Course “Trees — The Ubiquitous Structure in Computer Science
and Mathematics”, JASS'08

The Number of Spanning Trees in a Graph

Konstantin Pieper

Fakultat fir Mathematik
TU Miinchen

April 28, 2008

Konstantin Pieper: Counting Spanning Trees 1/ 29

Preliminaries
__

Definition 1
Let G =(V,E) with V={1,...,n} and E ={ey1,...,en} be a
directed graph. Then the incidence matrix Sg € M(n, m) of G is

defined as:
1 ifeendsini
(Sg)iji=4q —1 ifestartsini
0 else

Konstantin Pieper: Counting Spanning Trees 2/ 29

Preliminaries

Definition 1
Let G = (V,E)with V={1,...,n} and E ={ey,...,en} be a
directed graph. Then the incidence matrix S¢ € M(n, m) of G is

defined as:
1 ifeendsini
(Sg)iji=4q —1 ifestartsini
0 else
Remark 1

For an undirected graph G every Sz of some arbitrarily oriented
directed variant G of G can be taken as the incidence matrix.

Konstantin Pieper: Counting Spanning Trees 2/ 29

Preliminaries
__

Example 2

1 0 0 1 0
1 -1 0 0 1
=9 1 -1 0 o0

Konstantin Pieper: Counting Spanning Trees 3/ 29

Preliminaries
__

Theorem 3
The rank of the incidence matrix of a graph on n vertices is:

Konstantin Pieper: Counting Spanning Trees 4/ 29

Preliminaries
__

Theorem 3
The rank of the incidence matrix of a graph on n vertices is:

rank(Sg) = n — | “weakly” connected components of G|

Konstantin Pieper: Counting Spanning Trees 4/ 29

Preliminaries
__

Theorem 3
The rank of the incidence matrix of a graph on n vertices is:

rank(Sg) = n — | “weakly” connected components of G|

Proof.
Reorder the edges and vertices so that:
Sa, ... 0

S¢ = >,

Konstantin Pieper: Counting Spanning Trees 4/ 29

Preliminaries
__

Remark 2
Since (1,...,1) - Sg = 0, we can remove an arbitrary row from Sg
without losing information.

Konstantin Pieper: Counting Spanning Trees 5/ 29

Preliminaries

Remark 2
Since (1,...,1) - Sg = 0, we can remove an arbitrary row from Sg
without losing information.

Definition 4)
For every A € M(n, m) define A € M(n— 1, m) as A without the
n-th row.

Konstantin Pieper: Counting Spanning Trees 5/ 29

Example 5

Konstantin Pieper: Counting Spanning Trees 6/ 29

Example 5

S¢-SL =
-1 1 0
-1 0 0 1 0 0o -1 1 2 -1 0
1 -1 0 01] 0 0 -1 -1 3 -1
0 1 -1 0 0 1 0 0 0 -1 2
0 1 0
Konstantin Pieper: Counting Spanning Trees 6/ 29

Kirchhoff’s theorem
.

Theorem 6 (Kirchhoff)
The number of spanning trees of a graph G can be calculated as:

det(Dg) where Dg = S¢ - S&

Konstantin Pieper: Counting Spanning Trees 7/ 29

Kirchhoff’s theorem
.

Theorem 6 (Kirchhoff)
The number of spanning trees of a graph G can be calculated as:

det(Dg) where Dg = S¢ - S&

Remark 3
deg(i) ifi=j
(DG),-J = -1 if{i,j}€E
0 else

Konstantin Pieper: Counting Spanning Trees 7/ 29

Kirchhoff’s theorem
.

Lemma 7
Let T = (V,E) be a directed tree that is rooted at n. We can
order E so that e; ends in i.

Konstantin Pieper: Counting Spanning Trees 8/ 29

Kirchhoff’s theorem

Lemma 7
Let T = (V,E) be a directed tree that is rooted at n. We can

order E so that ¢; ends in i.

Proof.
Take ej := (p(i), i), where p(i) is the parent of i. O

Konstantin Pieper: Counting Spanning Trees 8/ 29

Kirchhoff’s theorem

Lemma 7
Let T = (V,E) be a directed tree that is rooted at n. We can
order E so that e; ends in i.

Proof.
Take e := (p(i), i), where p(i) is the parent of i. O

Remark 4

Every undirected tree on V has exactly one undirected variant that
is rooted at n. So for constructing/counting spanning trees we
only have to consider graphs with j € ¢; .

Konstantin Pieper: Counting Spanning Trees 8/ 29

Kirchhoff’s theorem

Lemma 8
Let G = (V,E) with |E| = n—1 be a directed graph which is not
a tree.

Then det(S¢) = 0.

Konstantin Pieper: Counting Spanning Trees 9/ 29

Kirchhoff’s theorem

Lemma 8
Let G = (V,E) with |E| = n—1 be a directed graph which is not
a tree.

Then det(S¢) = 0.

Proof.
Since [E| = n—1, G is not “weakly” connected.
So rank(Sg) = rank(Sg) < n—2. O

Konstantin Pieper: Counting Spanning Trees 9/ 29

Kirchhoff’s theorem
.

Lemma 9
Let T = (V,E) be a tree with e; € E ending ini € V.

Konstantin Pieper: Counting Spanning Trees 10/ 29

Kirchhoff’s theorem
.

Lemma 9
Let T = (V,E) be a tree with e; € E ending in i € V.
Then det(S57) = 1.

Konstantin Pieper: Counting Spanning Trees 10/ 29

Kirchhoff’s theorem

Lemma 9
Let T =(
Then det(

Proof.

Order the vertices (and edges simultaneously — €; has to end in i)
so that p(i) > i. Then,

V,E) be a tree with e; € E ending ini € V.
§):

1 =x *
Sr= 0 1 O
0 0 1

Konstantin Pieper: Counting Spanning Trees 10/ 29

Kirchhoff’s theorem

Proof of Kirchhoff's theorem.
We observe that the j-th column of D¢ is the sum of “incidence
vectors” that correspond to edges in G that have endpoints in the

i-th vertex.
Figure: First column of D¢
3 1 1 1
Di={(-1]|={| -1]+ 0 +1 0
-1 0 -1 0

Konstantin Pieper: Counting Spanning Trees 11/ 29

Kirchhoff’s theorem

Proof of Kirchhoff's theorem.
We observe that the j-th column of D¢ is the sum of “incidence

vectors” that correspond to edges in G that have endpoints in the
If we now use the linearity of the determinant in every

column we obtain:

i-th vertex.

Konstantin Pieper: Counting Spanning Trees

Figure: Expansion of the determinant

3 -1 -1

det(D):| -1 4 -1

1 -1 4
-1 -1 1 -1 -1 1 -1 -1
4 —1|+| 0 4 —1|+|l0 4 -1
1 4 1 -1 4 0 —1 4

11/ 29

Kirchhoff’s theorem

Proof of Kirchhoff's theorem.

We observe that the j-th column of D¢ is the sum of “incidence
vectors” that correspond to edges in G that have endpoints in the
i-th vertex. If we now use the linearity of the determinant in every

column we obtain:

det(Dg) =) _ det(5y)
HeH

where H is the set of all subgraphs of G which correspond to a
selection of n — 1 edges, with ¢; ending in J.

Konstantin Pieper: Counting Spanning Trees 11/ 29

Kirchhoff’s theorem

Proof of Kirchhoff's theorem.

We observe that the j-th column of D¢ is the sum of “incidence
vectors” that correspond to edges in G that have endpoints in the
i-th vertex. If we now use the linearity of the determinant in every
column we obtain:

det(Dg) = Z det(S
HeH

where H is the set of all subgraphs of G which correspond to a
selection of n — 1 edges, with €; ending in i.

To prove the theorem it is now sufficient to use the preceding
lemmata. O

Konstantin Pieper: Counting Spanning Trees 11/ 29

Extension towards MST
.

Definition 10

For a weighted graph G with edge weights w; j let Sg(x) be the
incidence matrix Sg with every column corresponding to (i, k) € E
rescaled by x"ik,

Konstantin Pieper: Counting Spanning Trees 12/ 29

Extension towards MST
.

Definition 10

For a weighted graph G with edge weights w; j let Sg(x) be the
incidence matrix Sg with every column corresponding to (i, k) € E
rescaled by x"ik,

x"ei o if e = (k, i)
(S(x));j = —x"* ife=(ik)
0 else

Konstantin Pieper: Counting Spanning Trees 12/ 29

Extension towards MST

Example 11 (Toy graph H)

<N
N

—x2 —x2 —=x* 0 0 0 0
x2 0 0 —x —x 0 0
Se(x) = 0 0 0 x 0 —x 0
0 x2 0 0 X x —x3
0 0 x4 0 0 0 x3
Konstantin Pieper: Counting Spanning Trees 13/ 29

Extension towards MST

Theorem 12 (Matrix-Tree Theorem for weighted graphs)

The generating function of the number of spanning trees by weight
w is the determinant of

where 55(x) and S¢ are defined as above.

Konstantin Pieper: Counting Spanning Trees 14/ 29

Extension towards MST

Theorem 12 (Matrix-Tree Theorem for weighted graphs)

The generating function of the number of spanning trees by weight
w is the determinant of

where 55(x) and S¢ are defined as above.
In other words:

det (Dg(x)) = Z |ST by weight w| - x"

w=0

Konstantin Pieper: Counting Spanning Trees 14/ 29

Extension towards MST

Example 13
\
/@
1
Dg(x) = :i
x3 4+ x2 4+ 2x

det (D¢ (x)) = 2x1° + 5x% + 8x® + 6x”

Konstantin Pieper: Counting Spanning Trees 15/ 29

Extension towards MST
.

Remark 5
It is easy to check that we can also write down Dg(x) for any
given graph G directly:

et =)
(Dg(x));; = —x " if {i,j} € E
0 else

Konstantin Pieper: Counting Spanning Trees 16/ 29

Extension towards MST
.

Proof.

As above.
Here each spanning tree by weight w contributes x* to the

determinant of Dg(x).

Konstantin Pieper: Counting Spanning Trees 17/ 29

Computing the number of MSTs
.

» Should we try to calculate det(Dg(x))?

Konstantin Pieper: Counting Spanning Trees 18/ 29

Computing the number of MSTs

» Should we try to calculate det(Dg(x))?
» Consider the following graph on 2n vertices:

Konstantin Pieper: Counting Spanning Trees 18/ 29

Computing the number of MSTs

» Should we try to calculate det(Dg(x))?
» Consider the following graph on 2n vertices:

» det(Dg(x)) can have Q(2") coefficients

Konstantin Pieper: Counting Spanning Trees 18/ 29

Computing the number of MSTs
.

» Compute only the number of minimal spanning trees (the
coefficient of the minimum degree monomial).

Konstantin Pieper: Counting Spanning Trees 19/ 29

Computing the number of MSTs
.

» Compute only the number of minimal spanning trees (the
coefficient of the minimum degree monomial).

» If Wpin is the minimal weight for a spanning tree, clearly x"min
must divide det(Dg(x))

Konstantin Pieper: Counting Spanning Trees 19/ 29

Computing the number of MSTs

» Compute only the number of minimal spanning trees (the
coefficient of the minimum degree monomial).

» If Wnin is the minimal weight for a spanning tree, clearly x%min
must divide det(Dg(x))

» Try to factor out the minimum degree monomial of each
column and use the linearity of the determinant.

det(D¢(x)) =
x* +2x? —x? 0 —x? X2 +2 —Xx 0 —x
—x? X2+2x —X —X _ X5 —1 x+2 -1 —1
0 —x 2x —x - 0 -1 2 -1
—x? —x —x x4+ X%+ 2x -1 -1 1 XX 4x+2

Konstantin Pieper: Counting Spanning Trees 19/ 29

Computing the number of MSTs

Example 14 (Factor det (Dg(x)))

XT 4 2x —X 0 —X

—x? X2 +2x —x —x

0 —Xx 2x —x
—x? —x —x X3 + 52 + 2x

-1

0 —x
-1 -1
2 -1
—1 X2+x+2

Konstantin Pieper: Counting Spanning Trees

20/ 29

Computing the number of MSTs

The entries of the i'th column of Dg(x) correspond to edges in the

cut (i, N'(1)):

Konstantin Pieper: Counting Spanning Trees 21/ 29

Computing the number of MSTs

The entries of the i'th column of Dg(x) correspond to edges in the

cut (i, N'(1)):

Change the cuts?

Konstantin Pieper: Counting Spanning Trees 21/ 29

Computing the number of MSTs
.

Theorem 15

If we have a minimal spanning tree T of G, we can modify D¢ (x)
(without changing the determinant) so that the product of the
minimum degree monomials of each column is Wpjy.

Konstantin Pieper: Counting Spanning Trees 22/ 29

Computing the number of MSTs

Theorem 15

If we have a minimal spanning tree T of G, we can modify D¢(x)
(without changing the determinant) so that the product of the
minimum degree monomials of each column is Wpjy.

Algorithm A: Modify Dg(x)
T := mst(G)
D'(x) i= De(x)
while T #{} do
i := arbitrary leaf of T with i#n
p := parent of |
add the /-th column in D’ to the p-th column
T := T\ {i}

od

Konstantin Pieper: Counting Spanning Trees 22/ 29

Computing the number of MSTs

Example 16 (MST of H and corresponding o(i))

x* 4 2x2 x* 4+ x2 0 x*
—x2 X —x 0

0 X 2x 0
—x2 —x2—-2x —x x3

x2 42
-1

= O O X

Konstantin Pieper: Counting Spanning Trees

23/ 29

Computing the number of MSTs
.

Lemma 17
The i-th column of D'(x) contains the sum of the columns in
D¢ (x) corresponding to o(i).

Konstantin Pieper: Counting Spanning Trees 24/ 29

Computing the number of MSTs

Lemma 17

The i-th column of D'(x) contains the sum of the columns in
D¢ (x) corresponding to o(i).
Writing out the entries of D'(x) we get:

Fori ¢ o(j
D) =— Y

{i,k}eE:kea(j)

Konstantin Pieper: Counting Spanning Trees 24/ 29

Computing the number of MSTs

Lemma 17

The i-th column of D'(x) contains the sum of the columns in
D¢ (x) corresponding to o(i).

Writing out the entries of D'(x) we get:

For i & o(j)
DI{J(X) — Z X Wi
{i,k}eE:keo())
For i € o(j) the above cancels with D; ;

D)= > xmw

{i,k}eE:k¢o(j)

Konstantin Pieper: Counting Spanning Trees 24/ 29

Computing the number of MSTs
.

Proof.
So the j'th column of D’ contains only terms corresponding to
edges in the cut (a(j), V \ o())).

Konstantin Pieper: Counting Spanning Trees 25/ 29

Computing the number of MSTs
.

Proof.

So the j'th column of D’ contains only terms corresponding to
edges in the cut (a(j), V \ o())).

The only edge of T in the j'th cutis (p(j),/)-

Konstantin Pieper: Counting Spanning Trees 25/ 29

Computing the number of MSTs

Proof.

So the j'th column of D’ contains only terms corresponding to
edges in the cut (a(j), V \ o())).

The only edge of T in the j'th cutis (p(j),/)-

All the other edges from the cut must have higher weight because

T is minimal.

Konstantin Pieper: Counting Spanning Trees 25/ 29

Computing the number of MSTs

Proof.

So the j'th column of D’ contains only terms corresponding to
edges in the cut (a(j), V \ o())).

The only edge of T in the j'th cutis (p(j),/)-

All the other edges from the cut must have higher weight because

T is minimal.

n—1
H Wp(i),i = Wmin
i=1

Konstantin Pieper: Counting Spanning Trees 25/ 29

Optimizations
.

The runtime of our implementation so far is O (mn + M(n)) where
M(n) is the time required to multiply two n x nmatrices.
O (M(n)) can be thought of as “O(n?*€)".

Konstantin Pieper: Counting Spanning Trees 26/ 29

Optimizations

The runtime of our implementation so far is O (mn + M(n)) where
M(n) is the time required to multiply two n x nmatrices.

O (M(n)) can be thought of as “O(n?**)". We can further
optimize the O(mn) part by

» only calculating the minimum degree monomials for each
entry.

Konstantin Pieper: Counting Spanning Trees 26/ 29

Optimizations

The runtime of our implementation so far is O (mn + M(n)) where
M(n) is the time required to multiply two n x nmatrices.

O (M(n)) can be thought of as “O(n?**)". We can further
optimize the O(mn) part by

» only calculating the minimum degree monomials for each
entry.

» calculating the negative and positive entries separately.

Konstantin Pieper: Counting Spanning Trees 26/ 29

Optimizations

The runtime of our implementation so far is O (mn + M(n)) where
M(n) is the time required to multiply two n x nmatrices.

O (M(n)) can be thought of as “O(n?**)". We can further
optimize the O(mn) part by

» only calculating the minimum degree monomials for each
entry.

» calculating the negative and positive entries separately.
In the following E is sorted so that p(j) > j.

Konstantin Pieper: Counting Spanning Trees 26/ 29

Optimizations
.

For i ¢ o(j) no entries cancel — the naive approach works.

Konstantin Pieper: Counting Spanning Trees 27/ 29

Optimizations

For i ¢ o(j) no entries cancel — the naive approach works.

Algorithm B1: Negative Entries of D’
for j=1 to n—1 do
for i ¢ o(j) do
Di; = min_d(Dg(x)ij + 2k enitd of j in 7 Dik)
/* min_d computes the minimum degree monomial */
od
od

Konstantin Pieper: Counting Spanning Trees 27/ 29

Optimizations

For i ¢ o(j) no entries cancel — the naive approach works.

Algorithm B1: Negative Entries of D’
for j=1 to n—1 do
for i ¢ o(j) do
Di; = min_d(Dg(x)ij + 2k enitd of j in 7 Dik)
/* min_d computes the minimum degree monomial */
od
od

This is O(n?).

Konstantin Pieper: Counting Spanning Trees 27/ 29

Optimizations

For i € o(j) we use the explicit formula
/o Wk, i
Dij= > x
{i,k}eE:k¢o(j)
and run over the rows first.

Konstantin Pieper: Counting Spanning Trees 28/ 29

Optimizations

For i € o(j) we use the explicit formula
[Wk, i
Di; = Z X
{i.k}eE:kgo())
and run over the rows first.

Algorithm B2: Positive Entries of D’

for i=1to n—1 do
L := sort (N(i))
for j=1to n—1, i €o(j) do

L= 1\o()
it L)

k := first_element (L)

D,{’j = xWik o |se Ll wi,=ws
fi

od
od

Konstantin Pieper: Counting Spanning Trees 28/ 29

Optimizations

For i € o(j) we use the explicit formula
[Wk, i
Di; = Z X
{i.k}eE:kgo())
and run over the rows first.

Algorithm B2: Positive Entries of D’

for i=1to n—1 do
L := sort (N(i))
for j=1to n—1, i €o(j) do

L= 1\o()
it L)

k := first_element (L)

D,{’j = xWik o |se Ll wi,=ws
fi

od
od

This is O(n?log n).

Konstantin Pieper: Counting Spanning Trees 28/ 29

Optimizations
.

Conclusion:

» We could calculate the number of spanning trees by arbitrary
weight.

Konstantin Pieper: Counting Spanning Trees 29/ 29

Optimizations
.

Conclusion:

» We could calculate the number of spanning trees by arbitrary
weight.

» We can find the number of minimal spanning trees in
O(n? + mlog n + M(n)) = O(M(n))

Konstantin Pieper: Counting Spanning Trees 29/ 29

	Introduction
	Preliminaries

	Matrix-Tree Theorems
	Kirchhoff's theorem
	Extension towards MST

	Algorithms
	Computing the number of MSTs
	Optimizations

