
Course “Trees – The Ubiquitous Structure in Computer Science and
Mathematics”, JASS’08

The Number of Spanning Trees in a Graph

Konstantin Pieper

April 28, 2008

1 Introduction

In this paper I am going to describe a way to calculate the number of spanning
trees by arbitrary weight by an extension of Kirchhoff’s formula, also known as
the matrix tree theorem. The ultimate goal is to describe an algorithm that
calculates the number of minimal spanning trees of a graph on n vertices in
O(M(n)), where M(n) is the time required to multiply two n × n matrices.
Most of the results are due to Broder and Mayr [2].

1.1 Preliminaries

For the following theorems it is useful to introduce the “incidence matrix”. It
naturally arises in discrete optimization problems, as you can use it to formulate
them as linear programs.

Definition 1. Let G = (V,E) with V = {1, . . . , n} and E = {e1, . . . , em} be a
directed graph. Then the incidence matrix SG ∈M(n,m) of G is defined as:

(SG)i,j :=

 1 if ej ends in i
−1 if ej starts in i
0 else

Remark 1. For an undirected graph G every SḠ of some arbitrarily oriented
directed variant Ḡ of G can be taken as the incidence matrix.

Example 2.

1

SG =

1 0 0 1 0
−1 −1 0 0 1
0 1 −1 0 0
0 0 1 −1 −1

In the following theorems we are going to exploit the following property of

the incidence matrix:

Theorem 3. The rank of the incidence matrix of a graph on n vertices is:

rank(SG) = n− |“weakly” connected components of G|

(“weakly” means not taking into account direction of the edges)

Proof. Reorder the edges and vertices so that:

SG =

SG1 . . . 0

SG2

...
...

. . .
0 . . . SGr

Thus we have reduced the problem to connected graphs. The rest is left as an

exercise for the reader – The idea is to remove edges that are parts of circles
(this does not change the rank of SG) and to show that for trees SG has full
rank.

Evidently the incidence matrix can not have maximal rank. Often is more
useful to operate on matrices that are at least non-singular in one dimension.
Thus we have to modify the incidence matrix:

Remark 2. Since (1, . . . , 1) · SG = 0, we can remove an arbitrary row from SG
without losing information.

Definition 4. For every A ∈ M(n,m) define Ã ∈ M(n − 1,m) as A without
the n-th row.

In the following we are going to count spanning trees – so we can always
assume a connect graph G. In this case, S̃G has maximal rank.

2 Matrix-Tree Theorems

Casually speaking, the following formulas use the determinant to produce all
possible selections of n − 1 edges and check whether the resulting subgraph is
connected. To do this we need to construct a square matrix which contains
linear combinations of the columns of SG.

2

Example 5.
S̃G · S̃TG =

(−1 0 0 1 0
1 −1 0 0 1
0 1 −1 0 0

)
·

−1 1 0
0 −1 1
0 0 −1
1 0 0
0 1 0

 =

(
2 −1 0
−1 3 −1
0 −1 2

)

2.1 Kirchhoff’s theorem

Using the incidence matrix it is easy to state the following famous result, which
is mentioned in many books about combinatorics or graph theory (see e.g. [3]).

Theorem 6 (Kirchhoff). The number of spanning trees of a graph G can be
calculated as:

det(DG) where DG = S̃G · S̃TG
Remark 3.

(DG)i,j =

 deg(i) if i = j
−1 if {i, j} ∈ E
0 else

The shortest way to prove this theorem is probably to use the Cauchy-Binet-
Formula [3] for det(A · B) where A and B are not square. It allows to express
the determinant in terms of the determinants of their minors. We are not going
to use it here but instead do a more elementary proof. Let us start with some
trivial considerations:

Lemma 7. Let T = (V,E) be a directed tree that is rooted at n. We can order
E so that ei ends in i.

Proof. Take ei := (p(i), i), where p(i) is the parent of i.

Remark 4. Every undirected tree on V has exactly one undirected variant that
is rooted at n. So for constructing/counting spanning trees we only have to
consider graphs with i ∈ ei .

Lemma 8. Let G = (V,E) with |E| = n− 1 be a directed graph which is not a
tree. Then det(S̃G) = 0.

Proof. Since |E| = n − 1, G is not “weakly” connected. So rank(S̃G) =
rank(SG) ≤ n− 2.

3

Lemma 9. Let T = (V,E) be a tree with ei ∈ E ending in i ∈ V . Then
det(S̃T) = 1.

Proof. Order the vertices (and edges simultaneously – ei has to end in i) so that
p(i) > i. Then,

S̃T =

1 ∗ . . . ∗

0 1
. . .

...
...

. ∗
0 . . . 0 1

Now we are ready to prove the theorem:

Proof of Kirchhoff’s theorem. We observe that the i-th column of DG is the
sum of “incidence vectors” that correspond to edges in G that have endpoints
in the i-th vertex. If we now use the linearity of the determinant in every
column we obtain:

det(DG) =
∑
H∈H

det(S̃H)

where H is the set of all subgraphs of G which correspond to a selection of n−1
edges, with ei ending in i.

Figure 1: First column of DG

D.,1 =

 3
−1
−1

 =

 1
−1
0

+

 1
0
−1

+

 1
0
0

Figure 2: Expansion of the determinant

det(D) =

∣∣∣∣∣ 3 −1 −1
−1 4 −1
−1 −1 4

∣∣∣∣∣
=

∣∣∣∣∣ 1 −1 −1
−1 4 −1
0 −1 4

∣∣∣∣∣+

∣∣∣∣∣ 1 −1 −1
0 4 −1
−1 −1 4

∣∣∣∣∣+

∣∣∣∣∣ 1 −1 −1
0 4 −1
0 −1 4

∣∣∣∣∣ = . . .

To prove the theorem it is now sufficient to use the preceding lemmata.

2.2 Extension towards MST

Now we know how to obtain the number of spanning trees via calculation of an
n-dimensional determinant. This theorem can be generalized towards weighted
graphs by extending the base ring of the incidence matrix.

4

Definition 10. For a weighted graph G with edge weights wi,k let SG(x) be
the incidence matrix SG with every column corresponding to (i, k) ∈ E rescaled
by xwi,k .

(SG(x))i,j =

 xwk,i if ej = (k, i)
−xwi,k if ej = (i, k)

0 else

Example 11 (Toy graph H).

SG(x) =

−x2 −x2 −x4 0 0 0 0
x2 0 0 −x −x 0 0
0 0 0 x 0 −x 0
0 x2 0 0 x x −x3

0 0 x4 0 0 0 x3

Now we only have to construct a square matrix in the same way as above

and apply the determinant. For every spanning tree we will then get x to the
power of his weight.

Theorem 12 (Matrix-Tree Theorem for weighted graphs). The generating
function of the number of spanning trees by weight w is the determinant of

DG(x) = S̃G(x) · S̃TG

where S̃G(x) and S̃G are defined as above. In other words:

det (DG(x)) =
∞∑
w=0

|ST by weight w| · xw

Example 13. For our toy graph H (see above) we get:

DG(x) =

x4 + 2x2 −x2 0 −x2

−x2 x2 + 2x −x −x
0 −x 2x −x
−x2 −x −x x3 + x2 + 2x

det (DG(x)) = 2x10 + 5x9 + 8x8 + 6x7

5

Remark 5. It is easy to check that we can also write down DG(x) for any given
graph G directly:

(DG(x))i,j =

∑
{i,k}∈E x

wi,k if i = j

−xwi,j if {i, j} ∈ E
0 else

Proof. As above. Here each spanning tree by weight w contributes xw to the
determinant of DG(x).

3 Algorithms

Now we are going to see some implementation ideas of the above results. In
the unweighted case not much is to do. Efficient algorithms for calculating the
determinant over the real numbers are well known: Simply compute an LU-
factorization DG = L · U and calculate the product of the diagonal elements of
U. This is possible in O(M(n)), where M(n) is the time required to multiply
two n × n matrices [1]. Note however that we have to account addition and
multiplication on the entries of DG as elementary operations to obtain this
bound. As the complete graph on n vertices has n(n−2) spanning trees, our
algorithm has to operate on numbers of this magnitude.

3.1 Computing the number of MSTs

Clearly we should not try to calculate the polynomial det(DG(x)) in the weighted
case. If we consider the following example graph on 2n vertices, we see that
det(DG(x)) can have Ω(2n) coefficients.

Thus we restrict ourselves to only compute the number of minimal spanning
trees (i.e. the coefficient of the minimum degree monomial). If wmin is the
minimal weight for a spanning tree, clearly xwmin must divide det(DG(x)). The
idea is to factor out the minimum degree monomial of each column and use the
linearity of the determinant.

6

Example 14 (Factor det (DG(x))).
det(DG(x)) =∣∣∣∣∣ x4 + 2x2 −x2 0 −x2

−x2 x2 + 2x −x −x
0 −x 2x −x

−x2 −x −x x3 + x2 + 2x

∣∣∣∣∣ = x5 ·
∣∣∣∣ x2 + 2 −x 0 −x

−1 x + 2 −1 −1
0 −1 2 −1
−1 −1 −1 x2 + x + 2

∣∣∣∣
We observe that the product of the minimum degree monomials can be a

strict divisor of xwmin . In the above example we can only factor out x5 but we
see that any spanning tree of H has to have at least weight 7. We will see that
there is a way to modify DG(x) so we can use this trick.

The entries of the i’th column of DG(x) correspond to edges in the cut (i,N (i)):

So we only have to change the cuts to achieve our gaol.

Theorem 15. If we have a minimal spanning tree T of G, we can modify DG(x)
(without changing the determinant) so that the product of the minimum degree
monomials of each column is wmin.

7

Algorithm A: Modify DG(x)
T := mst(G)
D′(x) := DG(x)
while T 6= {} do

i := arbitrary leaf of T with i 6= n
p := parent of i
add the i-th column in D′ to the p-th column
T := T \ {i}

od

If we execute Algorithm A we obtain a matrix D′(x) that contains linear
combinations of the columns of DG(x). Let σ(i) ⊂ V denote the vertices in the
subtree of T that is rooted at i ∈ V (consider T as a tree that is rooted at n).
Then the i’th column of D′(x) contains the sum of the columns of DG(x) with
index in σ(i).

Example 16 (MST of H and corresponding σ(i)).

det(D′(x)) =∣∣∣∣∣∣
x4 + 2x2 x4 + x2 0 x4

−x2 x −x 0
0 x 2x 0
−x2 −x2 − 2x −x x3

∣∣∣∣∣∣ = x7 ·

∣∣∣∣∣
x2 + 2 x3 + x 0 x
−1 1 −1 0
0 1 2 0
−1 −x− 2 −1 1

∣∣∣∣∣
Lemma 17. The i-th column of D′(x) contains the sum of the columns in
DG(x) corresponding to σ(i). Writing out the entries of D′(x) we get: For
i /∈ σ(j)

D′i,j(x) = −
∑

{i,k}∈E:k∈σ(j)

xwk,i

For i ∈ σ(j) the above cancels with Di,i

D′i,j(x) =
∑

{i,k}∈E:k/∈σ(j)

xwk,i

Using the identities above it is easy to see why Theorem 15 holds.

Proof. So the j’th column of D′ contains only terms corresponding to edges in
the cut (σ(j), V \ σ(j)). The only edge of T in the j’th cut is (p(j), j). All the

8

other edges from the cut must have higher weight because T is minimal. Thus
we can factor exactly wp(j),j from column j:

n−1∏
i=1

wp(i),i = wmin

So if we calculate D′(x) for a minimal spanning tree and factorize D′(x) =
xwmin ·D̃(x), we can obtain the number of spanning trees by evaluating det(D̃(0)).

3.2 Optimizations

The runtime of our implementation so far is O (mn+M(n)) . O (M(n)) can be
thought of as “O(n2+ε)” [1]. We can further optimize the O(mn) part by

• only calculating the minimum degree monomials for each entry.

• calculating the negative and positive entries separately.

For convenience we sort E so that p(j) > j. We also precompute σ(j) for
all j ∈ {1 . . . n− 1} and initialize D′ with zeros.

3.2.1 D′ for i /∈ σ(j)

For i /∈ σ(j) no entries cancel – the naive approach works.

Algorithm B1: Negative Entries of D′

for j = 1 to n− 1 do
for i /∈ σ(j) do

D′i,j := min_d(DG(x)i,j +
∑
k child of j in T D

′
i,k)

/* min_d computes the minimum degree monomial */

od
od

This is O(n2).

3.2.2 D′ for i ∈ σ(j)

For i ∈ σ(j) we use the explicit formula

D′i,j =
∑

{i,k}∈E:k/∈σ(j)

xwk,i

and run over the rows first.
A different way to state the relation i ∈ σ(j) is to call j an ancestor of i.

Let j1 < j2 < · · · < js = n denote the ancestors of i. We are going to use the
fact that the sets σ(jp) form a tower: σ(j1) ⊂ σ(j2) ⊂ · · · ⊂ σ(js)

9

So for every column i we can walk along the ancestors of i in increasing order
and have to find the minimum degree monomial of

∑
k∈N (i)\σ(jp) x

wi,k (N (i)
are the neighbors of i in G). But since N (i) \ σ(jp) is decreasing, we can use
the following trick to do this efficiently: We sort N (i) in increasing weight order
and within each weight class so that k ∈ σ(jp) with small p come first. For every
entry we also precompute the number of elements by same weight following it.

Algorithm B2: Positive Entries of D′

for i = 1 to n− 1 do
L := sort(N (i))
Z := same_weight_after(L)
p := 1
for j = 1 to n− 1, i ∈ σ(j) do

while p ≤ |L| and L[p] ∈ σ(j) do
p := p+1;

od
if p ≤ |L| and L[p] /∈ σ(j)

D′i,j := Z[p]·xwi,L[p]

else
D′i,j := 0

fi
od

od

This is O(n2 log n). Thus the whole algorithm is O(M(n)).

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 2 edition, 1975.

[2] Andrei Z. Broder and Ernst W. Mayr. Counting minimum weight spanning
trees, 1997.

[3] Shimon Even. Algorithmic Combinatorics. Macmillan, 1973.

10

	Introduction
	Preliminaries

	Matrix-Tree Theorems
	Kirchhoff's theorem
	Extension towards MST

	Algorithms
	Computing the number of MSTs
	Optimizations
	D' for i -.25ex-.25ex-.25ex-.25ex(j)
	D' for i (j)

