
Course “Trees – The Ubiquitous Structure in Computer Science
and Mathematics”, JASS’08

The Number of Spanning Trees in a Graph

Konstantin Pieper

Fakultät für Mathematik
TU München

April 28, 2008

Konstantin Pieper: Counting Spanning Trees 1/ 29

Preliminaries

Definition 1
Let G = (V ,E) with V = {1, . . . , n} and E = {e1, . . . , em} be a
directed graph. Then the incidence matrix SG ∈ M(n,m) of G is
defined as:

(SG)i ,j :=


1 if ej ends in i
−1 if ej starts in i
0 else

Remark 1
For an undirected graph G every SḠ of some arbitrarily oriented
directed variant Ḡ of G can be taken as the incidence matrix.

Konstantin Pieper: Counting Spanning Trees 2/ 29

Preliminaries

Definition 1
Let G = (V ,E) with V = {1, . . . , n} and E = {e1, . . . , em} be a
directed graph. Then the incidence matrix SG ∈ M(n,m) of G is
defined as:

(SG)i ,j :=


1 if ej ends in i
−1 if ej starts in i
0 else

Remark 1
For an undirected graph G every SḠ of some arbitrarily oriented
directed variant Ḡ of G can be taken as the incidence matrix.

Konstantin Pieper: Counting Spanning Trees 2/ 29

Preliminaries

Example 2

SG =


1 0 0 1 0
−1 −1 0 0 1
0 1 −1 0 0
0 0 1 −1 −1



Konstantin Pieper: Counting Spanning Trees 3/ 29

Preliminaries

Theorem 3
The rank of the incidence matrix of a graph on n vertices is:

rank(SG) = n − |“weakly” connected components of G |

Proof.
Reorder the edges and vertices so that:

SG =


SG1 . . . 0

SG2

...
...

. . .

0 . . . SGr



Konstantin Pieper: Counting Spanning Trees 4/ 29

Preliminaries

Theorem 3
The rank of the incidence matrix of a graph on n vertices is:

rank(SG) = n − |“weakly” connected components of G |

Proof.
Reorder the edges and vertices so that:

SG =


SG1 . . . 0

SG2

...
...

. . .

0 . . . SGr



Konstantin Pieper: Counting Spanning Trees 4/ 29

Preliminaries

Theorem 3
The rank of the incidence matrix of a graph on n vertices is:

rank(SG) = n − |“weakly” connected components of G |

Proof.
Reorder the edges and vertices so that:

SG =


SG1 . . . 0

SG2

...
...

. . .

0 . . . SGr



Konstantin Pieper: Counting Spanning Trees 4/ 29

Preliminaries

Remark 2
Since (1, . . . , 1) · SG = 0, we can remove an arbitrary row from SG

without losing information.

Definition 4
For every A ∈ M(n,m) define Ã ∈ M(n − 1,m) as A without the
n-th row.

Konstantin Pieper: Counting Spanning Trees 5/ 29

Preliminaries

Remark 2
Since (1, . . . , 1) · SG = 0, we can remove an arbitrary row from SG

without losing information.

Definition 4
For every A ∈ M(n,m) define Ã ∈ M(n − 1,m) as A without the
n-th row.

Konstantin Pieper: Counting Spanning Trees 5/ 29

Example 5

S̃G · S̃T
G =

(−1 0 0 1 0
1 −1 0 0 1
0 1 −1 0 0

)
·


−1 1 0
0 −1 1
0 0 −1
1 0 0
0 1 0

 =

(
2 −1 0
−1 3 −1
0 −1 2

)

Konstantin Pieper: Counting Spanning Trees 6/ 29

Example 5

S̃G · S̃T
G =

(−1 0 0 1 0
1 −1 0 0 1
0 1 −1 0 0

)
·


−1 1 0
0 −1 1
0 0 −1
1 0 0
0 1 0

 =

(
2 −1 0
−1 3 −1
0 −1 2

)

Konstantin Pieper: Counting Spanning Trees 6/ 29

Kirchhoff’s theorem

Theorem 6 (Kirchhoff)

The number of spanning trees of a graph G can be calculated as:

det(DG) where DG = S̃G · S̃T
G

Remark 3

(DG)i ,j =


deg(i) if i = j
−1 if {i , j} ∈ E
0 else

Konstantin Pieper: Counting Spanning Trees 7/ 29

Kirchhoff’s theorem

Theorem 6 (Kirchhoff)

The number of spanning trees of a graph G can be calculated as:

det(DG) where DG = S̃G · S̃T
G

Remark 3

(DG)i ,j =


deg(i) if i = j
−1 if {i , j} ∈ E
0 else

Konstantin Pieper: Counting Spanning Trees 7/ 29

Kirchhoff’s theorem

Lemma 7
Let T = (V ,E) be a directed tree that is rooted at n. We can
order E so that ei ends in i .

Proof.
Take ei := (p(i), i), where p(i) is the parent of i .

Remark 4
Every undirected tree on V has exactly one undirected variant that
is rooted at n. So for constructing/counting spanning trees we
only have to consider graphs with i ∈ ei .

Konstantin Pieper: Counting Spanning Trees 8/ 29

Kirchhoff’s theorem

Lemma 7
Let T = (V ,E) be a directed tree that is rooted at n. We can
order E so that ei ends in i .

Proof.
Take ei := (p(i), i), where p(i) is the parent of i .

Remark 4
Every undirected tree on V has exactly one undirected variant that
is rooted at n. So for constructing/counting spanning trees we
only have to consider graphs with i ∈ ei .

Konstantin Pieper: Counting Spanning Trees 8/ 29

Kirchhoff’s theorem

Lemma 7
Let T = (V ,E) be a directed tree that is rooted at n. We can
order E so that ei ends in i .

Proof.
Take ei := (p(i), i), where p(i) is the parent of i .

Remark 4
Every undirected tree on V has exactly one undirected variant that
is rooted at n. So for constructing/counting spanning trees we
only have to consider graphs with i ∈ ei .

Konstantin Pieper: Counting Spanning Trees 8/ 29

Kirchhoff’s theorem

Lemma 8
Let G = (V ,E) with |E | = n − 1 be a directed graph which is not
a tree.
Then det(S̃G) = 0.

Proof.
Since |E | = n − 1, G is not “weakly” connected.
So rank(S̃G) = rank(SG) ≤ n − 2.

Konstantin Pieper: Counting Spanning Trees 9/ 29

Kirchhoff’s theorem

Lemma 8
Let G = (V ,E) with |E | = n − 1 be a directed graph which is not
a tree.
Then det(S̃G) = 0.

Proof.
Since |E | = n − 1, G is not “weakly” connected.
So rank(S̃G) = rank(SG) ≤ n − 2.

Konstantin Pieper: Counting Spanning Trees 9/ 29

Kirchhoff’s theorem

Lemma 9
Let T = (V ,E) be a tree with ei ∈ E ending in i ∈ V .

Then det(S̃T) = 1.

Proof.
Order the vertices (and edges simultaneously – ei has to end in i)
so that p(i) > i . Then,

S̃T =


1 ∗ . . . ∗

0 1
. . .

...
...

. . .
. . . ∗

0 . . . 0 1



Konstantin Pieper: Counting Spanning Trees 10/ 29

Kirchhoff’s theorem

Lemma 9
Let T = (V ,E) be a tree with ei ∈ E ending in i ∈ V .
Then det(S̃T) = 1.

Proof.
Order the vertices (and edges simultaneously – ei has to end in i)
so that p(i) > i . Then,

S̃T =


1 ∗ . . . ∗

0 1
. . .

...
...

. . .
. . . ∗

0 . . . 0 1



Konstantin Pieper: Counting Spanning Trees 10/ 29

Kirchhoff’s theorem

Lemma 9
Let T = (V ,E) be a tree with ei ∈ E ending in i ∈ V .
Then det(S̃T) = 1.

Proof.
Order the vertices (and edges simultaneously – ei has to end in i)
so that p(i) > i . Then,

S̃T =


1 ∗ . . . ∗

0 1
. . .

...
...

. . .
. . . ∗

0 . . . 0 1



Konstantin Pieper: Counting Spanning Trees 10/ 29

Kirchhoff’s theorem

Proof of Kirchhoff’s theorem.
We observe that the i-th column of DG is the sum of “incidence
vectors” that correspond to edges in G that have endpoints in the
i-th vertex.

Figure: First column of DG

D.,1 =

 3
−1
−1

 =

 1
−1
0

+

 1
0
−1

+

 1
0
0



Konstantin Pieper: Counting Spanning Trees 11/ 29

Kirchhoff’s theorem

Proof of Kirchhoff’s theorem.
We observe that the i-th column of DG is the sum of “incidence
vectors” that correspond to edges in G that have endpoints in the
i-th vertex. If we now use the linearity of the determinant in every
column we obtain:

Figure: Expansion of the determinant

det(D) =

∣∣∣∣∣ 3 −1 −1
−1 4 −1
−1 −1 4

∣∣∣∣∣
=

∣∣∣∣∣ 1 −1 −1
−1 4 −1
0 −1 4

∣∣∣∣∣+

∣∣∣∣∣ 1 −1 −1
0 4 −1
−1 −1 4

∣∣∣∣∣+

∣∣∣∣∣ 1 −1 −1
0 4 −1
0 −1 4

∣∣∣∣∣ = . . .

Konstantin Pieper: Counting Spanning Trees 11/ 29

Kirchhoff’s theorem

Proof of Kirchhoff’s theorem.
We observe that the i-th column of DG is the sum of “incidence
vectors” that correspond to edges in G that have endpoints in the
i-th vertex. If we now use the linearity of the determinant in every
column we obtain:

det(DG) =
∑
H∈H

det(S̃H)

where H is the set of all subgraphs of G which correspond to a
selection of n − 1 edges, with ei ending in i .

Konstantin Pieper: Counting Spanning Trees 11/ 29

Kirchhoff’s theorem

Proof of Kirchhoff’s theorem.
We observe that the i-th column of DG is the sum of “incidence
vectors” that correspond to edges in G that have endpoints in the
i-th vertex. If we now use the linearity of the determinant in every
column we obtain:

det(DG) =
∑
H∈H

det(S̃H)

where H is the set of all subgraphs of G which correspond to a
selection of n − 1 edges, with ei ending in i .
To prove the theorem it is now sufficient to use the preceding
lemmata.

Konstantin Pieper: Counting Spanning Trees 11/ 29

Extension towards MST

Definition 10
For a weighted graph G with edge weights wi ,k let SG (x) be the
incidence matrix SG with every column corresponding to (i , k) ∈ E
rescaled by xwi,k .

(SG (x))i ,j =


xwk,i if ej = (k, i)
−xwi,k if ej = (i , k)

0 else

Konstantin Pieper: Counting Spanning Trees 12/ 29

Extension towards MST

Definition 10
For a weighted graph G with edge weights wi ,k let SG (x) be the
incidence matrix SG with every column corresponding to (i , k) ∈ E
rescaled by xwi,k .

(SG (x))i ,j =


xwk,i if ej = (k, i)
−xwi,k if ej = (i , k)

0 else

Konstantin Pieper: Counting Spanning Trees 12/ 29

Extension towards MST

Example 11 (Toy graph H)

SG (x) =


−x2 −x2 −x4 0 0 0 0
x2 0 0 −x −x 0 0
0 0 0 x 0 −x 0
0 x2 0 0 x x −x3

0 0 x4 0 0 0 x3


Konstantin Pieper: Counting Spanning Trees 13/ 29

Extension towards MST

Theorem 12 (Matrix-Tree Theorem for weighted graphs)

The generating function of the number of spanning trees by weight
w is the determinant of

DG (x) = S̃G (x) · S̃T
G

where S̃G (x) and S̃G are defined as above.

In other words:

det (DG (x)) =
∞∑

w=0

|ST by weight w| · xw

Konstantin Pieper: Counting Spanning Trees 14/ 29

Extension towards MST

Theorem 12 (Matrix-Tree Theorem for weighted graphs)

The generating function of the number of spanning trees by weight
w is the determinant of

DG (x) = S̃G (x) · S̃T
G

where S̃G (x) and S̃G are defined as above.
In other words:

det (DG (x)) =
∞∑

w=0

|ST by weight w| · xw

Konstantin Pieper: Counting Spanning Trees 14/ 29

Extension towards MST

Example 13

DG (x) =


x4 + 2x2 −x2 0 −x2

−x2 x2 + 2x −x −x
0 −x 2x −x
−x2 −x −x x3 + x2 + 2x


det (DG (x)) = 2x10 + 5x9 + 8x8 + 6x7

Konstantin Pieper: Counting Spanning Trees 15/ 29

Extension towards MST

Remark 5
It is easy to check that we can also write down DG (x) for any
given graph G directly:

(DG (x))i ,j =


∑
{i ,k}∈E xwi,k if i = j

−xwi,j if {i , j} ∈ E
0 else

Konstantin Pieper: Counting Spanning Trees 16/ 29

Extension towards MST

Proof.
As above.
Here each spanning tree by weight w contributes xw to the
determinant of DG (x).

Konstantin Pieper: Counting Spanning Trees 17/ 29

Computing the number of MSTs

I Should we try to calculate det(DG (x))?

I Consider the following graph on 2n vertices:

I det(DG (x)) can have Ω(2n) coefficients

Konstantin Pieper: Counting Spanning Trees 18/ 29

Computing the number of MSTs

I Should we try to calculate det(DG (x))?

I Consider the following graph on 2n vertices:

I det(DG (x)) can have Ω(2n) coefficients

Konstantin Pieper: Counting Spanning Trees 18/ 29

Computing the number of MSTs

I Should we try to calculate det(DG (x))?

I Consider the following graph on 2n vertices:

I det(DG (x)) can have Ω(2n) coefficients

Konstantin Pieper: Counting Spanning Trees 18/ 29

Computing the number of MSTs

I Compute only the number of minimal spanning trees (the
coefficient of the minimum degree monomial).

I If wmin is the minimal weight for a spanning tree, clearly xwmin

must divide det(DG (x))

I Try to factor out the minimum degree monomial of each
column and use the linearity of the determinant.

det(DG (x)) =∣∣∣∣∣ x4 + 2x2 −x2 0 −x2

−x2 x2 + 2x −x −x
0 −x 2x −x

−x2 −x −x x3 + x2 + 2x

∣∣∣∣∣ = x5·

∣∣∣∣∣ x2 + 2 −x 0 −x
−1 x + 2 −1 −1
0 −1 2 −1

−1 −1 −1 x2 + x + 2

∣∣∣∣∣

Konstantin Pieper: Counting Spanning Trees 19/ 29

Computing the number of MSTs

I Compute only the number of minimal spanning trees (the
coefficient of the minimum degree monomial).

I If wmin is the minimal weight for a spanning tree, clearly xwmin

must divide det(DG (x))

I Try to factor out the minimum degree monomial of each
column and use the linearity of the determinant.

det(DG (x)) =∣∣∣∣∣ x4 + 2x2 −x2 0 −x2

−x2 x2 + 2x −x −x
0 −x 2x −x

−x2 −x −x x3 + x2 + 2x

∣∣∣∣∣ = x5·

∣∣∣∣∣ x2 + 2 −x 0 −x
−1 x + 2 −1 −1
0 −1 2 −1

−1 −1 −1 x2 + x + 2

∣∣∣∣∣

Konstantin Pieper: Counting Spanning Trees 19/ 29

Computing the number of MSTs

I Compute only the number of minimal spanning trees (the
coefficient of the minimum degree monomial).

I If wmin is the minimal weight for a spanning tree, clearly xwmin

must divide det(DG (x))

I Try to factor out the minimum degree monomial of each
column and use the linearity of the determinant.

det(DG (x)) =∣∣∣∣∣ x4 + 2x2 −x2 0 −x2

−x2 x2 + 2x −x −x
0 −x 2x −x

−x2 −x −x x3 + x2 + 2x

∣∣∣∣∣ = x5·

∣∣∣∣∣ x2 + 2 −x 0 −x
−1 x + 2 −1 −1
0 −1 2 −1

−1 −1 −1 x2 + x + 2

∣∣∣∣∣

Konstantin Pieper: Counting Spanning Trees 19/ 29

Computing the number of MSTs

Example 14 (Factor det (DG (x)))

det(DG (x)) =∣∣∣∣∣ x4 + 2x2 −x2 0 −x2

−x2 x2 + 2x −x −x
0 −x 2x −x

−x2 −x −x x3 + x2 + 2x

∣∣∣∣∣ = x5 ·

∣∣∣∣∣ x2 + 2 −x 0 −x
−1 x + 2 −1 −1
0 −1 2 −1

−1 −1 −1 x2 + x + 2

∣∣∣∣∣
Konstantin Pieper: Counting Spanning Trees 20/ 29

Computing the number of MSTs

The entries of the i ’th column of DG (x) correspond to edges in the
cut (i ,N (i)):

Change the cuts?

Konstantin Pieper: Counting Spanning Trees 21/ 29

Computing the number of MSTs

The entries of the i ’th column of DG (x) correspond to edges in the
cut (i ,N (i)):

Change the cuts?

Konstantin Pieper: Counting Spanning Trees 21/ 29

Computing the number of MSTs

Theorem 15
If we have a minimal spanning tree T of G , we can modify DG (x)
(without changing the determinant) so that the product of the
minimum degree monomials of each column is wmin.

Algorithm A: Modify DG (x)

T := mst(G)
D ′(x) := DG (x)
while T 6= {} do

i := arbitrary leaf of T with i 6= n
p := parent of i
add the i-th column in D ′ to the p-th column
T := T \ {i}

od

Konstantin Pieper: Counting Spanning Trees 22/ 29

Computing the number of MSTs

Theorem 15
If we have a minimal spanning tree T of G , we can modify DG (x)
(without changing the determinant) so that the product of the
minimum degree monomials of each column is wmin.

Algorithm A: Modify DG (x)

T := mst(G)
D ′(x) := DG (x)
while T 6= {} do

i := arbitrary leaf of T with i 6= n
p := parent of i
add the i-th column in D ′ to the p-th column
T := T \ {i}

od

Konstantin Pieper: Counting Spanning Trees 22/ 29

Computing the number of MSTs

Example 16 (MST of H and corresponding σ(i))

det(D ′(x)) =∣∣∣∣∣∣
x4 + 2x2 x4 + x2 0 x4

−x2 x −x 0
0 x 2x 0
−x2 −x2 − 2x −x x3

∣∣∣∣∣∣ = x7 ·

∣∣∣∣∣∣
x2 + 2 x3 + x 0 x
−1 1 −1 0
0 1 2 0
−1 −x − 2 −1 1

∣∣∣∣∣∣
Konstantin Pieper: Counting Spanning Trees 23/ 29

Computing the number of MSTs

Lemma 17
The i-th column of D ′(x) contains the sum of the columns in
DG (x) corresponding to σ(i).

Writing out the entries of D ′(x) we get:
For i /∈ σ(j)

D ′i ,j(x) = −
∑

{i ,k}∈E :k∈σ(j)

xwk,i

For i ∈ σ(j) the above cancels with Di ,i

D ′i ,j(x) =
∑

{i ,k}∈E :k /∈σ(j)

xwk,i

Konstantin Pieper: Counting Spanning Trees 24/ 29

Computing the number of MSTs

Lemma 17
The i-th column of D ′(x) contains the sum of the columns in
DG (x) corresponding to σ(i).
Writing out the entries of D ′(x) we get:
For i /∈ σ(j)

D ′i ,j(x) = −
∑

{i ,k}∈E :k∈σ(j)

xwk,i

For i ∈ σ(j) the above cancels with Di ,i

D ′i ,j(x) =
∑

{i ,k}∈E :k /∈σ(j)

xwk,i

Konstantin Pieper: Counting Spanning Trees 24/ 29

Computing the number of MSTs

Lemma 17
The i-th column of D ′(x) contains the sum of the columns in
DG (x) corresponding to σ(i).
Writing out the entries of D ′(x) we get:
For i /∈ σ(j)

D ′i ,j(x) = −
∑

{i ,k}∈E :k∈σ(j)

xwk,i

For i ∈ σ(j) the above cancels with Di ,i

D ′i ,j(x) =
∑

{i ,k}∈E :k /∈σ(j)

xwk,i

Konstantin Pieper: Counting Spanning Trees 24/ 29

Computing the number of MSTs

Proof.
So the j ’th column of D ′ contains only terms corresponding to
edges in the cut (σ(j),V \ σ(j)).

The only edge of T in the j ’th cut is (p(j), j).
All the other edges from the cut must have higher weight because
T is minimal.

n−1∏
i=1

wp(i),i = wmin

Konstantin Pieper: Counting Spanning Trees 25/ 29

Computing the number of MSTs

Proof.
So the j ’th column of D ′ contains only terms corresponding to
edges in the cut (σ(j),V \ σ(j)).
The only edge of T in the j ’th cut is (p(j), j).

All the other edges from the cut must have higher weight because
T is minimal.

n−1∏
i=1

wp(i),i = wmin

Konstantin Pieper: Counting Spanning Trees 25/ 29

Computing the number of MSTs

Proof.
So the j ’th column of D ′ contains only terms corresponding to
edges in the cut (σ(j),V \ σ(j)).
The only edge of T in the j ’th cut is (p(j), j).
All the other edges from the cut must have higher weight because
T is minimal.

n−1∏
i=1

wp(i),i = wmin

Konstantin Pieper: Counting Spanning Trees 25/ 29

Computing the number of MSTs

Proof.
So the j ’th column of D ′ contains only terms corresponding to
edges in the cut (σ(j),V \ σ(j)).
The only edge of T in the j ’th cut is (p(j), j).
All the other edges from the cut must have higher weight because
T is minimal.

n−1∏
i=1

wp(i),i = wmin

Konstantin Pieper: Counting Spanning Trees 25/ 29

Optimizations

The runtime of our implementation so far is O (mn + M(n)) where
M(n) is the time required to multiply two n × nmatrices.
O (M(n)) can be thought of as “O(n2+ε)”.

We can further
optimize the O(mn) part by

I only calculating the minimum degree monomials for each
entry.

I calculating the negative and positive entries separately.

In the following E is sorted so that p(j) > j .

Konstantin Pieper: Counting Spanning Trees 26/ 29

Optimizations

The runtime of our implementation so far is O (mn + M(n)) where
M(n) is the time required to multiply two n × nmatrices.
O (M(n)) can be thought of as “O(n2+ε)”. We can further
optimize the O(mn) part by

I only calculating the minimum degree monomials for each
entry.

I calculating the negative and positive entries separately.

In the following E is sorted so that p(j) > j .

Konstantin Pieper: Counting Spanning Trees 26/ 29

Optimizations

The runtime of our implementation so far is O (mn + M(n)) where
M(n) is the time required to multiply two n × nmatrices.
O (M(n)) can be thought of as “O(n2+ε)”. We can further
optimize the O(mn) part by

I only calculating the minimum degree monomials for each
entry.

I calculating the negative and positive entries separately.

In the following E is sorted so that p(j) > j .

Konstantin Pieper: Counting Spanning Trees 26/ 29

Optimizations

The runtime of our implementation so far is O (mn + M(n)) where
M(n) is the time required to multiply two n × nmatrices.
O (M(n)) can be thought of as “O(n2+ε)”. We can further
optimize the O(mn) part by

I only calculating the minimum degree monomials for each
entry.

I calculating the negative and positive entries separately.

In the following E is sorted so that p(j) > j .

Konstantin Pieper: Counting Spanning Trees 26/ 29

Optimizations

For i /∈ σ(j) no entries cancel – the naive approach works.

Algorithm B1: Negative Entries of D ′

for j = 1 to n − 1 do
for i /∈ σ(j) do

D ′i ,j := min_d(DG (x)i ,j +
∑

k child of j in T D ′i ,k)

/* min_d computes the minimum degree monomial */

od
od

This is O(n2).

Konstantin Pieper: Counting Spanning Trees 27/ 29

Optimizations

For i /∈ σ(j) no entries cancel – the naive approach works.

Algorithm B1: Negative Entries of D ′

for j = 1 to n − 1 do
for i /∈ σ(j) do

D ′i ,j := min_d(DG (x)i ,j +
∑

k child of j in T D ′i ,k)

/* min_d computes the minimum degree monomial */

od
od

This is O(n2).

Konstantin Pieper: Counting Spanning Trees 27/ 29

Optimizations

For i /∈ σ(j) no entries cancel – the naive approach works.

Algorithm B1: Negative Entries of D ′

for j = 1 to n − 1 do
for i /∈ σ(j) do

D ′i ,j := min_d(DG (x)i ,j +
∑

k child of j in T D ′i ,k)

/* min_d computes the minimum degree monomial */

od
od

This is O(n2).

Konstantin Pieper: Counting Spanning Trees 27/ 29

Optimizations

For i ∈ σ(j) we use the explicit formula

D ′i ,j =
∑

{i ,k}∈E :k /∈σ(j)

xwk,i

and run over the rows first.

Algorithm B2: Positive Entries of D ′

for i = 1 to n − 1 do
L := sort(N (i))
for j = 1 to n − 1, i ∈ σ(j) do

L := L \ σ(j)
if L 6= {}

k := first_element(L)
D ′i ,j := xwi,k · |s ∈ L : wi ,k = wi ,s |

fi
od

od

This is O(n2 log n).

Konstantin Pieper: Counting Spanning Trees 28/ 29

Optimizations

For i ∈ σ(j) we use the explicit formula

D ′i ,j =
∑

{i ,k}∈E :k /∈σ(j)

xwk,i

and run over the rows first.

Algorithm B2: Positive Entries of D ′

for i = 1 to n − 1 do
L := sort(N (i))
for j = 1 to n − 1, i ∈ σ(j) do

L := L \ σ(j)
if L 6= {}

k := first_element(L)
D ′i ,j := xwi,k · |s ∈ L : wi ,k = wi ,s |

fi
od

od

This is O(n2 log n).

Konstantin Pieper: Counting Spanning Trees 28/ 29

Optimizations

For i ∈ σ(j) we use the explicit formula

D ′i ,j =
∑

{i ,k}∈E :k /∈σ(j)

xwk,i

and run over the rows first.

Algorithm B2: Positive Entries of D ′

for i = 1 to n − 1 do
L := sort(N (i))
for j = 1 to n − 1, i ∈ σ(j) do

L := L \ σ(j)
if L 6= {}

k := first_element(L)
D ′i ,j := xwi,k · |s ∈ L : wi ,k = wi ,s |

fi
od

od

This is O(n2 log n).
Konstantin Pieper: Counting Spanning Trees 28/ 29

Optimizations

Conclusion:

I We could calculate the number of spanning trees by arbitrary
weight.

I We can find the number of minimal spanning trees in
O(n2 + m log n + M(n)) = O(M(n))

Konstantin Pieper: Counting Spanning Trees 29/ 29

Optimizations

Conclusion:

I We could calculate the number of spanning trees by arbitrary
weight.

I We can find the number of minimal spanning trees in
O(n2 + m log n + M(n)) = O(M(n))

Konstantin Pieper: Counting Spanning Trees 29/ 29

	Introduction
	Preliminaries

	Matrix-Tree Theorems
	Kirchhoff's theorem
	Extension towards MST

	Algorithms
	Computing the number of MSTs
	Optimizations

