

St. Petersburg, March 2008

A quantum control algorithm: numerical aspects

Philipp Klenze

Technische Universität München, Germany

This presentation contains slides adapted from the presentation "Numerical Linear Algebra Tasks in a Quantum Control Problem" by Konrad Waldherr.

Gradient Flow Algorithm

One iteration step in the Gradient Flow Algorithm

• Calculate the forward-propagation for all $t_1, t_2, ..., t_k$:

$$\mathbf{U}(t_k) = e^{-i\Delta t\mathbf{H}_k} \cdot e^{-i\Delta t\mathbf{H}_{k-1}} \cdots e^{-i\Delta t\mathbf{H}_1}$$

• Compute the backward-propagation for all $t_M, t_{M-1}, \ldots, t_k$

$$\mathbf{\Lambda}(t_k) = e^{-i\Delta t\mathbf{H}_k} \cdot e^{-i\Delta t\mathbf{H}_{k+1}} \cdots e^{-i\Delta t\mathbf{H}_M}$$

· Calculate the update

$$\frac{\partial h(\mathbf{U}(t_k))}{\partial u_j} = \operatorname{Re}\left\{\operatorname{tr}\left[\mathbf{\Lambda}^{\dagger}(t_k)(-i\mathbf{H}_j)\mathbf{U}(t_k)\right]\right\}$$

Numerical tasks

- · Computation of the matrix exponentials
- · Computation of all intermediate products

```
 \begin{aligned} & \mathbf{U}_0 \\ & \mathbf{U}_0 \cdot \mathbf{U}_1 \\ & \mathbf{U}_0 \cdot \mathbf{U}_1 \cdot \mathbf{U}_2 \\ & \vdots \\ & \mathbf{U}_0 \cdot \mathbf{U}_1 \cdot \mathbf{U}_2 \cdots \mathbf{U}_M \end{aligned}
```


Properties of H

- H is sparse, most entries are zero
- **H** is *hermitian*, $\mathbf{H}^{\dagger} = \mathbf{H}$
- H is *persymmetric*, symmetric with respect to the north-west-south-east diagonal, $HJ = JH^{\dagger}$
- H has the following sparsity pattern

Philipp Klenze: A quantum control algorithm: numerical aspects JASS 2008, March 27, 2008

Simplifying the problem

- H can be transformed into a real matrix
- Then, H can be transformed to two real blocks of half size:

$$\left(\begin{array}{cc} I & J \\ I & -J \end{array}\right) \cdot H \cdot \left(\begin{array}{cc} I & I \\ J & -J \end{array}\right) = \left(\begin{array}{cc} A_1 & 0 \\ 0 & A_2 \end{array}\right)$$

• The problem: compute
$$e^{\mathbf{A}} := \sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!}$$

- The problem: compute $e^{\mathbf{A}} := \sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!}$
- Diagonalise A (eigendecomposition)

- The problem: compute $e^{\mathbf{A}} := \sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!}$
- Diagonalise A (eigendecomposition)
- Approximate the exponential function

- The problem: compute $e^{\mathbf{A}} := \sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!}$
- Diagonalise A (eigendecomposition)
- Approximate the exponential function
 - with polynomials

- The problem: compute $e^{\mathbf{A}} := \sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!}$
- Diagonalise A (eigendecomposition)
- Approximate the exponential function
 - with polynomials
 - TAYLOR series

- The problem: compute $e^{\mathbf{A}} := \sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!}$
- Diagonalise A (eigendecomposition)
- Approximate the exponential function
 - with polynomials
 - TAYLOR series
 - CHEBYSHEV series expansion

- The problem: compute $e^{\mathbf{A}} := \sum_{k=0}^{\infty} \frac{\mathbf{A}^k}{k!}$
- Diagonalise A (eigendecomposition)
- Approximate the exponential function
 - with polynomials
 - TAYLOR series
 - CHEBYSHEV series expansion
 - with rational functions
 - PADÉ approximation

Eigendecomposition

• In the case of a diagonal matrix

$$\mathbf{A} = \operatorname{diag}(d_1, \dots, d_n) = \begin{pmatrix} d_1 & & \\ & \ddots & \\ & & d_n \end{pmatrix}$$

it holds

$$e^{\mathbf{A}} = \operatorname{diag}(e^{d_1}, \dots, e^{d_n}) = \begin{pmatrix} e^{d_1} & & \\ & \ddots & \\ & & e^{d_n} \end{pmatrix}$$

• If
$$\mathbf{A} = \mathbf{S}\mathbf{D}\mathbf{S}^{-1} = \mathbf{S} (\operatorname{diag}(d_1, \dots, d_n)) \mathbf{S}^{-1}$$
 it follows

$$e^{\mathbf{A}} = S\left(\operatorname{diag}(e^{d_1},\ldots,e^{d_n})\right)S^{-1}$$

• Expensive part: Computation of the eigendecomposition

Scaling and Squaring

 Some approximations work much better if the norm of the matrix A is not to big

•
$$\left(e^{\mathbf{A}/m}\right)^m = e^{\mathbf{A}}$$

Scaling and Squaring

 Some approximations work much better if the norm of the matrix A is not to big

•
$$\left(e^{\mathbf{A}/m}\right)^m = e^{\mathbf{A}}$$

Scaling & Squaring

$$e^{\mathbf{A}} = \left(e^{\mathbf{A}/2^k}\right)^{2^k}$$

- We scale our matrix by a factor of $\frac{1}{2^k}$
- Then, we compute the approximation
- In the end, we square the approximation k times
- This is not very expensive
- Additional error

• Idea: use a partial sum of the Taylor series

$$e^{\mathbf{A}} \approx S_m(\mathbf{A}) := \sum_{k=0}^m \frac{\mathbf{A}^k}{k!}$$

• Idea: use a partial sum of the Taylor series

$$e^{\mathbf{A}} \approx S_m(\mathbf{A}) := \sum_{k=0}^m \frac{\mathbf{A}^k}{k!}$$

The error estimate depends on the norm of A
 → Scaling & Squaring

• Idea: use a partial sum of the Taylor series

$$e^{\mathbf{A}} \approx S_m(\mathbf{A}) := \sum_{k=0}^m \frac{\mathbf{A}^k}{k!}$$

- The error estimate depends on the norm of A
 → Scaling & Squaring
- Convergence is slow

• Idea: use a partial sum of the Taylor series

$$e^{\mathbf{A}} \approx S_m(\mathbf{A}) := \sum_{k=0}^m \frac{\mathbf{A}^k}{k!}$$

- The error estimate depends on the norm of A
 → Scaling & Squaring
- Convergence is slow
- Not numerically stable

 A well-behaved function *f* : [−1, 1] → C can be approximated by Chebychev polynomials *T_k(x)*:

$$f(x) \approx \frac{a_0}{2} + \sum_{k=1}^m a_k T_k(x)$$

with

$$a_k := \frac{2}{\pi} \int_{-1}^{1} f(x) T_k(x) \frac{dx}{\sqrt{1 - x^2}}$$

• A well-behaved function $f : [-1, 1] \to \mathbb{C}$ can be approximated by Chebychev polynomials $T_k(x)$:

$$f(x) \approx \frac{a_0}{2} + \sum_{k=1}^m a_k T_k(x)$$

with

$$a_k := \frac{2}{\pi} \int_{-1}^{1} f(x) T_k(x) \frac{dx}{\sqrt{1 - x^2}}$$

• For the exponential function, a_k decreases as $\frac{1}{2^k k!}$

• A well-behaved function $f : [-1, 1] \to \mathbb{C}$ can be approximated by Chebychev polynomials $T_k(x)$:

$$f(x) \approx \frac{a_0}{2} + \sum_{k=1}^m a_k T_k(x)$$

with

$$a_k := \frac{2}{\pi} \int_{-1}^{1} f(x) T_k(x) \frac{dx}{\sqrt{1 - x^2}}$$

- For the exponential function, a_k decreases as $\frac{1}{2^k k!}$
- This works also for matrices if the norm is smaller than one

 A well-behaved function *f* : [−1, 1] → C can be approximated by Chebychev polynomials *T_k(x)*:

$$f(x) \approx \frac{a_0}{2} + \sum_{k=1}^m a_k T_k(x)$$

with

$$a_k := \frac{2}{\pi} \int_{-1}^{1} f(x) T_k(x) \frac{dx}{\sqrt{1 - x^2}}$$

- For the exponential function, a_k decreases as $\frac{1}{2^k k!}$
- This works also for matrices if the norm is smaller than one
- Arbitrary norm

 → Scaling & Squaring

Padé approximation

- Padé approximation works like Taylor, but using a rational function instead of a polynomial
- For $x \in \mathbb{C}$ the Padé approximation $r_m(x)$ of e^x is given by

$$r_m(x) = \frac{p_m(x)}{q_m(x)}$$

with
$$p_m(x) = \sum_{j=0}^m \frac{(2m-j)!m!}{(2m)!(m-j)!j!} x^j, q_m(x) = \sum_{j=0}^m \frac{(2m-j)!m!(-1)^j}{(2m)!(m-j)!j!} x^j$$

Padé approximation

- Padé approximation works like Taylor, but using a rational function instead of a polynomial
- For $x \in \mathbb{C}$ the Padé approximation $r_m(x)$ of e^x is given by

$$r_m(x) = \frac{p_m(x)}{q_m(x)}$$

with
$$p_m(x) = \sum_{j=0}^m \frac{(2m-j)!m!}{(2m)!(m-j)!j!} x^j, q_m(x) = \sum_{j=0}^m \frac{(2m-j)!m!(-1)^j}{(2m)!(m-j)!j!} x^j$$

Generalization to matrices:

$$e^{\mathbf{A}} \approx r_m(\mathbf{A}) = (q_m(\mathbf{A}))^{-1} p_m(\mathbf{A})$$

Padé approximation

- Padé approximation works like Taylor, but using a rational function instead of a polynomial
- For $x \in \mathbb{C}$ the Padé approximation $r_m(x)$ of e^x is given by

$$r_m(x) = \frac{p_m(x)}{q_m(x)}$$

with
$$p_m(x) = \sum_{j=0}^m \frac{(2m-j)!m!}{(2m)!(m-j)!j!} x^j, q_m(x) = \sum_{j=0}^m \frac{(2m-j)!m!(-1)^j}{(2m)!(m-j)!j!} x^j$$

Generalization to matrices:

$$e^{\mathbf{A}} \approx r_m(\mathbf{A}) = (q_m(\mathbf{A}))^{-1} p_m(\mathbf{A})$$

- Expensive part: Computation of the matrix inverse

Comparison of the methods: Computation time

πп

Comparison of the methods: accuracy

Advantages of the Chebyshev series method

- Only the evaluation of a matrix polynomial required: ⇒ BLAS-Routines
- Only products of the form dense * sparse appear
- Good convergence properties
- Matrix polynomials of order k can be evaluated with only $O(\sqrt{k})$ matrix-matrix-products
- Theoretically nice approach

Parallel matrix-matrix-multiplication

• Numerical task: Compute all intermediate products

```
U_0
U_0 \cdot U_1
U_0 \cdot U_1 \cdot U_2
\vdots
U_0 \cdot U_1 \cdot U_2 \cdots U_M
```

- Two approaches for a parallel algorithm:
 - slice-wise method
 - tree-like method

The slice-wise approach

The slice-wise approach

Part 2

The slice-wise approach

Part 3

Philipp Klenze: A quantum control algorithm: numerical aspects JASS 2008, March 27, 2008

The slice-wise approach: conclusions

- Broadcast of all matrices U_k to all processors
- · Each processor is responsible for "its" rows
- No communication during the algorithm required
- Optimal in terms of scalar multiplications
- Broadcasting costs most of the time
- Memory becomes an issue

The tree-like approach

Please look at the whiteboard.

The tree-like approach: conclusions

- "Expanded" binary tree
- Complicated algorithm
- No broadcasting required
- Still much communication
- More multiplications than strictly needed
- "Super Nodes" do quasi-broadcast

a new approach

Please look at the whiteboard.

The best of both worlds: a new approach

- Pipeline
- Litte communication required
- Simple algorithm
- Optimal in terms of total scalar multiplications
- Possibility to parallelize the entire GRAPE algorithm
- Some idle time until the pipeline is filled

