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Data Mining

Data Mining: An use case for sparse grids
@ Deduce knowledge from a (large) database
@ Recover a function from test results
@ Cope with measurement errors
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Function Reconstruction
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Function Reconstruction
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Datasets

@ Higher dimensions are common.
S={(x,y;) e RI xRIM,

@ d-dimensional dataset with M entries
@ y; - function value
@ Restricting y; to an arbitrary number of classes is possible
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Datasets

@ We assume that the data points are evaluations of an
unknown function f

Wanted: a function

y= f(X1’X27"'7Xd)

feV

where V is a function space over RY
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Regularisation

Recover this function as good as possible!

in R(f
min ()

Z\IJ(f ), ¥i) + A®(f)

V(x,y) =(x—y)?
° o(f) = ||VF|3
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Discretization

@ We confine V to a discrete space Vy
@ A function fyy € Vy can now be written as:

N
fn =" ajsj(x)
=

e weights: {a;}N,

@ abase: &y = {p;}V,
The choice of basis functions has a major impact on viability
and accuracy of this approach.
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Differentation of R(fy) now yields for k =1... N:

ZO‘J

j=1

MX(Vej, Vi) L2+Z<Pj X;) - pk(X ] Zym@k
i=1
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Which is a system of linear equations with N unknowns and N
equations and can be written in matrix form:

(AC+B-B")a =By

This system is symmetric and positiv definite and can be solved
using a standard solver like Conjugated Gradients method.
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Choice of base functions

@ Nodal basis yields: O(n)
@ Not viable even for medium dimension counts
@ Solution: Use less grid points!
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Hat functions
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S0x) = {1 —|x| ifxe[-1,1]

X—i- h/ x—i-27!

B11(x) = & )= o) = olx-2' =)
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An hierarchical basis
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Figure: Datamining mit Dinnen Gittern, Pflliger
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An hierarchical basis
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Figure: Datamining mit Dinnen Gittern, Pflliger
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This function can be enhanced to a d-linear function

Definition

¢I| Hé/ljxj

Figure: AWR2, Bungartz
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Sparse Grids

Extending the hierarchical pattern yields a subgrid scheme (in
2D case):

Figure: AWR2, Bungartz
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Use grids with large contribution to the solution and few
gridpoints

\

Regular Sparse Grids have a far better behaviour:
O(n  log(n)?—1)
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This leads to the well known pattern:

Figure: AWR2, Bungartz
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Working with Sparse Grids involves a lot of overhead:

Figure: AWR, Bungartz
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It is possible to create a similiar structure by combining
multiple, much coarser full grids
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Figure: AWR2, Bungartz
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For the 2D case:

RO = > A0 - > Ax)

1]y =n+1 M1=n



Combination technique
[e]e]e] Jo]

Or more general:

Definition
d—1
90 =3 (17 (7] (%)
qz—% < q9 >u|§q

This formula is derived from the combinatorial
‘inclusion-exclusion’ principle!
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Characteristics

@ Existing codes for full grids can be used

@ Embarrassingly parallel: Each subgrid can be computed
without communication

@ Still less points than regular nodal grids
@ Only for regular sparse grids!
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Generalisation
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Generalisation

Allowing all subspace combinations would be a bad idea!

Definition

Admissibility
T - set of selected indices

keTandj<k=jeT
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Combination
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Combination

Example: Combining a (2,3) and a (3, 1) grid

.......
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Adaptivity

Start with the smallest grid: 1 = (1,...,1)
Successively add new grid indexes:

@ new index set must remain admissible

@ new index must provide a significant contribution to the
general solution
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Error indicator

How to measure the contribution of an index?
@ Calculate e = R(f)
@ The regularisation term may be omitted

@ alarge ¢ indicates a bad fitting — further refinement
needed
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Algorithm

@ Initizalize index set [ = {1}
@ Initizalize old index set O = {}

@ Solve problem on 1

@ while global £ > bound

Choose i € I with largest ¢;

Refine in all dimensions, if admissible in O
Move i to O

Calculate problems and ¢ on new indexes
Update global ¢



Algorithm
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Why dimension-adaptivity?

Consider:
f(X) = f1 (X1) + fg(Xg) 4+ ...+ fd(Xd)

@ All dimensions are totally independant

@ It is possible to reconstruct the function with very little grid
points

@ The introduced algorithm can produce a near optimal result
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Additive functions

f(x1,X2) = e_X12 + e_X22
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Multiplicative functions

f(x1, Xp) = e 04+

Y
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Mixed functions

f(X1 s Xg) = e_x12 + e_(x12+X22)
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Outlook

@ Up to 15 dimensions possible in real world applications
@ Or more if not to many dimensions hold informations...

@ Itis possible to use other coefficients for combination
e One possibility: minimize difference to 'normal’ sparse grids
e This is called opticom technique by Garcke
e Additional computional complexity, but better stability
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Other application areas:

@ Integration
An alternative for Monte-Carlo-Integration for high
dimensional integrals

@ Solving PDEs
Possibility to solve PDEs in high dimensions or using a
space-time-discretization

@ Of course there is still the 'real’ sparse grid technique
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Thank you for your attention.
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