
Parallelizing Adaptive Triangular Grids
with Refinement Trees and Space Filling

Curves

Daniel Butnaru
butnaru@in.tum.de

Advisor:
Michael Bader

bader@in.tum.de

JASS ’08

Computational Science and Engineering
Technical University Munich

March 13, 2008
Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 1 / 31



1 Motivation

2 Triangular Grids

Grid generation

Refinement Tree

Storing the Refinement Tree

3 Sierpinski Curve

Sierpinski Curve. Definition and Construction

Grid Traversal along the Sierpinski Curve

Stacks

4 Parallelization

Tree Partitioning

Nice Properties

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 2 / 31



Outline
1 Motivation

2 Triangular Grids

Grid generation

Refinement Tree

Storing the Refinement Tree

3 Sierpinski Curve

Sierpinski Curve. Definition and Construction

Grid Traversal along the Sierpinski Curve

Stacks

4 Parallelization

Tree Partitioning

Nice Properties

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 3 / 31



Motivation
Domain Discretization

In numerically solving a PDE usually
(1):

a grid is layed over the
domain.
if the domain has singularities
or changes in time using an
adaptive grid is a better
choice.

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 4 / 31



Motivation
Iterative Solver

In numerically solving an elliptic
PDE usually (2):

a solver iterates over the grid
nodes
neighborhood information is
used to update the nodes
the solver can traverse the grid
in several ways, but
depending on the traversal
strategy and the grid structure
neighborhood information can
be easily computed or needs
to be stored

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 5 / 31



Motivation
Parallelization

We can partition the grid and split the computational effort
on several processors.

Parallelization Requirements

load balancing. Each processor should work on equally
sized partitions.
reduced inter-processor communication. Short
boundaries between the partitions.

Adaptive Grids Constraints

fast repartioning
avoid redistributing existing nodes to other processors.

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 6 / 31



Outline
1 Motivation

2 Triangular Grids

Grid generation

Refinement Tree

Storing the Refinement Tree

3 Sierpinski Curve

Sierpinski Curve. Definition and Construction

Grid Traversal along the Sierpinski Curve

Stacks

4 Parallelization

Tree Partitioning

Nice Properties

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 7 / 31



Triangular Grids
Grid generation

Constructing a triangular grid:

start with a triangular domain
recursively split the triangle by bisection
the hypothenuse is always marked for splitting

(a) G1 (b) G2 (c) G7

To adaptively refine call the
recursive bisection on the desired
triangle (local splitting):

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 8 / 31



Refinement Tree
Representing the Grid as a Binary Tree (1)

We can represent the refinement of the grid as a binary tree:

the root corresponds to the initial domain.
the children of any other node correspond to the
elements that were created when that node was refined
the leafs are the individual triangles in the last refinement.

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 9 / 31



Refinement Tree
Representing the Grid as a Binary Tree (2)

Further example:
the numbers show
correspondence
between triangles of
the grid and tree
nodes
unlabeled nodes
have the same
numbers as in the grid
above them.

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 10 / 31



Refinement Tree
Conforming Grid

non-conforming

conforming

For numerical reasons avoid
situations where neighbour
elements share no common
edge (causing hanging
nodes).

Refining one triangle might
need a cascade of
refinements to avoid hanging
nodes.

Refining the blue triangle
triggers also a refinement of
the red one.

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 11 / 31



Storing the Refinement Tree
Bit Vector

Mark the nodes in the tree with a bit value. 1 if the node is
refined and 0 otherwise. We can this way store the
corresponding structure of the adaptive grid in a single bit
vector.

(d) 11100011110000100

An appropriate Depth First Traversal of the tree can give a
sequential order of grid cells −→ Sierpinski Curve.

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 12 / 31



Outline
1 Motivation

2 Triangular Grids

Grid generation

Refinement Tree

Storing the Refinement Tree

3 Sierpinski Curve

Sierpinski Curve. Definition and Construction

Grid Traversal along the Sierpinski Curve

Stacks

4 Parallelization

Tree Partitioning

Nice Properties

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 13 / 31



Sierpinski Curve
Space Filling Curves

Definition

If f : I −→ Rn is a continuous function and I ⊂ R is compact
then the image f∗(I) := {f (x) ∈ R | x ∈ I} is called a curve.

ℜ 2

f
*
(I)

Definition

If f∗(I) is a curve and the area (volume in 3D) is positive (6= 0),
then the curve is called a space filling curve.

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 14 / 31



Sierpinski Curve
Construction

To (intuitively) construct the curve:

determine the curve for each small triangle
connect the subcurves in the correct order

Sierpinski Curve for several iterations:

1

3

2

7
Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 15 / 31



Grid Traversal along the Sierpinski Curve
Tree Traversal as Grid Traversal

Numerical algorithms need neighborhood information to
evaluate stencils. Our refinement tree representation:

does not easily allow getting the immediate neighbours
would need a lot of memory to store these
neighborhood relations

Idea: traverse the grid triangle by triangle in the order given
by the Sierpinski curve:

two neighbours are easily available (DFS traversal)
grid partitioning by curve partitioning leads to good
partition quality
for the other neighbours we could use the concept of
stacks (introduced later)

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 16 / 31



Grid Traversal along the Sierpinski Curve
Example of a Grid Traversal

Example of a grid traversal, triangle by triangle.

OutIn

2

3 4

5
6

7
8 91

Note that we don’t need to explicitly construct the curve:

use only the refinement tree
fix the Depth First Search to go first to the left child.
set the left and right children in a consistent manner

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 17 / 31



Grid Traversal along the Sierpinski Curve
Splitting Template

Consider a triangle template with marked input-vertex (I) and
output-vertex (O). To identify the order of the children start at
the input-vertex of the parent.

I
2

O
2

O
3

I
3

O
1

I
1

I
0

O
0

After the bisection:

the subtriangle which contains the input-vertex of the
parent is the left child in the refinement tree.
the subtriangle which contains the output-vertex of the
parent is the right child
the DFS traversal will now run along the Sierpinski curve

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 18 / 31



Grid Traversal along the Sierpinski Curve
Stacks - Cache Efficient Processing (1)

Cell Oriented Processing:

process cells along the Sierpinski curve
for each cell we need access to the unknowns (nodes)
classify the unknowns. Left of the curve - Blue. Right of
the curve - Red.

OutIn
31

2

7

6

5

4

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 19 / 31



Grid Traversal along the Sierpinski Curve
Stacks - Cache Efficient Processing (2)

Use a system of four stacks for fast and memory efficient
access to unknowns:

a read stack holds initial values of the unknowns
two helper stacks - red and blue - to hold intermediary
values
write stack holds final values of the unknowns

Processing:

the 2 unknowns on common edge can be reused
the 2 unknowns opposite to the common edge must be
processed
the top of the stacks will always have the unknowns
needed to process the current triangle

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 20 / 31



Grid Traversal along the Sierpinski Curve
Stacks - Cache Efficient Processing (3)

Based on some rules we decide from
which stack to take the needed
unknowns and on which stack to put
them on.

OutIn
31

2

7

6

5

4

4 1
blue red final

2
4 1
blue red final

2
5 1 4
blue red final

2 5
6 1 4
blue red final
7 2 5
6 1 4
blue red final

2
7 5
6 1 4
blue red final

continues...

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 21 / 31



Outline
1 Motivation

2 Triangular Grids

Grid generation

Refinement Tree

Storing the Refinement Tree

3 Sierpinski Curve

Sierpinski Curve. Definition and Construction

Grid Traversal along the Sierpinski Curve

Stacks

4 Parallelization

Tree Partitioning

Nice Properties

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 22 / 31



Grid Partitioning
Tree Partitioning

In a parallel environment we can split the computational
effort on several processors. Some observations:

each of the processors should receive an equal slice of
the grid.
partitioning information can be handled globally and
then sent to each processor
adaptive refinement on a cell can lead to repartitioning
processor inter-communication needed (when
redistributing triangles)
triangles need not necessarily require the same
computational effort (like elements on the Dirichlet
boundaries) −→ node weights

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 23 / 31



Grid Partitioning
REFTREE Algorithm Phase 1

REFTREE Algorithm Phase 1
(Labelling):

1 start with the
refinement tree.

2 leaf nodes get a
weight of 1,
intermediary nodes 0.

3 each other node is
labelled with the sum
of the weights in the
subtree rooted in that
node.

One Depth First Search is
enough to label the entire
tree (O(n))

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 24 / 31



Grid Partitioning
REFTREE Algorithm Phase 2

REFTREE Algorithm Phase 2
(Partitioning):

1 partition size P is
cumulated sum at the
root divided by
number of processors

2 with a DFS examine
the summed weights
of the nodes. Initial
sum S is 0.

3 consider the summed
weight Sn at node n

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 25 / 31



Grid Partitioning
REFTREE Algorithm Phase 2

4 if S + Sn ≤ P, add the
the entire tree rooted
in n to the partition.
S = S + Sn.

5 else if S + Sn > P,
continue with the
subtrees of node n

6 stop when S = P

One truncated Depth First
Search is required to
partition the entire tree.
O(p ∗ log(N))

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 26 / 31



Grid Partitioning
Inter-Processor Communication

for the pruning nodes
(white) information
will be exchanged
each processor sends
the weights it has for
the pruning nodes
all responses from
other CPUs are
summed up to give
the weighted sum
from the pruning
points
now each processor
has enough
information to perform
another iteration.

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 27 / 31



REFTREE Algorithm
Nice Properties

Advantages of the REFTREE algorithm:

produces almost equally sized partitions (with a
difference of at most 1)
creates connected partitions (for most of the used types
of grids)
fast enough not to affect the benefits of a fast multigrid
solver
after refining, the new partitions are similar to previous
ones (reduces redistribution)

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 28 / 31



Wrap up

Important points:
Triangular grids created by recursive
bisection
grid can be represented and stored
as a refinement tree
Sierpinski Curve gives a linear
traversal of the grid cells, thus
simplifying storage
Stacks add cache efficiency
REFTREE algorithm is fast in creating
equal and compact partitions using
the refinement tree

OutIn
31

2

7

6

5

4

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 29 / 31



References

[Mitchell, 1991] William F. Mitchell.
A refinement-tree based partitioning method for
dynamic load balancing with adaptively refined grids

[Bader, 2007] Bader, M., Schraufstetter, S., Vigh, C.A. and
Behrens, J.
Memory efficient adaptive mesh generation and
implementation of multigrid algorithms using Sierpinski
curves

H. Sagen
Space-filling Curves

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 30 / 31



Thank you!
Questions?

Parallelizing Adaptive Triangular Grids with Refinement Trees and Space Filling Curves March 13, 2008 31 / 31


	Outline
	Motivation
	Triangular Grids
	Grid generation
	Refinement Tree
	Storing the Refinement Tree

	Sierpinski Curve
	Sierpinski Curve. Definition and Construction
	Grid Traversal along the Sierpinski Curve 
	Stacks

	Parallelization
	Tree Partitioning
	Nice Properties


