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Abstract

The problem of graph reconstruction is open problem nevertheless it is so
easy in formulation. But this problem is completly solved in the case of trees.
This paper gives an overview of the proof.
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1 Setting

For the needs of this paper all graphs will be simple and undirected. We won’t
differ the nodes and verticies. We will use representation of a graph as a pair of
sets of its nodes (V) and edges (E). Such graph G = (VG, EG)

Definition. A ∼= B if there is some bijection between VA and VB which preserves
edges.

Trees are connected graphs without cycles as usual. For every tree |E| =
|V | − 1. Every two nodes can be connected in a single way. This properties of
any tree can be easily estimated by induction.

2 Main theorem

Main issue uses in it’s formulation parts of the graphs received from the original
graph by deletion of one vertex. We will denote it in following way.

Definition. Let G be a graph consisting of (V, E). Let Vv = V \ {v}
Then with Gv we denote (Vv, E|
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One question arises in connection with that procedure: how many informa-
tion we lose after removal of one vertex? Of course we can’t estimate anything
about removed vertex in case that we have only one subgraph. But what hap-
pens if we have more then one? Following definiton also will be useful.

Definition. Deck DG of graph G is a multiset {Gv|v ∈ VG}

Main conjecture that it is sufficient information in deck to recover the graph
completely.

Conjecture. (Reconstruction conjecture) Let graphs A and B have n > 2 ver-
tices and DA = DB. Then A ∼= B.

Nevertheless it’s so simple in formulation, it’s still an open question. But if
add some restriction, we come to the complete result.

Theorem 1. Let trees A and B have n > 2 vertices and DA = DB. Then
A ∼= B.

3 Proof

First of all we recall some famous notion and properies connected to trees.

Definition. Diameter is the path of maximal length.

Of course, in the tree can be more then one diameter, as in the star-tree,
where only one vertex isn’t pendant. With d we will denote the length of diam-
eter.

Definition. Centers are the points with minimal maximal distance to the pen-
dant vertices.

From this definition clear that there is at most two centers in any tree. This
is because every center should lie on this maximal distance path from any other
one.

Definition. Radius r of tree is the maximal distance from the pendant vertex
to the closest center.

It’s easy to see that r =
⌊

d

2

⌋

We should just pay attention to the middle
points in any diameter. This bring us to the next



Proposition. If tree has odd diameter then there are two centers, else there is
one center.

With respect to this proposition we can obtain an useful information about
tree structure.

Odd diameter trees has two centers. Every diameter goes through them.

C1 C2
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Even diameter has one center. Every diameter can be splited into two parts
of semilength in different limbs.
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The remaining part are closer to the proof of main theorem. In it we denote
with A and B two graphs from the statement of main Theorem ??. So they
has the same decks, and let {ai}

n
i=1 and {bi}

n
i=1 be an agreed numerations:

Aai

∼= Bbi
.

Lemma 1. Let A be a graph on n vertices, T is a graph on j vertices. Let αi

is the number of T -type subgraphs, containing ai. Then for the total number α

of T -type subgraphs the following holds:

α =

∑

n

i=1
αi

j

Proof. For the proof we calculate the total number N of verticies in all T -type
subgraphs in two ways. From the first side, counting the entries of each vertex
separately, we recive N =

∑

n

i=1
αi. From the second side N simply equals

α|T | = αj. From here we recive the claim of lemma.

Corollary. Let A and B be a graphs on n vertices and T be a graph on j < n

vertices, then αai
= βbi

Proof. Since Aai

∼= Bbi
, T occurs in each the same number of times: α−αai

=
β − βai

Sum it up:
∑

n

i=1
(α − β) =

∑

n

i=1
(αai

− βai
)

After applying the lemma ?? we receive: n(α−β) = j(α−β), and then α = β.
After removing of it from the first equality for all i we receive αai

= βbi
.

Corollary. Let A and B be a graphs on n vertices. Then deg(ai) = deg(bi).

Proof. It follows from previous corollary for T consisting of one edge.

Lemma 2. A and B are of the same diameter. So they have the same radius
and central or bicentral simultaneously.

Proof. Case 1. A and B are paths. It’s sufficient to delete extreme vertex in
this case.

Case 2. In each graph exists vertex of degree at least 3. Assume, for example,
then in A diameter is bigger. Then we can remove vertex in A such that at
least one diameter preserves. This means that in B exists path of at least the
same length. After the symmetrical reasoning we receive that diameters are the
same.

We will classify different cases according to the pieces of graphs wich are
hangs on the centers.



Definition. Let c be a center of A. Let F ′ be a component of Ac which is
connected with c in A. Assume F = F ′ ∪ {c} Then (F, E|

F×F
)) is the limb at

c.

Significant property of limb is presence of remote point in it.

Definition. Let r be a radius of tree. r-point is the point which have distance
r to the closest center.

Definition. Limb is radial if it contains an r-point. Otherway, it is nonradial.

Lemma 3. ai is r-point if and only if bi r-point.

Proof. If graphs are 2r + 1 paths it is trivial. Otherwise it’s the colloary of
lemma ?? for T equals 2r + 1 path.

In both considered in the proof cases we can see, that the number of diame-
ters going through coressponding vertices are the same.

We give a sketch of a proof for harder case of bicentral tree. Case of one
center tree can be investigated in a similar maner. Let the centers of A will be
ā1 and ā2, and the centers in B will be b̄1 and b̄2.

For later needs we split A into parts: Ai - all radial limbs at āi, Bi - all
nonradial limbs at āi.

The same thing with B: Ci - all radial limbs at b̄i and Di - all nonradial at
b̄i.

Also we denote Ar = A1∪A2, Br = B1∪B2, C = C1∪C2 and D = D1∪D2.

Definition. Pendant point a ∈ A called nonesential(n.e.) if in Aa at least one
diameter preserves.

It implies that Aa also bicentral with the same radius.
For example, all pendant non r-points are n.e. points. Also, all points which

are belonged to a center with at least 2 radial limbs are n.e. points too. And
all r-points which a not single r-points in limb are n.e. points.

From corollary of lemma ?? follows that ai and bi are of the same type.
The followong proofs isn’t complete. They consists of just main ideas.
More ever,

Lemma 4. If ai is n. e. in Ar then bi is n. e. in Br.

Proof. If we assume contoroary, then we first come to the following: |Ar| =
|Br| + 1 and A = Ar, and sequentially |D| = 1. After the series of observation
we come to the fact, that Ar differs from 2r + 1 path in one vertex

Proof. (of main theorem)
The proof essentialy splits in 3 cases. Main game comes around radial parts

of graphs.
Case 1: C 6= ∅
If we remove any point from nonradial limb, we recive that all radial limbs

should go to the radial. Repeating this reasoning for both graphs, we receive
Ar

∼= Br. After the series of observation we come to the fact, that there is a
center preserving congruence of C and D.

If this congruences are consistent, then we are done. Otherwise we should
pay attention to nonradial parts.

Case 2: C = ∅, Ar consist of at least 3 limbs
In this case main idea consist of deletion of one of the centers. After that we

recives isomorphism of parts of the graphs wich hangs on the centers of degree
at least 2, say A2

∼= B2. If first two are also of degree at least 2, then it’s enough
just to repeat this idea to another center. Otherwise it’s enough to delete some
r point in isomorphic parts.

Case 3: C = ∅, Ar consist of 2 limbs
First we receives that sizes of parts are bounded with following relation

|A1| = |B1| and |A2| = |B2|. Then we should consider n. e. points Ai and show
thet corresponding shoud lie in Bi. After that we should pay attention to n. e.
points in smallest part.
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