Outline	Dat

a Mining

Sparse Grids

Combination technique

Examples

Outlook

Dimension-adaptive Sparse Grids

Jörg Blank

April 14, 2008

Outline

Sparse Grids

Combination technique

Examples

Outlook

- Function Reconstruction
- 2 Sparse Grids
 - Motivation
 - Introduction
- Combination technique
 - Motivation
 - Dimension-adaptive

4 Examples

Data Mining: An use case for sparse grids

- Deduce knowledge from a (large) database
- Recover a function from test results
- Cope with measurement errors

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
	0000000				

Function Reconstruction

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
	0000000				

Function Reconstruction

Outline	Data Mining oo●ooooo	Sparse Grids	Combination technique	Examples	Outlook
Datas	sets				

• Higher dimensions are common.

$$S = \{(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}\}_{i=1}^M$$

- d-dimensional dataset with M entries
- y_i function value
- Restricting y_i to an arbitrary number of classes is possible

Outline	Data Mining ooo●oooo	Sparse Grids	Combination technique	Examples	Outlook
Datas	ets				

• We assume that the data points are evaluations of an unknown function *f*

Definition

Wanted: a function

$$y = f(x_1, x_2, \ldots, x_d)$$

$$f \in V$$

where V is a function space over \mathbb{R}^d

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Regularisation					

Recover this function as good as possible!

 $\min_{f\in V} R(f)$

$$R(f) = \frac{1}{M} \sum_{i=1}^{M} \Psi(f(\mathbf{x}_i), y_i) + \lambda \Phi(f)$$

Outline	Data Mining ooooo●oo	Sparse Grids	Combination technique	Examples	Outlook
Discretization					

- We confine V to a discrete space V_N
- A function $f_N \in V_N$ can now be written as:

$$f_N = \sum_{j=1}^N \alpha_j \phi_j(\mathbf{x})$$

• weights: $\{\alpha_i\}_{i=1}^N$

• a base:
$$\Phi_N = \{\varphi_i\}_{i=1}^N$$

The choice of basis functions has a major impact on viability and accuracy of this approach.

0000000 0000000 000000000000000000000	Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
		00000000				

Differentation of $R(f_N)$ now yields for $k = 1 \dots N$:

$$\sum_{j=1}^{N} \alpha_j \left[M\lambda(\nabla \varphi_j, \nabla \varphi_k)_{L_2} + \sum_{i=1}^{M} \varphi_j(\mathbf{x}_i) \cdot \varphi_k(\mathbf{x}_i) \right] = \sum_{i=1}^{M} y_i \varphi_k(\mathbf{x}_i)$$

Which is a system of linear equations with N unknowns and N equations and can be written in matrix form:

$$(\lambda C + B \cdot B^T)\alpha = By$$

This system is symmetric and positiv definite and can be solved using a standard solver like Conjugated Gradients method.

- Nodal basis yields: $O(n^d)$
- Not viable even for medium dimension counts
- Solution: Use less grid points!

Outline	Data Mining 00000000	Sparse Grids ○●○○○○○○	Combination technique	Examples	Outlook		
Hat functions							

$$\phi(x) = \begin{cases} 1 - |x| & \text{if } x \in [-1, 1] \\ 0 & \text{otherwise} \end{cases}$$
$$\phi_{l,i}(x) = \phi(\frac{x - i \cdot h_l}{h_l}) = \phi(\frac{x - i \cdot 2^{-l}}{2^{-l}}) = \phi(x \cdot 2^l - i)$$

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook

An hierarchical basis

Figure: Datamining mit Dünnen Gittern, Pflüger

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook

An hierarchical basis

Figure: Datamining mit Dünnen Gittern, Pflüger

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Pago	da				

This function can be enhanced to a d-linear function

Figure: AWR2, Bungartz

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Spars	e Grids				

Extending the hierarchical pattern yields a subgrid scheme (in 2D case):

Figure: AWR2, Bungartz

Outline Data Mining Sparse Grids Combination technique Examples 0000000 00000000 000000000000000000000000000000000000	Outlook
---	---------

Use grids with large contribution to the solution and few gridpoints

Regular Sparse Grids have a far better behaviour: $O(n * log(n)^{d-1})$

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
		0000000			

This leads to the well known pattern:

Figure: AWR2, Bungartz

Outline	Data Mining	Sparse Grids	Combination technique	Examp
			• 0000 000000000	

Examples

Outlook

Working with Sparse Grids involves a lot of overhead:

Figure: AWR, Bungartz

Outline Data Mining

Sparse Grids

Combination technique

Examples

Outlook

It is possible to create a similiar structure by combining multiple, much coarser full grids

Figure: AWR2, Bungartz

Outline	Data Mining

Sparse Grids

Combination technique

Examples

Outlook

For the 2D case:

$$f_n^{(c)}(\mathbf{x}) := \sum_{|\mathbf{l}|_1=n+1} f_{\mathbf{l}}(\mathbf{x}) - \sum_{|\mathbf{l}|_1=n} f_{\mathbf{l}}(\mathbf{x})$$

Outline	Data N

Sparse Grids

Combination technique

Examples

Outlook

Or more general:

Definition

$$f_n^{(c)}(\mathbf{x}) := \sum_{q=0}^{d-1} (-1)^q \binom{d-1}{q} \sum_{|\mathbf{I}|_1=n-q} f_{\mathbf{I}}(\mathbf{x})$$

This formula is derived from the combinatorial 'inclusion-exclusion' principle!

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Chara	acteristics				

- Existing codes for full grids can be used
- Embarrassingly parallel: Each subgrid can be computed without communication
- Still less points than regular nodal grids
- Only for regular sparse grids!

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Gene	ralisation				

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Gene	ralisation				

Allowing all subspace combinations would be a bad idea!

DefinitionAdmissibility \mathcal{I} - set of selected indices $\underline{k} \in \mathcal{I}$ and $\underline{j} \leq \underline{k} \Rightarrow \underline{j} \in \mathcal{I}$

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Com	oination				

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Com	oination				

Example: Combining a (2,3) and a (3,1) grid

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Adapt	tivity				

Start with the smallest grid: $\underline{1} = (1, ..., 1)$ Successively add new grid indexes:

- new index set must remain admissible
- new index must provide a significant contribution to the general solution

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Error	indicator				

How to measure the contribution of an index?

- Calculate $\varepsilon = R(f)$
- The regularisation term may be omitted
- a large ε indicates a bad fitting \rightarrow further refinement needed

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Algorit	thm				

- Initizalize index set $I = \{\underline{1}\}$
- Initizalize old index set $O = \{\}$
- Solve problem on <u>1</u>
- while global $\varepsilon >$ bound
 - Choose $\underline{i} \in I$ with largest $\varepsilon_{\underline{i}}$
 - Refine in all dimensions, if admissible in O
 - Move <u>i</u> to O
 - Calculate problems and ε on new indexes
 - Update global ε

Outline	Data Mining	Sparse Grids	Combinatio
			00000000

Combination technique

Examples

Outlook

Algorithm

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Why o	dimension	-adaptivity	?		

Consider:

$$f(\mathbf{x}) = f_1(x_1) + f_2(x_2) + \ldots + f_d(x_d)$$

- All dimensions are totally independant
- It is possible to reconstruct the function with very little grid points
- The introduced algorithm can produce a near optimal result

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Addit	ive functio	ns			

$$f(x_1, x_2) = e^{-x_1^2} + e^{-x_2^2}$$

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Multiplicative functions					

$$f(x_1, x_2) = e^{-(x_1^2 + x_2^2)}$$

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Mixed functions					

$$f(x_1, x_2) = e^{-x_1^2} + e^{-(x_1^2 + x_2^2)}$$

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Outlo	ok				

- Up to 15 dimensions possible in real world applications
- Or more if not to many dimensions hold informations...
- It is possible to use other coefficients for combination
 - One possibility: minimize difference to 'normal' sparse grids
 - This is called opticom technique by Garcke
 - Additional computional complexity, but better stability

Outline	Data Mining	Sparse Grids	Combination technique	Examples	Outlook
Outloc	k				

Other application areas:

 Integration An alternative for Monte-Carlo-Integration for high dimensional integrals

Solving PDEs

Possibility to solve PDEs in high dimensions or using a space-time-discretization

• Of course there is still the 'real' sparse grid technique

Outline	Data Mining	Sparse Grids	Combination technique	

Examples

Outlook

Thank you for your attention.