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Quantum computing

Computing

A quantum computer uses so called qubits instead of traditional bits
to solve some problems more efficiently than on classical hardware:

e Shor’s prime factorisation in polynomial time
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Quantum computing

Computing

A quantum computer uses so called qubits instead of traditional bits

to solve some problems more efficiently than on classical hardware:
e Shor’s prime factorisation in polynomial time
 Grover-Algorithm for array searches in O(y/n)
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Quantum computing

Computing
A quantum computer uses so called qubits instead of traditional bits
to solve some problems more efficiently than on classical hardware:
e Shor’s prime factorisation in polynomial time
» Grover-Algorithm for array searches in O(y/n)

e Quantum-Simulation: to simulate quantum systems, it is
obviously a good choice to use quantum systems
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Quantum computing

Computing
A quantum computer uses so called qubits instead of traditional bits
to solve some problems more efficiently than on classical hardware:
e Shor’s prime factorisation in polynomial time
» Grover-Algorithm for array searches in O(y/n)

e Quantum-Simulation: to simulate quantum systems, it is
obviously a good choice to use quantum systems

Control

Quantum control plays a key role in quantum technology, as quantum
gates aren’t hardwired as in traditional chips, but sophisticated
manipulations of quantum systems.
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What is not possible

Complexity NP

e BQP: The class of problems
a quantum computer can
solve in polynomial time with
an error propability of less
than 1/4.

BQP

Figure: lllustration of prominent
problem classes
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e BQP: The class of problems
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solve in polynomial time with
an error propability of less
than 1/4.

e |t is known, that P C BQP.
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What is not possible
Complexity

e BQP: The class of problems
a quantum computer can
solve in polynomial time with
an error propability of less
than 1/4.

e |tis known, that P C BQP.

e Though BQP is a subset of
NP, it is not known if it is a
true subset.

BQP

Figure: lllustration of prominent
problem classes
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What is not possible
Complexity

e BQP: The class of problems

a quantum computer can
solve in polynomial time with
an error propability of less
than 1/4.

It is known, that P C BQP.
Though BQP is a subset of
NP, it is not known if it is a
true subset.

Proof that BQP C NP would
yield that P # NP and
therefore solve the P = NP
problem.

BQP

Figure: lllustration of prominent
problem classes
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Classic mechanics

Newton and Lagrange

e Newton's Law: F = m - ¥
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Classic mechanics

Newton and Lagrange

e Newton's Law: F = m - ¥

¢ Disregarding friction, this can be shown to be equivalent to

4oL 9L — gwith £ =} -m-%* — V(x) being the

Lagrange-Function
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Classic mechanics

Newton and Lagrange

e Newton's Law: F = m - ¥

o Disregarding friction, this can be shown to be equivalent to
4% — % =0with £ =7 -m > — V(x) being the
Lagrange-Function

Hamilton

Hamilton has shown that the Lagrange equation is equivalent to this
system of two partial differential equations:

5 _ _ oOH
.pf—g
.x:aa—;l

With p being the momentum p = m - x and
H=lmx?+V(x) = % + V(x) being the energy of the system.
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Quantum Mechanics
The wave function

« In classical physics, x(t) is a function which describes the
trajectory of a mass point exactly.

« In quantum mechanics x(t) is replaced by the wave function
F(x,t).
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Quantum Mechanics
The wave function
« In classical physics, x(t) is a function which describes the

trajectory of a mass point exactly.

« In quantum mechanics x(t) is replaced by the wave function
F(x,t).

The Correspondence principle

Classical functions become operators on the wave function whose
eigenvalues are the observable values. In position space, this yields
x — %, p— —ihV and E — iho;.
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Quantum Mechanics
The wave function

« In classical physics, x(t) is a function which describes the
trajectory of a mass point exactly.

« In quantum mechanics x(t) is replaced by the wave function
F(x,t).

The Correspondence principle

Classical functions become operators on the wave function whose
eigenvalues are the observable values. In position space, this yields
x — %, p— —ihV and E — iho;.

The Schrodinger equation

Applied to the Hamilton equation this yields the Schrédinger equation
(— L2924+ V() ¥ (x, 1) = ihd, ¥ (x, 1)
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Spin

e In 1922, Otto Stern and Walther Gerlach experimented with
accelerated atoms in inhomogenous magnetic fields
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Spin

e In 1922, Otto Stern and Walther Gerlach experimented with
accelerated atoms in inhomogenous magnetic fields
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Spin

e In 1922, Otto Stern and Walther Gerlach experimented with
accelerated atoms in inhomogenous magnetic fields

e The ray got split in two parts

Explanation

e Electrons have an own attribute we call spin
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Spin

e In 1922, Otto Stern and Walther Gerlach experimented with
accelerated atoms in inhomogenous magnetic fields

e The ray got split in two parts

Explanation

e Electrons have an own attribute we call spin
e This is correlated with a magnetic dipole moment
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Spin

e In 1922, Otto Stern and Walther Gerlach experimented with
accelerated atoms in inhomogenous magnetic fields

e The ray got split in two parts

Explanation

e Electrons have an own attribute we call spin
e This is correlated with a magnetic dipole moment
e Spin is not angular momentum
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Spin

e In 1922, Otto Stern and Walther Gerlach experimented with
accelerated atoms in inhomogenous magnetic fields

e The ray got split in two parts

Explanation

e Electrons have an own attribute we call spin
e This is correlated with a magnetic dipole moment
e Spin is not angular momentum

e The Schrodinger equation does not directly inhibit spin. To save
us from relativistics, we apply it as a hack
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The Spin Operator
The spin operator

e Let z be the distinguished axis. From the SterAn-GerIach
experiment we know that the eigenvalues of S, have to be i%.
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The Spin Operator
The spin operator

o Let z be the distinguished axis. From the Stern-Gerlach
experiment we know that the eigenvalues of S, have to be i%.

e Hence there have to be two different linear independent
eigenvectors which we call (for historical reasons) |1) and || ).
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The Spin Operator
The spin operator

o Let z be the distinguished axis. From the SterAn-GerIach
experiment we know that the eigenvalues of S, have to be i%.

¢ Hence there have to be two different linear independent
eigenvectors which we call (for historical reasons) |T) and || ).

e Therefore we can write the spin state of our electron as a
complex linear combination of these two vectors.

<g>=w|T>+ﬁll>6C2
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The Spin Operator
The spin operator

o Let z be the distinguished axis. From the SterAn-GerIach
experiment we know that the eigenvalues of S, have to be i%.

¢ Hence there have to be two different linear independent
eigenvectors which we call (for historical reasons) |T) and || ).

o Therefore we can write the spin state of our electron as a
complex linear combination of these two vectors.

(g>=am+ﬁ|¢>e¢2

 Because |a|? equals the propability of finding |T) in an
experiment and |B|? equals the propability of finding || ), the
normation condition is |«|? + |B|*> = 1.
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The Pauli spin matrices
From vector to matrix

* Inanalogy to classic angular momentum, the spin operator has
to satisfy [Sy, Sy] = ihS, and cyclical with [A, B] := AB — BA
being the commutator.
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The Pauli spin matrices
From vector to matrix

* Inanalogy to classic angular momentum, the spin operator has
to satisfy [Sy, S| = 1S, and cyclical with [A, B] := AB — BA
being the commutator.

e The spin operators in the three dimensions can be written as
matrices:

(01 (0 —i (1 0
=11 0 Y=\i o =0 -1

With §; = &g;
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The Pauli spin matrices
From vector to matrix

* Inanalogy to classic angular momentum, the spin operator has
to satisfy [Sy, S| = 1S, and cyclical with [A, B] := AB — BA
being the commutator.

e The spin operators in the three dimensions can be written as
matrices:

(01 (0 —i (1 0
=110 Y=\1i o =0 -1
With §; = Lg;

e We can test our commutator relation from above:

wsi=5((10)(19)- (09 0))
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Coupled systems
The Kronecker tensorproduct

¢ In order to couple two spins in one system, one has to calculate
the kronecker product of these two systems. Therefore we yield
22 = 4 new basis vectors:

D) =11 (1)
Hell) =111 ()
1D =141 (3)
[Hel) =11 (4)
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Coupled systems
The Kronecker tensorproduct

¢ In order to couple two spins in one system, one has to calculate
the kronecker product of these two systems. Therefore we yield
22 = 4 new basis vectors:

D) =11 (1)
Hell) =111 ()
1D =141 (3)
[Hel) =111 (4)

e In general, one can couple n spins by producing the kronecker
product of all basis vectors, yielding 2" basic states.

Maximilian Fischer: A quantum control algorithm: Models and theory P ,‘,\
JASS 2008, St. Petersburg, March 9th, 2008 N /‘@ 39



Technische Universitit Miinchen TI-ITI

Potential energy of coupled spins

e The potential between two spins is direct proportional to the
scalar product of the two spin operators or to be more exactly
their eigenvalues:
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e The potential between two spins is direct proportional to the
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Potential energy of coupled spins

e The potential between two spins is direct proportional to the
scalar product of the two spin operators or to be more exactly
their eigenvalues:

=
N

- §<1>o§<z>zy<gg>®§§z)+1(g<+1> 6@ 4 e g 5(3)))

e With y being a constant and S = S, + iS5, with the attributes

Selty=0  Scll)y=nln (5)
S-[=nrll) S-[1)=0 (6)
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Potential energy of coupled spins

e The potential between two spins is direct proportional to the
scalar product of the two spin operators or to be more exactly
their eigenvalues:

=

A~ A A A A 1 /4 A A A
V=u$Mod® =y <s§” ©8P 4+ (8P 28 40 ®s<j))>

* With y being a constant and S = S, +i5, with the attributes

0 Sc|l)y=n|m) (5)
y=n|l) S_[|l)=0 (6)

e We can describe the complete potential of a system by a
hermitian 2" x 2" matrix with vanishing trace.
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Outline
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Nuclear magnetic resonance

NMR

¢ Nuclei of atoms have their
own spin

Figure: 900MHz, 21.2 T NMR
Magnet at HWB-NMR, Birmingham,
UK; credit: wikipedia
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Nuclear magnetic resonance

NMR

¢ Nuclei of atoms have their
own spin

e One can couple multiple
spins in an experimental

setup
Figure: 900MHz, 21.2 T NMR
Magnet at HWB-NMR, Birmingham,
UK; credit: wikipedia
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Nuclear magnetic resonance

NMR

¢ Nuclei of atoms have their
own spin

¢ One can couple multiple
spins in an experimental
setup

e Spins can be manipulated by
external magnetic fields

Figure: 900MHz, 21.2 T NMR
Magnet at HWB-NMR, Birmingham,
UK; credit: wikipedia
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Nuclear magnetic resonance

NMR

¢ Nuclei of atoms have their
own spin

¢ One can couple multiple
spins in an experimental
setup

e Spins can be manipulated by
external magnetic fields

e Spins can be measured by
stimulated emission of
radiaton

Figure: 900MHz, 21.2 T NMR
Magnet at HWB-NMR, Birmingham,
UK; credit: wikipedia
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Technical challenges
e Strong magnetic fields (~ 20T)
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Technical challenges

e Strong magnetic fields (=~ 20T)

e Energy relaxation: The system returns to the ground state, the
qubits are erased.
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Technical challenges

e Strong magnetic fields (=~ 20T)

o Energy relaxation: The system returns to the ground state, the
qubits are erased.

e Decoherence: The superposition of the spins is destroyed by
interaction with the environment ("'super selection rule™)
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Outline
Nuclear magnetic resonance

Some Physics
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NMR and the Schrodinger equation

We remember

HY (x,t) = (-2—mv2 + V(x)) Y(x,t) = iho;¥ (x, 1)
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NMR and the Schrodinger equation

We remember
AY(x,t) = (-2—mv2 + V(x)) Y¥(x,t) = ihos¥(x, t)

In our case

e Our particles don’t move, so we can abbandon the kinetic term
n? 2
—5-V~.
2m
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NMR and the Schrodinger equation

We remember
AY(x,t) = (--mv2 + V(x)) Y¥(x,t) = ihos¥(x, t)

In our case

e Our particles don’t move, so we can abbandon the kinetic term
_1 g2
2m )
o We already know the potential for two particles. For n particles,
this yields

A 1 Al Al
V(x) = 5 Z”lij5<l> o §U)
i#j
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NMR and the Schrodinger equation

We remember
AY(x,t) = (--mvz + V(x)) Y¥(x,t) = ihos¥(x, t)

In our case

e Our particles don’t move, so we can abbandon the kinetic term
12 o2
—5a V.
o We already know the potential for two particles. For n particles,
this yields

A 1 Al Al
i7]
e Thisis a 2" x 2" matrix which can be diagonalised. In the
following, we will refer to this diagnoalised matrix as Hy

Maximilian Fischer: A quantum control algorithm: Models and theory P ,‘,\ 2T
JASS 2008, St. Petersburg, March 9th, 2008 N /‘ 57



Te i Universitat Mii TI-ITI

The control term (1)

How to control our system
Previously we stated that the spin system can be controlled by

external magnetic fields. In our formal model this can be read as
application of the S operators on single spins.

<N
N7

E

Figure: Induced spinflips in a two particle system. redis 1, ® S and blue is
S, @1,.
Maximilian Fischer: A quantum control algorithm: Models and theory P ‘ \@
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The control term (2)

In general
For n spins which can be separatley influenced, the controlled
potential is
. n—1
VC = Z (ﬂk : llzk ® Ox ® ]lznfqu + bk : ]lzk ® U'y ® lznfqu)
k=0

Which we will call H,.
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The control term (2)

In general
For n spins which can be separatley influenced, the controlled
potential is
. n—1
Vc - Z (ﬂk . llzk ® (%% ® ]lzn—k—q + bk . ]12k ® U'y ® lznfqu)
k=0

Which we will call H,.

Recursion
One can build the matrix of H, for n particles using the following

recursion:
o An ]lzn
An1 = ( Iy Ay )

With Ay = (0) being the matrix for zero particles.
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Eye candy
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Outline

Nuclear magnetic resonance

The GRAPE algorithm
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A solution for the Schrodinger equation
Forward Propagation

e The time-independent Schrédinger equation: ihd;¥ = HY
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A solution for the Schrodinger equation
Forward Propagation

« The time-independent Schrédinger equation: if0;¥ = HY¥
e In the Gaussian system: i0;¥ = Y
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A solution for the Schrodinger equation
Forward Propagation

« The time-independent Schrédinger equation: if0;¥ = HY¥
« In the Gaussian system: i0;¥ = Y
« The solution is obviously: ¥(t) = e~H¥(0)
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A solution for the Schrodinger equation
Forward Propagation

The time-independent Schrédinger equation: ihd;¥ = HY
In the Gaussian system: io;¥ = H¥Y
The solution is obviously: ¥ (¢) = e~ iHt¥(0)

With the matrix exponential function eH = Yo %k
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A solution for the Schrodinger equation

Forward Propagation

The time-independent Schrédinger equation: ihd;¥ = HY
In the Gaussian system: io;¥ = H¥Y

The solution is obviously: ¥ (¢) = e~ iHt¥(0)

With the matrix exponential function el = Yo ’,f—,k

Our Hamiltonian was: H = H; + H.(a;(t), b1 (t),...) =
Hy+ He(u1(t),...) = Hy + ¥; H;(t) With H;(t) piecewise
constant on t 4 At
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A solution for the Schrodinger equation

Forward Propagation

The time-independent Schrédinger equation: i0;¥ = HY
In the Gaussian system: io;¥ = H¥Y
The solution is obviously: ¥ () = e~ iHt¥(0)

With the matrix exponential function e’ = y-3° ’,f—,k

Our Hamiltonian was: H = H; + Hc(ay(t),b1(t),...) =

Hy+ He(u1(t),...) = Hy + ¥; H;(t) With H;(t) piecewise
constant on t + At

So in our case the solution is: X

¥ (t) = e iAtH ) gmiAtH (b ) .. o=IAHM) W (0) =: U(t)¥(0) With
kAt =t
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Quantum gate construction
Problem description

e A quantum gate is an operation on the spin state of the system
which performs a desired change in it, e.9. NOT, NAND, XOR,.. ..
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Quantum gate construction
Problem description

e A quantum gate is an operation on the spin state of the system
which performs a desired change in it, e.g. NOT, NAND, XOR,....

e For each of these gates the desired operation can be described
by a matrix Ug.
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Quantum gate construction
Problem description

e A quantum gate is an operation on the spin state of the system
which performs a desired change in it, e.g. NOT, NAND, XOR,....

o For each of these gates the desired operation can be described
by a matrix Ug.

« So the challenge is: adjusting H;(#) so that U(t) overlaps best
with Ug for a giventime t = T.
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Quantum gate construction
Problem description

e A quantum gate is an operation on the spin state of the system
which performs a desired change in it, e.g. NOT, NAND, XOR,....

o For each of these gates the desired operation can be described
by a matrix Ug.

« So the challenge is: adjusting H;(#) so that U(t) overlaps best
with Ug for a giventime t = T.

The GRAPE algorithm

It can be shown that maximising R tr(ULU(T)) subject to
o;U(t) = —iHU(t) optimizes the propagator.
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GRAPE

1. Set initial controls u;.")(t,\,) for all times t; (k € {1,2,...,M}) at
random or by guess
2. Foreachk € {1,...,M} do:
2.1 Calculate the forward-propagation
U(k) = L,fi/\fﬁl(t/\,)cfi/\tﬁl(f/\,,l) o .sz'/\fﬁl(f])
2.2 Calculate the backward-propagation
A<fk> — e IIA”:“}I\)@ iAH (tepq) | e iAtH ()

2.3 Update uj"“%tk) = ul" (1) + R (tr (AT (t) (—iH)U(t)))

3. Return to step 2 with the new controls uj(." t1)
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GRAPE

1. Set initial controls u](r)(tk) for all times t; (k € {1,2,..., M}) at
random or by guess

2.
2.1

2.2

23
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GRAPE

1. Set initial controls u](r)(tk) for all times t; (k € {1,2,..., M}) at
random or by guess

2. Foreachk € {1,..., M} do:
2.1

2.2

23
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GRAPE

1. Set initial controls u](r)(tk) for all times t; (k € {1,2,..., M}) at
random or by guess
2. Foreachk € {1,..., M} do:

2.1 Calculate the forward-propagation
U(ty) = e~ At g=idtH(tn) . p—iAtH(h)
2.2

23
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GRAPE

1. Set initial controls u](r)(tk) for all times t; (k € {1,2,..., M}) at
random or by guess
2. Foreachk € {1,...,M} do:
2.1 Calculate the forward-propagation
U(t) = oA (t) p—idtH (B_1) . . . p—iAtH(t)
2.2 Calculate the backward-propagation
Alty) = e~ i0tH(t) g=idtA(ti) . o—iAtA(t)
23
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GRAPE

1.

2.

Set initial controls u( )(tk) for all times t; (k € {1,2,..., M}) at
random or by guess
Foreachk ¢ {1,...,M} do:
2.1 Calculate the forward-propagation
U(t) = oA (t) p—idtH (B_1) . . . p—iAtH(t)
2.2 Calculate the packwarq-propagation A
Alty) = e~ i0tH(t) g=idtA(ti) . o—iAtA(t)

2.3 Update u}"™") () = ul") (1) + &R (tr (AT (1) (—iF))U (1))
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GRAPE

1. Set initial controls u( )(tk) for all times t; (k € {1,2,..., M}) at
random or by guess

2. Foreachk € {1,...,M} do:
2.1 Calculate the forward-propagation
U(t) = oA (t) p—idtH (B_1) . . . p—iAtH(t)
2.2 Calculate the packwarq-propagation A
Alty) = e~ i0tH(t) g=idtA(ti) . o—iAtA(t)
2.3 Update u}"™") () = ul") (1) + &R (tr (AT (1) (—iF))U (1))

3. Return to step 2 with the new controls u](r“)

Maximilian Fischer: A quantum control algorithm: Models and theory P ‘,\
JASS 2008, St. Petersburg, March 9th, 2008 \ /‘@ 79



Technische Universitit Miinchen TI-ITI

Challenges of GRAPE

e GRAPE converges to a local optimum of U(t). It is necessary to
re-run it a couple of times with different initial values to confirm
that the global maximum is reached altough this cannot be
proven.
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Challenges of GRAPE

o GRAPE converges to a local optimum of U(¢). It is necessary to
re-run it a couple of times with different initial values to confirm
that the global maximum is reached altough this cannot be
proven.

» One has to calculate the exponential of a sparse matrix
uk = e*l’AfH(tk)
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Challenges of GRAPE

o GRAPE converges to a local optimum of U(¢). It is necessary to
re-run it a couple of times with different initial values to confirm
that the global maximum is reached altough this cannot be
proven.

¢ One has to calculate the exponential of a sparse matrix
Uy = o IAtH ()

¢ One has to calculate the product of many different matrices
U(ty) = Uy - Ugq- - Uy
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Challenges of GRAPE

o GRAPE converges to a local optimum of U(¢). It is necessary to
re-run it a couple of times with different initial values to confirm
that the global maximum is reached altough this cannot be
proven.

* One has to calculate the exponential of a sparse matrix
U = e—iOtH(t)

e One has to calculate the product of many different matrices
U(ty) = Uy - Ugq - Uy

e One has to calculate the trace
tr{ (UgUg41 - - - Unt) (—iHj) (Ul —q - - - Uy ) } V), k
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Conclusion

e The Schrodinger equation:
2 9 o
(~E V24 V() ¥l t) = imd¥ (x, 1)
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Conclusion
e The Schrodinger equation:
(‘%Vz + V(x)) ¥(x,t) = iho ¥ (x, t)

¢ In NMR spectroscopy, the kinetic term —%VZ can be
abbandoned an V(x) splits in H; and H,
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Conclusion
e The Schrodinger equation:
(—%VZ + V(x)) Y (x,t) = iho ¥ (x,t)

¢ In NMR spectroscopy, the kinetic term —%VZ can be
abbandoned an V(x) splits in H; and H,

e H, can be diagonalised whereas H. has a recursive shape
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Conclusion

e The Schrodinger equation:
(B V24V () ¥(x, 1) = iha¥ (x, )

¢ In NMR spectroscopy, the kinetic term —%VZ can be
abbandoned an V(x) splits in H; and H,

e H, can be diagonalised whereas H, has a recursive shape

« In order to overlap the time propagation U(t) = e~ HA with the
desired matrix Ug, a gradient flow algorithm can be utilized
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Conclusion

e The Schrodinger equation:
2 9 o
(~E V24 V() ¥l t) = imd¥ (x, 1)

¢ In NMR spectroscopy, the kinetic term —%VZ can be
abbandoned an V(x) splits in H; and H,

e H, can be diagonalised whereas H, has a recursive shape

e In order to overlap the time propagation U(t) = e~ HAt with the
desired matrix Ug, a gradient flow algorithm can be utilized
e This leads to some numerical challenges thus as calculating a

matrix exponential as well as producing the product of many
matrices
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Lie algebra (1)

Definition
Let V be a vector space over a field F with a binary operation [-, -]

[',-] VxV -V

which satisfies the following relations:
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Lie algebra (1)
Definition
Let V be a vector space over a field F with a binary operation [-, -]
[', ] VxV -V

which satisfies the following relations:
e Bilinearity: [x + Ay, z] = [x,z] + Aly,z] and
[x,y+ Az] = [x,y] + Alx, Z]
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Lie algebra (1)

Definition
Let V be a vector space over a field F with a binary operation [-, -]

[-,-] VxV -V

which satisfies the following relations:
e Bilinearity: [x + Ay, z] = [x,z] + Aly,z] and
[,y 4+ Az] = [x,y] + Alx, 2]
e Skew-symmetry: [x,x] =0
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Lie algebra (1)

Definition
Let V be a vector space over a field F with a binary operation [-, -]

[-,-] VxV -V

which satisfies the following relations:
e Bilinearity: [x + Ay, z] = [x,z] + Aly,z] and
[x,y +Az] = [x,y] + Alx, 2]
o Skew-symmetry: [x,x] =0
e Jacobi Identity: [x, [y, z]] + [y, [z, x]] + [z, [x,y]] =0
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Lie algebra (1)

Definition
Let V be a vector space over a field F with a binary operation [-, -]

[~,-] VxV -V

which satisfies the following relations:
e Bilinearity: [x + Ay, z] = [x,z] + Aly,z] and
[x,y +Az] = [x,y] + Alx, 2]
o Skew-symmetry: [x,x] =0
e Jacobi Identity: [x, [y, z]] + [y, [z, x]] + [z, [x,y]] =0

Vx,y,z€ V,YA€F
Then V is a Lie algebra.
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Lie algebra (2)

« The well-known R® with the cross product.
e Our previously defined Pauli-Matrices.
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Kronecker product (1)
Definition
Let A € C"*", B € C"*°. Then the Kronecker product
A® B e C™*"s of A and B is defined as:
ay v A1 a1 B
A®B=| : .. : |®B:=

Ayl -+ Amn am B

Attributes (1)

e Bilinearity:
c A® (B+C)=A®B+A®C
e (A+B)®C=ARC+B&C
e M(A®B)=(AA)®B=A® (AB)
e associativity: A® (B®C) = (A®B)®C

lllnB

Aun B
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Kronecker product (2)
Attributes (2)

transposition: (A ® B)T = AT @ BT
VA,Be C"™", C,DeC"™ ™. (AB)®(CD)=(A®C)(B®D)
The kronecker product of diagonal matrices is a diagonal matrix
Iy=L& -1
N—————
q times

tr(A® B) =tr(A) - tr(B)
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Drift-Term

Two spin system

[¥1) == [11) [¥2):=[T]) [¥3):=[I1) [¥a):=]l])

N A A 1 /4 A A A
=508 12 (30 08?480 08P

Non-diagonalised Hamiltonian for two-spin system

5 1 0 0 O
N h 0 -1 2 0
Hi=Z 1o 2 -1 0
0 0 0 1
Reference: Myself, so it could be faulty.
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Shor’s Algorithm (1)

Factorize a number »n
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Shor’s Algorithm (1)

Factorize a number »n

1. Pickrandom1l < x <n
2.
3.
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Shor’s Algorithm (1)

Factorize a number »n

1. Pickrandom1 < x <mn
2. If gcd(x,n) > 1 — success
3.
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Shor’s Algorithm (1)

Factorize a number »n

1. Pickrandom1 < x <n
2. If gcd(x,n) > 1 — success

3. Use the period-finding subroutine to find r, the period of
f(v) = x¥ mod n i.e. the smallest integer r for which
f(v+r) = f(v) (quantum stuff here)
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Shor’s Algorithm (1)

Factorize a number »n

1.
2.
3.

Pickrandom1 < x <n
If gcd(x,n) > 1 — success

Use the period-finding subroutine to find r, the period of
f(v) = x¥ mod n i.e. the smallest integer r for which
f(v+r) = f(v) (quantum stuff here)

. If ris odd — go back to step 1
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Shor’s Algorithm (1)

Factorize a number »n

1.
2.
3.

Pickrandom1 < x <n
If gcd(x,n) > 1 — success

Use the period-finding subroutine to find r, the period of
f(v) = x¥ mod n i.e. the smallest integer r for which
f(v+r) = f(v) (quantum stuff here)

. If ris odd — go back to step 1
. If x2 = —1 mod n — go back to step 1
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Shor’s Algorithm (1)

Factorize a number »n

1.
2.
3.

Pickrandom1 < x <n
If gcd(x,n) > 1 — success

Use the period-finding subroutine to find r, the period of
f(v) = x¥ mod n i.e. the smallest integer r for which
f(v+r) = f(v) (quantum stuff here)

. If ris odd — go back to step 1
. If x2 = —1 mod n — go back to step 1
. gcd(xF —1,n) is a nontrivial factor of n. success
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Shor’s Algorithm (2)

Period finding subroutine

You will need at least Q qubits, where n? < Q < 2n2.
1.
2.
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Shor’s Algorithm (2)

Period finding subroutine

You will need at least Q qubits, where n? < Q < 2n2.
1. Initialize the qubits to Q~2 Y21 |x) |0)
2.
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Shor’s Algorithm (2)

Period finding subroutine
You will need at least Q qubits, where n? < Q < 2n2.
1. Initialize the qubits to Q2 =91 |x) |0)
2. Construct f(x) as a quantum function and apply it to the state, to

obtain )
Q72 ) Ix) If(x))
X
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Shor’s Algorithm (2)

Period finding subroutine
You will need at least Q qubits, where n? < Q < 2n2.
1. Initialize the qubits to Q2 =91 |x) |0)
2. Construct f(x) as a quantum function and apply it to the state, to

obtain .
Q72 ) |x)[f(x))
X
3. Apply the quantum Fourier transform to get the final state

Q'Y Y WYy If(x)
Xy
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Shor’s Algorithm (2)

Period finding subroutine
You will need at least Q qubits, where n? < Q < 2n2.
1. Initialize the qubits to Q2 =91 |x) |0)
2. Construct f(x) as a quantum function and apply it to the state, to

obtain .
Q 2} [x) [f(x))
X
3. Apply the quantum Fourier transform to get the final state

Q'Y Y WYy If(x)
Xy

4. Perform a measurement. We obtain an equally distributed
multiple of f(x)/r.
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Shor’s Algorithm (2)
Period finding subroutine
You will need at least Q qubits, where n? < Q < 2n?.

1. Initialize the qubits to Q2 ¥ 1 |x) |0)
2. Construct f(x) as a quantum function and apply it to the state, to

obtain )
Q 2} [x) [f(x))
X
3. Apply the quantum Fourier transform to get the final state

QY Y WYy If(x))
Xy

4. Perform a measurement. We obtain an equally distributed
multiple of f(x)/r.

5. Repeat a couple of times to obtain a working candidate for r
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Stern Gerlach experiment

Classical

prediction What was

ilver atom
actually observed Silver atoms

Furnace
Inhomogeneous
magnetic field
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