x-1; x = x-1;

y = y+1; y = y+1;

{I}
end end

{I ∧ ¬ B} (Rule of Iteration)
{Q: y = r}

return y; return y;

B: x > 0 (condition in while-loop) ⇒ ¬ B: ¬(x > 0)

loop-invariant:

I: r = x + y

The Problem Hoare Rules Numerical Quadrature

Proof of result_2(x,y) using Hoare

function result_2(x,y) function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I}

while x > 0 while x > 0

{I ∧ B}
x = x-1; x = x-1;

y = y+1; y = y+1;

{I}
end end

{I ∧ ¬ B} (Rule of Iteration)
{Q: y = r}

return y; return y;

B: x > 0 (condition in while-loop) ⇒ ¬ B: ¬(x > 0)

loop-invariant: I: r = x + y

The Problem Hoare Rules Numerical Quadrature

while x > 0

{I: r = x + y ∧ B: x > 0}
{Item 1}
x = x-1;

{Item 2}
y = y+1;

{I: r = x + y , x ≥ 0}

Rule of Assign.: Item 2: {x + (y + 1), x ≥ 0}

Assign.: Item 1: {(x − 1) + (y + 1), x − 1 ≥ 0}

In fact: {(x − 1)+ (y + 1), x − 1 ≥ 0} =̂ {I: x + y ∧ B: x > 0}
because x − 1 ≥ 0⇔ x > 0 for integer x .

The Problem Hoare Rules Numerical Quadrature

while x > 0

{I: r = x + y ∧ B: x > 0}

{Item 1}
x = x-1;

{Item 2}
y = y+1;

{I: r = x + y , x ≥ 0}

Rule of Assign.: Item 2: {x + (y + 1), x ≥ 0}

Assign.: Item 1: {(x − 1) + (y + 1), x − 1 ≥ 0}

In fact: {(x − 1)+ (y + 1), x − 1 ≥ 0} =̂ {I: x + y ∧ B: x > 0}
because x − 1 ≥ 0⇔ x > 0 for integer x .

The Problem Hoare Rules Numerical Quadrature

while x > 0

{I: r = x + y ∧ B: x > 0}
{Item 1}
x = x-1;

{Item 2}
y = y+1;

{I: r = x + y , x ≥ 0}

Rule of Assign.: Item 2: {x + (y + 1), x ≥ 0}

Assign.: Item 1: {(x − 1) + (y + 1), x − 1 ≥ 0}

In fact: {(x − 1)+ (y + 1), x − 1 ≥ 0} =̂ {I: x + y ∧ B: x > 0}
because x − 1 ≥ 0⇔ x > 0 for integer x .

The Problem Hoare Rules Numerical Quadrature

while x > 0

{I: r = x + y ∧ B: x > 0}
{Item 1}
x = x-1;

{Item 2}
y = y+1;

{I: r = x + y , x ≥ 0}

Rule of Assign.: Item 2: {x + (y + 1), x ≥ 0}

Assign.: Item 1: {(x − 1) + (y + 1), x − 1 ≥ 0}

In fact: {(x − 1)+ (y + 1), x − 1 ≥ 0} =̂ {I: x + y ∧ B: x > 0}
because x − 1 ≥ 0⇔ x > 0 for integer x .

The Problem Hoare Rules Numerical Quadrature

while x > 0

{I: r = x + y ∧ B: x > 0}
{Item 1}
x = x-1;

{Item 2}
y = y+1;

{I: r = x + y , x ≥ 0}

Rule of Assign.:

Item 2: {x + (y + 1), x ≥ 0}

Assign.: Item 1: {(x − 1) + (y + 1), x − 1 ≥ 0}

In fact: {(x − 1)+ (y + 1), x − 1 ≥ 0} =̂ {I: x + y ∧ B: x > 0}
because x − 1 ≥ 0⇔ x > 0 for integer x .

The Problem Hoare Rules Numerical Quadrature

while x > 0

{I: r = x + y ∧ B: x > 0}
{Item 1}
x = x-1;

{Item 2}
y = y+1;

{I: r = x + y , x ≥ 0}

Rule of Assign.: Item 2: {x + (y + 1), x ≥ 0}

Assign.: Item 1: {(x − 1) + (y + 1), x − 1 ≥ 0}

In fact: {(x − 1)+ (y + 1), x − 1 ≥ 0} =̂ {I: x + y ∧ B: x > 0}
because x − 1 ≥ 0⇔ x > 0 for integer x .

The Problem Hoare Rules Numerical Quadrature

while x > 0

{I: r = x + y ∧ B: x > 0}
{Item 1}
x = x-1;

{Item 2}
y = y+1;

{I: r = x + y , x ≥ 0}

Rule of Assign.: Item 2: {x + (y + 1), x ≥ 0}

Assign.:

Item 1: {(x − 1) + (y + 1), x − 1 ≥ 0}

In fact: {(x − 1)+ (y + 1), x − 1 ≥ 0} =̂ {I: x + y ∧ B: x > 0}
because x − 1 ≥ 0⇔ x > 0 for integer x .

The Problem Hoare Rules Numerical Quadrature

while x > 0

{I: r = x + y ∧ B: x > 0}
{Item 1}
x = x-1;

{Item 2}
y = y+1;

{I: r = x + y , x ≥ 0}

Rule of Assign.: Item 2: {x + (y + 1), x ≥ 0}

Assign.: Item 1: {(x − 1) + (y + 1), x − 1 ≥ 0}

In fact: {(x − 1)+ (y + 1), x − 1 ≥ 0} =̂ {I: x + y ∧ B: x > 0}
because x − 1 ≥ 0⇔ x > 0 for integer x .

The Problem Hoare Rules Numerical Quadrature

while x > 0

{I: r = x + y ∧ B: x > 0}
{Item 1}
x = x-1;

{Item 2}
y = y+1;

{I: r = x + y , x ≥ 0}

Rule of Assign.: Item 2: {x + (y + 1), x ≥ 0}

Assign.: Item 1: {(x − 1) + (y + 1), x − 1 ≥ 0}

In fact:

{(x − 1)+ (y + 1), x − 1 ≥ 0} =̂ {I: x + y ∧ B: x > 0}
because x − 1 ≥ 0⇔ x > 0 for integer x .

The Problem Hoare Rules Numerical Quadrature

while x > 0

{I: r = x + y ∧ B: x > 0}
{Item 1}
x = x-1;

{Item 2}
y = y+1;

{I: r = x + y , x ≥ 0}

Rule of Assign.: Item 2: {x + (y + 1), x ≥ 0}

Assign.: Item 1: {(x − 1) + (y + 1), x − 1 ≥ 0}

In fact: {(x − 1)+ (y + 1), x − 1 ≥ 0}

=̂ {I: x + y ∧ B: x > 0}
because x − 1 ≥ 0⇔ x > 0 for integer x .

The Problem Hoare Rules Numerical Quadrature

while x > 0

{I: r = x + y ∧ B: x > 0}
{Item 1}
x = x-1;

{Item 2}
y = y+1;

{I: r = x + y , x ≥ 0}

Rule of Assign.: Item 2: {x + (y + 1), x ≥ 0}

Assign.: Item 1: {(x − 1) + (y + 1), x − 1 ≥ 0}

In fact: {(x − 1)+ (y + 1), x − 1 ≥ 0} =̂ {I: x + y ∧ B: x > 0}

because x − 1 ≥ 0⇔ x > 0 for integer x .

The Problem Hoare Rules Numerical Quadrature

while x > 0

{I: r = x + y ∧ B: x > 0}
{Item 1}
x = x-1;

{Item 2}
y = y+1;

{I: r = x + y , x ≥ 0}

Rule of Assign.: Item 2: {x + (y + 1), x ≥ 0}

Assign.: Item 1: {(x − 1) + (y + 1), x − 1 ≥ 0}

In fact: {(x − 1)+ (y + 1), x − 1 ≥ 0} =̂ {I: x + y ∧ B: x > 0}
because x − 1 ≥ 0⇔ x > 0 for integer x .

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I: r = x + y}
while x > 0

{I: r = x + y ∧ B: x > 0 y ≥ 0}
x = x-1;

y = y+1;

{I: r = x + y}
end

{I: r = x + y ∧ ¬ B: ¬(x > 0)}
{Q: y = r}
return y;

P: x ≥ 0 ∧ y ≥ 0 and ¬(x > 0) ⇒ x = 0
⇒ Q: y = y + x = r (I: r = x + y loop-invariant) �

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I: r = x + y}
while x > 0

{I: r = x + y ∧ B: x > 0 y ≥ 0}
x = x-1;

y = y+1;

{I: r = x + y}
end

{I: r = x + y ∧ ¬ B: ¬(x > 0)}

{Q: y = r}
return y;

P: x ≥ 0 ∧ y ≥ 0 and ¬(x > 0) ⇒ x = 0
⇒ Q: y = y + x = r (I: r = x + y loop-invariant) �

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I: r = x + y}
while x > 0

{I: r = x + y ∧ B: x > 0 y ≥ 0}
x = x-1;

y = y+1;

{I: r = x + y}
end

{I: r = x + y ∧ ¬ B: ¬(x > 0)}
{Q: y = r}

return y;

P: x ≥ 0 ∧ y ≥ 0 and ¬(x > 0) ⇒ x = 0
⇒ Q: y = y + x = r (I: r = x + y loop-invariant) �

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I: r = x + y}
while x > 0

{I: r = x + y ∧ B: x > 0 y ≥ 0}
x = x-1;

y = y+1;

{I: r = x + y}
end

{I: r = x + y ∧ ¬ B: ¬(x > 0)}
{Q: y = r}
return y;

P: x ≥ 0 ∧ y ≥ 0 and ¬(x > 0) ⇒ x = 0
⇒ Q: y = y + x = r (I: r = x + y loop-invariant) �

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I: r = x + y}
while x > 0

{I: r = x + y ∧ B: x > 0 y ≥ 0}
x = x-1;

y = y+1;

{I: r = x + y}
end

{I: r = x + y ∧ ¬ B: ¬(x > 0)}
{Q: y = r}
return y;

P: x ≥ 0 ∧ y ≥ 0

and ¬(x > 0) ⇒ x = 0
⇒ Q: y = y + x = r (I: r = x + y loop-invariant) �

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I: r = x + y}
while x > 0

{I: r = x + y ∧ B: x > 0 y ≥ 0}
x = x-1;

y = y+1;

{I: r = x + y}
end

{I: r = x + y ∧ ¬ B: ¬(x > 0)}
{Q: y = r}
return y;

P: x ≥ 0 ∧ y ≥ 0 and ¬(x > 0)

⇒ x = 0
⇒ Q: y = y + x = r (I: r = x + y loop-invariant) �

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I: r = x + y}
while x > 0

{I: r = x + y ∧ B: x > 0 y ≥ 0}
x = x-1;

y = y+1;

{I: r = x + y}
end

{I: r = x + y ∧ ¬ B: ¬(x > 0)}
{Q: y = r}
return y;

P: x ≥ 0 ∧ y ≥ 0 and ¬(x > 0) ⇒ x = 0

⇒ Q: y = y + x = r (I: r = x + y loop-invariant) �

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I: r = x + y}
while x > 0

{I: r = x + y ∧ B: x > 0 y ≥ 0}
x = x-1;

y = y+1;

{I: r = x + y}
end

{I: r = x + y ∧ ¬ B: ¬(x > 0)}
{Q: y = r}
return y;

P: x ≥ 0 ∧ y ≥ 0 and ¬(x > 0) ⇒ x = 0
⇒ Q: y =

y + x = r (I: r = x + y loop-invariant) �

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I: r = x + y}
while x > 0

{I: r = x + y ∧ B: x > 0 y ≥ 0}
x = x-1;

y = y+1;

{I: r = x + y}
end

{I: r = x + y ∧ ¬ B: ¬(x > 0)}
{Q: y = r}
return y;

P: x ≥ 0 ∧ y ≥ 0 and ¬(x > 0) ⇒ x = 0
⇒ Q: y = y + x

= r (I: r = x + y loop-invariant) �

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I: r = x + y}
while x > 0

{I: r = x + y ∧ B: x > 0 y ≥ 0}
x = x-1;

y = y+1;

{I: r = x + y}
end

{I: r = x + y ∧ ¬ B: ¬(x > 0)}
{Q: y = r}
return y;

P: x ≥ 0 ∧ y ≥ 0 and ¬(x > 0) ⇒ x = 0
⇒ Q: y = y + x = r (I: r = x + y loop-invariant)

�

The Problem Hoare Rules Numerical Quadrature

function result_2(x,y)

{P: x ≥ 0 ∧ y ≥ 0, r := x + y}
{I: r = x + y}
while x > 0

{I: r = x + y ∧ B: x > 0 y ≥ 0}
x = x-1;

y = y+1;

{I: r = x + y}
end

{I: r = x + y ∧ ¬ B: ¬(x > 0)}
{Q: y = r}
return y;

P: x ≥ 0 ∧ y ≥ 0 and ¬(x > 0) ⇒ x = 0
⇒ Q: y = y + x = r (I: r = x + y loop-invariant) �

The Problem Hoare Rules Numerical Quadrature

Numerical Quadrature

Let f : [a, b] → R be su�ciently smooth (e.g. f ∈ C 2).

The functional of the de�nite integral is given by

F (f , a, b) :=

∫
b

a

f (x) dx

Numerical Quadrature means:
Calculate an approximation for the numerical value of F (f , a, b).

The Problem Hoare Rules Numerical Quadrature

Numerical Quadrature

Let f : [a, b] → R be su�ciently smooth (e.g. f ∈ C 2).

The functional of the de�nite integral is given by

F (f , a, b) :=

∫
b

a

f (x) dx

Numerical Quadrature means:
Calculate an approximation for the numerical value of F (f , a, b).

The Problem Hoare Rules Numerical Quadrature

Numerical Quadrature

Let f : [a, b] → R be su�ciently smooth (e.g. f ∈ C 2).

The functional of the de�nite integral is given by

F (f , a, b) :=

∫
b

a

f (x) dx

Numerical Quadrature means:
Calculate an approximation for the numerical value of F (f , a, b).

The Problem Hoare Rules Numerical Quadrature

Numerical Quadrature

Let f : [a, b] → R be su�ciently smooth (e.g. f ∈ C 2).

The functional of the de�nite integral is given by

F (f , a, b) :=

∫
b

a

f (x) dx

Numerical Quadrature means:
Calculate an approximation for the numerical value of F (f , a, b).

The Problem Hoare Rules Numerical Quadrature

Numerical Quadrature

Let f : [a, b] → R be su�ciently smooth (e.g. f ∈ C 2).

The functional of the de�nite integral is given by

F (f , a, b) :=

∫
b

a

f (x) dx

Numerical Quadrature means:

Calculate an approximation for the numerical value of F (f , a, b).

The Problem Hoare Rules Numerical Quadrature

Numerical Quadrature

Let f : [a, b] → R be su�ciently smooth (e.g. f ∈ C 2).

The functional of the de�nite integral is given by

F (f , a, b) :=

∫
b

a

f (x) dx

Numerical Quadrature means:
Calculate an approximation for the numerical value of F (f , a, b).

The Problem Hoare Rules Numerical Quadrature

The Trapezodial-Rule

Approximation with linear function:

F ≈ T := (b − a) · f (a) + f (b)

2

The Problem Hoare Rules Numerical Quadrature

The Trapezodial-Rule

Approximation with linear function:

F ≈ T := (b − a) · f (a) + f (b)

2

The Problem Hoare Rules Numerical Quadrature

Dividing [a, b] into smaller, equidistant intervals:

⇒ piecewise linear
functions

F ≈ TS :=
b − a

n + 1
·

[
f (a)

2
+

n∑
k=1

f (xk) +
f (b)

2

]

In the picture: n = 4

The errors ∆F = |F −T | or ∆F = |F −TS | depend on the second
derivative:

∆F ≤ (b − a)3

12 · n2
· ||f ′′||∞

The Problem Hoare Rules Numerical Quadrature

Dividing [a, b] into smaller, equidistant intervals: ⇒ piecewise linear
functions

F ≈ TS :=
b − a

n + 1
·

[
f (a)

2
+

n∑
k=1

f (xk) +
f (b)

2

]

In the picture: n = 4

The errors ∆F = |F −T | or ∆F = |F −TS | depend on the second
derivative:

∆F ≤ (b − a)3

12 · n2
· ||f ′′||∞

The Problem Hoare Rules Numerical Quadrature

Dividing [a, b] into smaller, equidistant intervals: ⇒ piecewise linear
functions

F ≈ TS :=
b − a

n + 1
·

[
f (a)

2
+

n∑
k=1

f (xk) +
f (b)

2

]

In the picture: n = 4

The errors ∆F = |F −T | or ∆F = |F −TS | depend on the second
derivative:

∆F ≤ (b − a)3

12 · n2
· ||f ′′||∞

The Problem Hoare Rules Numerical Quadrature

Dividing [a, b] into smaller, equidistant intervals: ⇒ piecewise linear
functions

F ≈ TS :=
b − a

n + 1
·

[
f (a)

2
+

n∑
k=1

f (xk) +
f (b)

2

]

In the picture: n = 4

The errors ∆F = |F −T | or ∆F = |F −TS | depend on the second
derivative:

∆F ≤ (b − a)3

12 · n2
· ||f ′′||∞

The Problem Hoare Rules Numerical Quadrature

Dividing [a, b] into smaller, equidistant intervals: ⇒ piecewise linear
functions

F ≈ TS :=
b − a

n + 1
·

[
f (a)

2
+

n∑
k=1

f (xk) +
f (b)

2

]

In the picture: n = 4

The errors ∆F = |F −T | or ∆F = |F −TS | depend on the second
derivative:

∆F ≤ (b − a)3

12 · n2
· ||f ′′||∞

The Problem Hoare Rules Numerical Quadrature

Hierachical Decomposition

To approximate F (f , a, b) we start with the Trapezoidal-Rule:

F (f , a, b) ≈ T (f , a, b) = (b − a) · f (a) + f (b)

2

There is a residuum S(f , a, b) with:

F (f , a, b) = T (f , a, b) + S(f , a, b)

The Problem Hoare Rules Numerical Quadrature

Hierachical Decomposition

To approximate F (f , a, b) we start with the Trapezoidal-Rule:

F (f , a, b) ≈ T (f , a, b) = (b − a) · f (a) + f (b)

2

There is a residuum S(f , a, b) with:

F (f , a, b) = T (f , a, b) + S(f , a, b)

The Problem Hoare Rules Numerical Quadrature

Hierachical Decomposition

To approximate F (f , a, b) we start with the Trapezoidal-Rule:

F (f , a, b) ≈ T (f , a, b) = (b − a) · f (a) + f (b)

2

There is a residuum S(f , a, b) with:

F (f , a, b) = T (f , a, b) + S(f , a, b)

The Problem Hoare Rules Numerical Quadrature

Hierachical Decomposition

To approximate F (f , a, b) we start with the Trapezoidal-Rule:

F (f , a, b) ≈ T (f , a, b) = (b − a) · f (a) + f (b)

2

There is a residuum S(f , a, b) with:

F (f , a, b) = T (f , a, b) + S(f , a, b)

The Problem Hoare Rules Numerical Quadrature

Now decompose S(f , a, b) into a triangle D with projected heigh

h = f

(
a + b

2

)
− f (a) + f (b)

2

The area of D is given by:

D(f , a, b) =
b − a

2
· h

The Problem Hoare Rules Numerical Quadrature

Now decompose S(f , a, b) into a triangle D with projected heigh

h = f

(
a + b

2

)
− f (a) + f (b)

2

The area of D is given by:

D(f , a, b) =
b − a

2
· h

The Problem Hoare Rules Numerical Quadrature

Now decompose S(f , a, b) into a triangle D with projected heigh

h = f

(
a + b

2

)
− f (a) + f (b)

2

The area of D is given by:

D(f , a, b) =
b − a

2
· h

The Problem Hoare Rules Numerical Quadrature

Now decompose S(f , a, b) into a triangle D with projected heigh

h = f

(
a + b

2

)
− f (a) + f (b)

2

The area of D is given by:

D(f , a, b) =
b − a

2
· h

The Problem Hoare Rules Numerical Quadrature

The new residuum can be determined by using this idea recursively:

S(f , a, b) = D(f , a, b) + S(f , a,
a + b

2
) + S(f ,

a + b

2
, b)

The Problem Hoare Rules Numerical Quadrature

The new residuum can be determined by using this idea recursively:

S(f , a, b) = D(f , a, b) + S(f , a,
a + b

2
) + S(f ,

a + b

2
, b)

The Problem Hoare Rules Numerical Quadrature

The new residuum can be determined by using this idea recursively:

S(f , a, b) = D(f , a, b) + S(f , a,
a + b

2
) + S(f ,

a + b

2
, b)

The Problem Hoare Rules Numerical Quadrature

Approximation via Basis Functions

If u : [a, b] → R is an approximation to f , then

F (f , a, b) ≈ F (u, a, b)

Let u(x) be a linear combination of basis functions Φk(x):

u(x) =
N∑

k=1

αkΦk(x)

Now we can write easily:

F (f , a, b) ≈
∫

b

a

u(x) =

∫
b

a

N∑
k=1

αkΦk(x) =
N∑

k=1

αk

∫
b

a

Φk(x)

The Problem Hoare Rules Numerical Quadrature

Approximation via Basis Functions

If u : [a, b] → R is an approximation to f , then

F (f , a, b) ≈ F (u, a, b)

Let u(x) be a linear combination of basis functions Φk(x):

u(x) =
N∑

k=1

αkΦk(x)

Now we can write easily:

F (f , a, b) ≈
∫

b

a

u(x) =

∫
b

a

N∑
k=1

αkΦk(x) =
N∑

k=1

αk

∫
b

a

Φk(x)

The Problem Hoare Rules Numerical Quadrature

Approximation via Basis Functions

If u : [a, b] → R is an approximation to f , then

F (f , a, b) ≈ F (u, a, b)

Let u(x) be a linear combination of basis functions Φk(x):

u(x) =
N∑

k=1

αkΦk(x)

Now we can write easily:

F (f , a, b) ≈
∫

b

a

u(x) =

∫
b

a

N∑
k=1

αkΦk(x) =
N∑

k=1

αk

∫
b

a

Φk(x)

The Problem Hoare Rules Numerical Quadrature

Approximation via Basis Functions

If u : [a, b] → R is an approximation to f , then

F (f , a, b) ≈ F (u, a, b)

Let u(x) be a linear combination of basis functions Φk(x):

u(x) =
N∑

k=1

αkΦk(x)

Now we can write easily:

F (f , a, b) ≈
∫

b

a

u(x) =

∫
b

a

N∑
k=1

αkΦk(x) =
N∑

k=1

αk

∫
b

a

Φk(x)

The Problem Hoare Rules Numerical Quadrature

Approximation via Basis Functions

If u : [a, b] → R is an approximation to f , then

F (f , a, b) ≈ F (u, a, b)

Let u(x) be a linear combination of basis functions Φk(x):

u(x) =
N∑

k=1

αkΦk(x)

Now we can write easily:

F (f , a, b) ≈
∫

b

a

u(x) =

∫
b

a

N∑
k=1

αkΦk(x) =
N∑

k=1

αk

∫
b

a

Φk(x)

The Problem Hoare Rules Numerical Quadrature

Approximation via Basis Functions

If u : [a, b] → R is an approximation to f , then

F (f , a, b) ≈ F (u, a, b)

Let u(x) be a linear combination of basis functions Φk(x):

u(x) =
N∑

k=1

αkΦk(x)

Now we can write easily:

F (f , a, b) ≈
∫

b

a

u(x) =

∫
b

a

N∑
k=1

αkΦk(x) =
N∑

k=1

αk

∫
b

a

Φk(x)

The Problem Hoare Rules Numerical Quadrature

Approximation via Basis Functions

If u : [a, b] → R is an approximation to f , then

F (f , a, b) ≈ F (u, a, b)

Let u(x) be a linear combination of basis functions Φk(x):

u(x) =
N∑

k=1

αkΦk(x)

Now we can write easily:

F (f , a, b) ≈
∫

b

a

u(x) =

∫
b

a

N∑
k=1

αkΦk(x) =
N∑

k=1

αk

∫
b

a

Φk(x)

The Problem Hoare Rules Numerical Quadrature

Approximation via Basis Functions

If u : [a, b] → R is an approximation to f , then

F (f , a, b) ≈ F (u, a, b)

Let u(x) be a linear combination of basis functions Φk(x):

u(x) =
N∑

k=1

αkΦk(x)

Now we can write easily:

F (f , a, b) ≈
∫

b

a

u(x) =

∫
b

a

N∑
k=1

αkΦk(x) =

N∑
k=1

αk

∫
b

a

Φk(x)

The Problem Hoare Rules Numerical Quadrature

Approximation via Basis Functions

If u : [a, b] → R is an approximation to f , then

F (f , a, b) ≈ F (u, a, b)

Let u(x) be a linear combination of basis functions Φk(x):

u(x) =
N∑

k=1

αkΦk(x)

Now we can write easily:

F (f , a, b) ≈
∫

b

a

u(x) =

∫
b

a

N∑
k=1

αkΦk(x) =
N∑

k=1

αk

∫
b

a

Φk(x)

The Problem Hoare Rules Numerical Quadrature

De�ne �hat functions� as basis functions via

Φn,i = Φ

(
x − xn,i

hn

)

Φ(x) := max{1− |x |, 0}
mesh size hn := 2−n

grid points xn,i = i · hn

The Problem Hoare Rules Numerical Quadrature

De�ne �hat functions� as basis functions via

Φn,i = Φ

(
x − xn,i

hn

)

Φ(x) := max{1− |x |, 0}
mesh size hn := 2−n

grid points xn,i = i · hn

The Problem Hoare Rules Numerical Quadrature

De�ne �hat functions� as basis functions via

Φn,i = Φ

(
x − xn,i

hn

)

Φ(x) := max{1− |x |, 0}

mesh size hn := 2−n

grid points xn,i = i · hn

The Problem Hoare Rules Numerical Quadrature

De�ne �hat functions� as basis functions via

Φn,i = Φ

(
x − xn,i

hn

)

Φ(x) := max{1− |x |, 0}
mesh size hn := 2−n

grid points xn,i = i · hn

The Problem Hoare Rules Numerical Quadrature

De�ne �hat functions� as basis functions via

Φn,i = Φ

(
x − xn,i

hn

)

Φ(x) := max{1− |x |, 0}
mesh size hn := 2−n

grid points xn,i = i · hn

The Problem Hoare Rules Numerical Quadrature

De�ne �hat functions� as basis functions via

Φn,i = Φ

(
x − xn,i

hn

)

Φ(x) := max{1− |x |, 0}
mesh size hn := 2−n

grid points xn,i = i · hn

The Problem Hoare Rules Numerical Quadrature

Let VN be the space of the continuous, on grid hn piecewise linear
functions u : [0, 1] → R with u(0) = u(1) = 0. Then

ΨN :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n}

is a generator system for VN (but for N > 1 not a basis).
We use the hierachical basis:

ΨH

N :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n | i odd}

Wn := span{Φn,i | αn,i = 0 for all even i} ⇒ VN = VN−1 ⊕WN

⇒ VN = ⊕N
n=1Wn (inductive argument with V1 = W1)

The Problem Hoare Rules Numerical Quadrature

Let VN be the space of the continuous, on grid hn piecewise linear
functions u : [0, 1] → R with u(0) = u(1) = 0. Then

ΨN :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n}

is a generator system for VN (but for N > 1 not a basis).
We use the hierachical basis:

ΨH

N :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n | i odd}

Wn := span{Φn,i | αn,i = 0 for all even i} ⇒ VN = VN−1 ⊕WN

⇒ VN = ⊕N
n=1Wn (inductive argument with V1 = W1)

The Problem Hoare Rules Numerical Quadrature

Let VN be the space of the continuous, on grid hn piecewise linear
functions u : [0, 1] → R with u(0) = u(1) = 0. Then

ΨN :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n}

is a generator system for VN (but for N > 1 not a basis).

We use the hierachical basis:

ΨH

N :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n | i odd}

Wn := span{Φn,i | αn,i = 0 for all even i} ⇒ VN = VN−1 ⊕WN

⇒ VN = ⊕N
n=1Wn (inductive argument with V1 = W1)

The Problem Hoare Rules Numerical Quadrature

Let VN be the space of the continuous, on grid hn piecewise linear
functions u : [0, 1] → R with u(0) = u(1) = 0. Then

ΨN :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n}

is a generator system for VN (but for N > 1 not a basis).
We use the hierachical basis:

ΨH

N :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n | i odd}

Wn := span{Φn,i | αn,i = 0 for all even i} ⇒ VN = VN−1 ⊕WN

⇒ VN = ⊕N
n=1Wn (inductive argument with V1 = W1)

The Problem Hoare Rules Numerical Quadrature

Let VN be the space of the continuous, on grid hn piecewise linear
functions u : [0, 1] → R with u(0) = u(1) = 0. Then

ΨN :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n}

is a generator system for VN (but for N > 1 not a basis).
We use the hierachical basis:

ΨH

N :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n | i odd}

Wn := span{Φn,i | αn,i = 0 for all even i} ⇒ VN = VN−1 ⊕WN

⇒ VN = ⊕N
n=1Wn (inductive argument with V1 = W1)

The Problem Hoare Rules Numerical Quadrature

Let VN be the space of the continuous, on grid hn piecewise linear
functions u : [0, 1] → R with u(0) = u(1) = 0. Then

ΨN :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n}

is a generator system for VN (but for N > 1 not a basis).
We use the hierachical basis:

ΨH

N :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n | i odd}

Wn := span{Φn,i | αn,i = 0 for all even i}

⇒ VN = VN−1 ⊕WN

⇒ VN = ⊕N
n=1Wn (inductive argument with V1 = W1)

The Problem Hoare Rules Numerical Quadrature

Let VN be the space of the continuous, on grid hn piecewise linear
functions u : [0, 1] → R with u(0) = u(1) = 0. Then

ΨN :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n}

is a generator system for VN (but for N > 1 not a basis).
We use the hierachical basis:

ΨH

N :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n | i odd}

Wn := span{Φn,i | αn,i = 0 for all even i} ⇒ VN = VN−1 ⊕WN

⇒ VN = ⊕N
n=1Wn (inductive argument with V1 = W1)

The Problem Hoare Rules Numerical Quadrature

Let VN be the space of the continuous, on grid hn piecewise linear
functions u : [0, 1] → R with u(0) = u(1) = 0. Then

ΨN :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n}

is a generator system for VN (but for N > 1 not a basis).
We use the hierachical basis:

ΨH

N :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n | i odd}

Wn := span{Φn,i | αn,i = 0 for all even i} ⇒ VN = VN−1 ⊕WN

⇒ VN = ⊕N
n=1Wn

(inductive argument with V1 = W1)

The Problem Hoare Rules Numerical Quadrature

Let VN be the space of the continuous, on grid hn piecewise linear
functions u : [0, 1] → R with u(0) = u(1) = 0. Then

ΨN :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n}

is a generator system for VN (but for N > 1 not a basis).
We use the hierachical basis:

ΨH

N :=
N⋃

n=1

{Φn,i : 1 ≤ i < 2n | i odd}

Wn := span{Φn,i | αn,i = 0 for all even i} ⇒ VN = VN−1 ⊕WN

⇒ VN = ⊕N
n=1Wn (inductive argument with V1 = W1)

The Problem Hoare Rules Numerical Quadrature

The hierachical basis for W1, W2 and W3

The Problem Hoare Rules Numerical Quadrature

Approximation

The Problem Hoare Rules Numerical Quadrature

Representation in hierachical basis

Let v ∈ VN be a vector:

v(x) =
N∑

n=1

2n−1∑
i=1

αn,iΦn,i (x)

The program HierachicalBasis(N) should convert v(x) into the
hierachical basis: (N > 1)

v(x) =
N∑

n=1

2n−1∑
i=1

α′n,iΦn,i (x)

with α′
n,i = 0 for all even i .

The Problem Hoare Rules Numerical Quadrature

Representation in hierachical basis

Let v ∈ VN be a vector:

v(x) =
N∑

n=1

2n−1∑
i=1

αn,iΦn,i (x)

The program HierachicalBasis(N) should convert v(x) into the
hierachical basis: (N > 1)

v(x) =
N∑

n=1

2n−1∑
i=1

α′n,iΦn,i (x)

with α′
n,i = 0 for all even i .

The Problem Hoare Rules Numerical Quadrature

Representation in hierachical basis

Let v ∈ VN be a vector:

v(x) =
N∑

n=1

2n−1∑
i=1

αn,iΦn,i (x)

The program HierachicalBasis(N) should convert v(x) into the
hierachical basis: (N > 1)

v(x) =
N∑

n=1

2n−1∑
i=1

α′n,iΦn,i (x)

with α′
n,i = 0 for all even i .

The Problem Hoare Rules Numerical Quadrature

Representation in hierachical basis

Let v ∈ VN be a vector:

v(x) =
N∑

n=1

2n−1∑
i=1

αn,iΦn,i (x)

The program HierachicalBasis(N) should convert v(x) into the
hierachical basis: (N > 1)

v(x) =
N∑

n=1

2n−1∑
i=1

α′n,iΦn,i (x)

with α′
n,i = 0 for all even i .

The Problem Hoare Rules Numerical Quadrature

Program HierachicalBasis(N)

function HierachicalBasis(N)

for n = N-1,. . .,1 :

for i = 1,. . .,2n − 1 :

an+1,2i−1 - = an+1,2i/2

an+1,2i+1 - = an+1,2i/2

an,i + = an+1,2i
an+1,2i = 0

To prove the correctness of HierachicalBasis(N), the programm
must be written in a form Hoare Calculation can handle with:

The Problem Hoare Rules Numerical Quadrature

Program HierachicalBasis(N)

function HierachicalBasis(N)

for n = N-1,. . .,1 :

for i = 1,. . .,2n − 1 :

an+1,2i−1 - = an+1,2i/2

an+1,2i+1 - = an+1,2i/2

an,i + = an+1,2i
an+1,2i = 0

To prove the correctness of HierachicalBasis(N), the programm
must be written in a form Hoare Calculation can handle with:

The Problem Hoare Rules Numerical Quadrature

Program HierachicalBasis(N)

function HierachicalBasis(N)

for n = N-1,. . .,1 :

for i = 1,. . .,2n − 1 :

an+1,2i−1 - = an+1,2i/2

an+1,2i+1 - = an+1,2i/2

an,i + = an+1,2i
an+1,2i = 0

To prove the correctness of HierachicalBasis(N), the programm
must be written in a form Hoare Calculation can handle with:

The Problem Hoare Rules Numerical Quadrature

Program HierachicalBasis(N)

function HierachicalBasis(N)

for n = N-1,. . .,1 :

for i = 1,. . .,2n − 1 :

an+1,2i−1 - = an+1,2i/2

an+1,2i+1 - = an+1,2i/2

an,i + = an+1,2i
an+1,2i = 0

To prove the correctness of HierachicalBasis(N), the programm
must be written in a form Hoare Calculation can handle with:

The Problem Hoare Rules Numerical Quadrature

Program HierachicalBasis(N)

function HierachicalBasis(N)

for n = N-1,. . .,1 :

for i = 1,. . .,2n − 1 :

an+1,2i−1 - = an+1,2i/2

an+1,2i+1 - = an+1,2i/2

an,i + = an+1,2i

an+1,2i = 0

To prove the correctness of HierachicalBasis(N), the programm
must be written in a form Hoare Calculation can handle with:

The Problem Hoare Rules Numerical Quadrature

Program HierachicalBasis(N)

function HierachicalBasis(N)

for n = N-1,. . .,1 :

for i = 1,. . .,2n − 1 :

an+1,2i−1 - = an+1,2i/2

an+1,2i+1 - = an+1,2i/2

an,i + = an+1,2i
an+1,2i = 0

To prove the correctness of HierachicalBasis(N), the programm
must be written in a form Hoare Calculation can handle with:

The Problem Hoare Rules Numerical Quadrature

Program HierachicalBasis(N)

function HierachicalBasis(N)

for n = N-1,. . .,1 :

for i = 1,. . .,2n − 1 :

an+1,2i−1 - = an+1,2i/2

an+1,2i+1 - = an+1,2i/2

an,i + = an+1,2i
an+1,2i = 0

To prove the correctness of HierachicalBasis(N), the programm
must be written in a form Hoare Calculation can handle with:

The Problem Hoare Rules Numerical Quadrature

function HierachicalBasis_Hoare(N)

n = N-1

while n 6= 0

i = 1

while i 6= 2n

an+1,2i−1 = an+1,2i−1 − an+1,2i/2

an+1,2i+1 = an+1,2i+1 − an+1,2i/2

an,i = an,i + an+1,2i

an+1,2i = 0

i = i+1
n = n-1

The Problem Hoare Rules Numerical Quadrature

function HierachicalBasis_Hoare(N)

n = N-1

while n 6= 0

i = 1

while i 6= 2n

an+1,2i−1 = an+1,2i−1 − an+1,2i/2

an+1,2i+1 = an+1,2i+1 − an+1,2i/2

an,i = an,i + an+1,2i

an+1,2i = 0

i = i+1
n = n-1

The Problem Hoare Rules Numerical Quadrature

function HierachicalBasis_Hoare(N)

n = N-1

while n 6= 0

i = 1

while i 6= 2n

an+1,2i−1 = an+1,2i−1 − an+1,2i/2

an+1,2i+1 = an+1,2i+1 − an+1,2i/2

an,i = an,i + an+1,2i

an+1,2i = 0

i = i+1
n = n-1

The Problem Hoare Rules Numerical Quadrature

function HierachicalBasis_Hoare(N)

n = N-1

while n 6= 0

i = 1

while i 6= 2n

an+1,2i−1 = an+1,2i−1 − an+1,2i/2

an+1,2i+1 = an+1,2i+1 − an+1,2i/2

an,i = an,i + an+1,2i

an+1,2i = 0

i = i+1
n = n-1

The Problem Hoare Rules Numerical Quadrature

function HierachicalBasis_Hoare(N)

n = N-1

while n 6= 0

i = 1

while i 6= 2n

an+1,2i−1 = an+1,2i−1 − an+1,2i/2

an+1,2i+1 = an+1,2i+1 − an+1,2i/2

an,i = an,i + an+1,2i

an+1,2i = 0

i = i+1
n = n-1

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high):

αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε

⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by

∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials:

S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D

(Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)

⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis:

M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem:

Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated!

How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?

⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

Why to use Hierachical Basis

Adaptive stop criterion (via projected high): αn,i < ε ⇒ STOP

The global error can be estimated by ∆F ≤ ε(b − a)

For second-degree polynomials: S = 4
3
D (Simpsons-Rule)

For high-dimensional functions (dimension d) the memory
requirements M ∝ Nd (N = dimVN)
⇒ exponential increasing with d

With hierachical basis: M ∝ N · (lnN)d−1

⇒ New problem: Program code very complicated! How to be sure,
there are no de�ciencies?
⇒ Hoare Calculation!

The Problem Hoare Rules Numerical Quadrature

References

Michael Gellner: Der Umgang mit dem Hoare-Kalkül zur
Programmverik�kation

Volker Claus: Einführung in die Informatik 2005/06 - Kapitel
7: Semantik von Programmen

Samuel Kerschbaumer: The Hoare Logic - Providing Numerical
Algorithms (2006)

Peter Heinig: Program Veri�cation using Hoare Logic - An
Introduction

Michael Bader, Stefan Zimmer: Hierarchische Zerlegung
(eindimensional)

The Problem Hoare Rules Numerical Quadrature

End of presentation

Thank you for your attention!

	The Problem
	A first example
	A second example
	The Problem

	Hoare Rules
	Preface
	Hoare Rules
	First application

	Numerical Quadrature
	Preface
	Trapezodial-Rule
	Hierachical Decomposition
	Basis Functions
	Algorithm

