Lowest Common Ancestor(LCA) a.k.a Nearest Common Ancestor(NCA)

Fayssal El Moufatich

Technische Universität München St. Petersburg

JASS 2008

Fayssal El Moufatich ()

Lowest Common Ancestor

JASS 2008 1 / 33

- Introduction
- Definitions
- Applications
- Algorithms
 - Harel-Tarjan's Algorithm and its variants
 - 2 LCA and DRS
 - 8 RMQ
 - Bender-Farach's Algorithm
 - Space-economic algorithm for Bender-Farach's Algorithm

- One of the most fundamental algorithmic problems on trees is how to find the **Least Common Ancestor** of a pair of nodes.
- Studied intensively because:
 - It is inherently algorithmically beautifull.
 - Fast algorithms for the LCA problem can be used to solve other algorithmic problems.

• Let there be a rooted tree T(E,V).

- Let there be a rooted tree T(E,V).
- A node $x \in T$ is an ancestor of a node $y \in T$ if the path from the root of T to y goes through x.

- Let there be a rooted tree T(E,V).
- A node x ∈ T is an ancestor of a node y ∈ T if the path from the root of T to y goes through x.
- A node $v \in T$ is a common ancestor of x and y if it is an ancestor of both x and y.

- Let there be a rooted tree T(E,V).
- A node x ∈ T is an ancestor of a node y ∈ T if the path from the root of T to y goes through x.
- A node v ∈ T is a common ancestor of x and y if it is an ancestor of both x and y.
- The Nearest/Lowest Common Ancestor, **NCA or LCA**, of two nodes x, y is the common ancestor of x and y whose distance to x (and to y) smaller than the distance to x of any common ancestor of x and y.

- Let there be a rooted tree T(E,V).
- A node x ∈ T is an ancestor of a node y ∈ T if the path from the root of T to y goes through x.
- A node v ∈ T is a common ancestor of x and y if it is an ancestor of both x and y.
- The Nearest/Lowest Common Ancestor, **NCA or LCA**, of two nodes x, y is the common ancestor of x and y whose distance to x (and to y) smaller than the distance to x of any common ancestor of x and y.
- We denote the NCA of x and y as nca(x, y).

- Let there be a rooted tree T(E,V).
- A node x ∈ T is an ancestor of a node y ∈ T if the path from the root of T to y goes through x.
- A node v ∈ T is a common ancestor of x and y if it is an ancestor of both x and y.
- The Nearest/Lowest Common Ancestor, **NCA or LCA**, of two nodes x, y is the common ancestor of x and y whose distance to x (and to y) smaller than the distance to x of any common ancestor of x and y.
- We denote the NCA of x and y as nca(x, y).
- Efficiently computing NCAs has been studied extensively for the last 3 decades in *online* and offline settings.

- Let there be a rooted tree T(E,V).
- A node x ∈ T is an ancestor of a node y ∈ T if the path from the root of T to y goes through x.
- A node v ∈ T is a common ancestor of x and y if it is an ancestor of both x and y.
- The Nearest/Lowest Common Ancestor, **NCA or LCA**, of two nodes x, y is the common ancestor of x and y whose distance to x (and to y) smaller than the distance to x of any common ancestor of x and y.
- We denote the NCA of x and y as nca(x, y).
- Efficiently computing NCAs has been studied extensively for the last 3 decades in *online* and offline settings.

≣⇒

・ロト ・回ト ・ヨト ・

• A procedure solving the NCA problem is used by algorithms for:

- Finding the *maximum weighted matching* in a graph.
- Finding a *minimum spanning tree* in a graph.
- Finding a *dominator tree* in a graph in a *directed flow-graph*.
- Several string algorithms.
- Dynamic planarity testing.
- In network routing.
- Solving various geometric problems including range searching.
- Finding evolutionary trees.
- And in *bounded tree-width* algorithms.
-

• One of the most fundamental results on computing NCAS is that of Harel and Tarjan [Harel, 1980], [Harel & Tarjan, 1984].

- One of the most fundamental results on computing NCAS is that of Harel and Tarjan [Harel, 1980], [Harel & Tarjan, 1984].
- They describe a linear time algorithm to preprocess a tree and build a data structure that allows subsequent NCA queries to be answered in constant time!.

- One of the most fundamental results on computing NCAS is that of Harel and Tarjan [Harel, 1980], [Harel & Tarjan, 1984].
- They describe a linear time algorithm to preprocess a tree and build a data structure that allows subsequent NCA queries to be answered in constant time!.
- Several simpler algorithms with essentially the same properties but better constant factors were proposed afterwards.

- One of the most fundamental results on computing NCAS is that of Harel and Tarjan [Harel, 1980], [Harel & Tarjan, 1984].
- They describe a linear time algorithm to preprocess a tree and build a data structure that allows subsequent NCA queries to be answered in constant time!.
- Several simpler algorithms with essentially the same properties but better constant factors were proposed afterwards.
- They all use the observation that it is rather easy to solve the problem when the input tree is a complete binary tree.

- One of the most fundamental results on computing NCAS is that of Harel and Tarjan [Harel, 1980], [Harel & Tarjan, 1984].
- They describe a linear time algorithm to preprocess a tree and build a data structure that allows subsequent NCA queries to be answered in constant time!.
- Several simpler algorithms with essentially the same properties but better constant factors were proposed afterwards.
- They all use the observation that it is rather easy to solve the problem when the input tree is a complete binary tree.

• Label the nodes by their index in an *inorder* traversal of the complete binary tree.

- Label the nodes by their index in an *inorder* traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell = |\log(n)|$ bits.

- Label the nodes by their index in an *inorder* traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell = |\log(n)|$ bits.
- Assume the LSB is the rightmost and its index is 0.

- Label the nodes by their index in an *inorder* traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell = \lfloor \log(n) \rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0.
- Let *inorder*(x) and *inorder*(y) be the inorder indexes of x and y.

- Label the nodes by their index in an *inorder* traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell = \lfloor \log(n) \rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0.
- Let *inorder*(x) and *inorder*(y) be the inorder indexes of x and y.
- Let i = max((1), (2), (3)) where:

- Label the nodes by their index in an *inorder* traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell = \lfloor \log(n) \rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0.
- Let *inorder*(x) and *inorder*(y) be the inorder indexes of x and y.
- Let i = max((1), (2), (3)) where:
 - **(**) index of the leftmost bit in which inorder(x) and inorder(y) differ.

- Label the nodes by their index in an *inorder* traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell = \lfloor \log(n) \rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0.
- Let *inorder*(x) and *inorder*(y) be the inorder indexes of x and y.
- Let i = max((1), (2), (3)) where:
 - **(**) index of the leftmost bit in which inorder(x) and inorder(y) differ.
 - 2 index of the rightmost 1 in *inorder*(x).

- Label the nodes by their index in an *inorder* traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell = \lfloor \log(n) \rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0.
- Let *inorder*(x) and *inorder*(y) be the inorder indexes of x and y.
- Let i = max((1), (2), (3)) where:
 - **(**) index of the leftmost bit in which inorder(x) and inorder(y) differ.
 - 2 index of the rightmost 1 in *inorder*(x).
 - **3** index of the rightmost 1 in *inorder*(y).

- Label the nodes by their index in an *inorder* traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell = \lfloor \log(n) \rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0.
- Let *inorder*(x) and *inorder*(y) be the inorder indexes of x and y.
- Let i = max((1), (2), (3)) where:
 - **(**) index of the leftmost bit in which inorder(x) and inorder(y) differ.
 - 2 index of the rightmost 1 in *inorder*(x).
 - **3** index of the rightmost 1 in *inorder*(y).
- It can be proved by induction that:

Lemma: [Shieber & Vishkin, 1987]

the *inorder*(nca(x, y)) consists of the leftmost $\ell - i$ bits of *inorder*(x) (or *inorder*(y) if the max was (3)) followed by a 1 and i zeros.

<ロト </p>

- Label the nodes by their index in an *inorder* traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell = \lfloor \log(n) \rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0.
- Let *inorder*(x) and *inorder*(y) be the inorder indexes of x and y.
- Let i = max((1), (2), (3)) where:
 - **(**) index of the leftmost bit in which inorder(x) and inorder(y) differ.
 - 2 index of the rightmost 1 in *inorder*(x).
 - **3** index of the rightmost 1 in *inorder*(y).
- It can be proved by induction that:

Lemma: [Shieber & Vishkin, 1987]

the *inorder*(nca(x, y)) consists of the leftmost $\ell - i$ bits of *inorder*(x) (or *inorder*(y) if the max was (3)) followed by a 1 and i zeros.

<ロト </p>

Example

Basic idea

construct the *inorder*(nca(x, y)) from *inorder*(x) and *inorder*(y) alone and without accessing the original tree or any other global data structure \Rightarrow constant time!

Example

Basic idea

construct the *inorder*(nca(x, y)) from *inorder*(x) and *inorder*(y) alone and without accessing the original tree or any other global data structure \Rightarrow constant time!

Example

Basic idea

construct the *inorder*(nca(x, y)) from *inorder*(x) and *inorder*(y) alone and without accessing the original tree or any other global data structure \Rightarrow constant time!

So what if the input tree is not a completely balanced binary tree?

• Simply do a mapping to a completely binary balanced tree!

So what if the input tree is not a completely balanced binary tree?

- Simply do a mapping to a completely binary balanced tree!
- Different algorithms differ by the way they do the mapping.

- Simply do a mapping to a completely binary balanced tree!
- Different algorithms differ by the way they do the mapping.
- All algorithms have to use some precomputed auxilliary data structures and the labels of the nodes to compute the NCAS :(.

- Simply do a mapping to a completely binary balanced tree!
- Different algorithms differ by the way they do the mapping.
- All algorithms have to use some precomputed auxilliary data structures and the labels of the nodes to compute the NCAS :(.
- ⇒Most of algorithms for general trees do not allow to compute a unique identifier of nca(x,y) from short labels associated with x and y alone.

- Simply do a mapping to a completely binary balanced tree!
- Different algorithms differ by the way they do the mapping.
- All algorithms have to use some precomputed auxilliary data structures and the labels of the nodes to compute the NCAS :(.
- ⇒Most of algorithms for general trees do not allow to compute a unique identifier of nca(x,y) from short labels associated with x and y alone.
- However, …

- Simply do a mapping to a completely binary balanced tree!
- Different algorithms differ by the way they do the mapping.
- All algorithms have to use some precomputed auxilliary data structures and the labels of the nodes to compute the NCAS :(.
- ⇒Most of algorithms for general trees do not allow to compute a unique identifier of nca(x,y) from short labels associated with x and y alone.
- However, …

Image: A matrix

★ Ξ → < Ξ

Theorem

There is a linear time algorithm that labels the n nodes of a rooted tree T with labels of length $O(\log n)$ bits such that from the labels of nodes x, y in T alone, one can compute the label of nca(x, y) in constant time.

Theorem

There is a linear time algorithm that labels the n nodes of a rooted tree T with labels of length $O(\log n)$ bits such that from the labels of nodes x, y in T alone, one can compute the label of nca(x, y) in constant time.

Proof: [Kaplan et al., 2002]

- Use lexigraphic sorting the sequence of intergers or binary strings.
- Use results from Gilbert and Moore on alphabetic coding of sequences of integers ⟨b⟩_k(|b_i| < log n − log y_i + O(1) for all i).
- use labeling along HPs, Heavy Paths.

Theorem

There is a linear time algorithm that labels the n nodes of a rooted tree T with labels of length $O(\log n)$ bits such that from the labels of nodes x, y in T alone, one can compute the label of nca(x, y) in constant time.

Proof: [Kaplan et al., 2002]

- Use lexigraphic sorting the sequence of intergers or binary strings.
- Use results from Gilbert and Moore on alphabetic coding of sequences of integers ⟨b⟩_k(|b_i| < log n − log y_i + O(1) for all i).
- use labeling along HPs, Heavy Paths.

- Gabow, Bentley and Tarjan observed that one-dimensional DRS problem is equivalent to NCA problem.
- DRS used by most of simple NCA algorithms.

Given a sequence of real numbers $x_1, x_2, ..., x_n$, preprocess the sequence so that one can answer efficiently subsequent queries of the form: given a pair of indices (i, j), what is the maximum element among $x_i, ..., x_j$ or max(i, j).

- Gabow, Bentley and Tarjan observed that one-dimensional DRS problem is equivalent to NCA problem.
- DRS used by most of simple NCA algorithms.

Given a sequence of real numbers $x_1, x_2, ..., x_n$, preprocess the sequence so that one can answer efficiently subsequent queries of the form: given a pair of indices (i, j), what is the maximum element among $x_i, ..., x_j$ or max(i, j).

• DRS problem is a fundamental geometric searching problem.

- Gabow, Bentley and Tarjan observed that one-dimensional DRS problem is equivalent to NCA problem.
- DRS used by most of simple NCA algorithms.

Given a sequence of real numbers $x_1, x_2, ..., x_n$, preprocess the sequence so that one can answer efficiently subsequent queries of the form: given a pair of indices (i, j), what is the maximum element among $x_i, ..., x_j$ or max(i, j).

- DRS problem is a fundamental geometric searching problem.
- DRS can be reduced to NCA by constructing a **Cartesian tree** for the sequence *x*₁, ..., *x_n* [Gabow et al., 1984].

- 4 週 ト - 4 三 ト - 4 三 ト

- Gabow, Bentley and Tarjan observed that one-dimensional DRS problem is equivalent to NCA problem.
- DRS used by most of simple NCA algorithms.

Given a sequence of real numbers $x_1, x_2, ..., x_n$, preprocess the sequence so that one can answer efficiently subsequent queries of the form: given a pair of indices (i, j), what is the maximum element among $x_i, ..., x_j$ or max(i, j).

- DRS problem is a fundamental geometric searching problem.
- DRS can be reduced to NCA by constructing a **Cartesian tree** for the sequence *x*₁, ..., *x_n* [Gabow et al., 1984].

- 4 週 ト - 4 三 ト - 4 三 ト

The Cartesian tree of the sequence $x_1, ..., x_n$ is a **binary tree** with n nodes each containing a number x_i and the following properties:

The Cartesian tree of the sequence $x_1, ..., x_n$ is a **binary tree** with n nodes each containing a number x_i and the following properties: Let $x_j = max(x_1, ..., x_n)$

The Cartesian tree of the sequence $x_1, ..., x_n$ is a **binary tree** with n nodes each containing a number x_i and the following properties: Let $x_i = max(x_1, ..., x_n)$

1 The root of the Cartesian tree contains x_i .

The Cartesian tree of the sequence $x_1, ..., x_n$ is a **binary tree** with n nodes each containing a number x_i and the following properties:

- Let $x_j = max(x_1, ..., x_n)$
 - The root of the Cartesian tree contains x_j .
 - **2** The left subtree of the root is a Cartesian tree for $x_1, ..., x_{j-1}$.

The Cartesian tree of the sequence $x_1, ..., x_n$ is a **binary tree** with n nodes each containing a number x_i and the following properties:

- Let $x_j = max(x_1, ..., x_n)$
 - The root of the Cartesian tree contains x_j.
 - **2** The left subtree of the root is a Cartesian tree for $x_1, ..., x_{j-1}$.
 - **3** The right subtree of the root is a Cartesian tree for $x_{j+1}, ..., x_n$.

The Cartesian tree of the sequence $x_1, ..., x_n$ is a **binary tree** with n nodes each containing a number x_i and the following properties:

- Let $x_j = max(x_1, ..., x_n)$
 - The root of the Cartesian tree contains x_j .
 - **2** The left subtree of the root is a Cartesian tree for $x_1, ..., x_{j-1}$.
 - **3** The right subtree of the root is a Cartesian tree for $x_{j+1}, ..., x_n$.

Remarks

 The Cartesian tree for x₁, ..., x_n can be constructed in O(n) [Vuillemin, 1980].

A D > A A P >

The Cartesian tree of the sequence $x_1, ..., x_n$ is a **binary tree** with n nodes each containing a number x_i and the following properties:

- Let $x_j = max(x_1, ..., x_n)$
 - The root of the Cartesian tree contains x_j .
 - **2** The left subtree of the root is a Cartesian tree for $x_1, ..., x_{j-1}$.
 - **3** The right subtree of the root is a Cartesian tree for $x_{j+1}, ..., x_n$.

Remarks

 The Cartesian tree for x₁, ..., x_n can be constructed in O(n) [Vuillemin, 1980].

• The maximum among $x_i, ..., x_j$ corresponds to just the NCA of the node containing x_i and the node containing x_j .

イロト イヨト イヨト イヨト

The Cartesian tree of the sequence $x_1, ..., x_n$ is a **binary tree** with n nodes each containing a number x_i and the following properties:

- Let $x_j = max(x_1, ..., x_n)$
 - The root of the Cartesian tree contains x_j .
 - **2** The left subtree of the root is a Cartesian tree for $x_1, ..., x_{j-1}$.
 - **3** The right subtree of the root is a Cartesian tree for $x_{j+1}, ..., x_n$.

Remarks

 The Cartesian tree for x₁, ..., x_n can be constructed in O(n) [Vuillemin, 1980].

• The maximum among $x_i, ..., x_j$ corresponds to just the NCA of the node containing x_i and the node containing x_j .

イロト イヨト イヨト イヨト

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.
- Each time we visit a node, we add it to the end of the sequence so that each node appears in the sequence as many times as its degree.[a prefix of the Euler tour of the tree]

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.
- Each time we visit a node, we add it to the end of the sequence so that each node appears in the sequence as many times as its degree.[a prefix of the Euler tour of the tree]
- Let *depth*(*x*) be the depth of a node x.

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.
- Each time we visit a node, we add it to the end of the sequence so that each node appears in the sequence as many times as its degree.[a prefix of the Euler tour of the tree]
- Let *depth*(x) be the depth of a node x.
- Replace each node x in the sequence by -depth(x).

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.
- Each time we visit a node, we add it to the end of the sequence so that each node appears in the sequence as many times as its degree.[a prefix of the Euler tour of the tree]
- Let *depth*(x) be the depth of a node x.
- Replace each node x in the sequence by -depth(x).
- To compute *nca*(*x*, *y*), we pick arbirary 2 elements *x_i* and *x_j* representing x and y, and compute the maximum among *x_i*, ..., *x_j*.

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.
- Each time we visit a node, we add it to the end of the sequence so that each node appears in the sequence as many times as its degree.[a prefix of the Euler tour of the tree]
- Let *depth*(x) be the depth of a node x.
- Replace each node x in the sequence by -depth(x).
- To compute *nca*(*x*, *y*), we pick arbirary 2 elements *x_i* and *x_j* representing x and y, and compute the maximum among *x_i*, ..., *x_j*.
- The node corresponding to the maximum element is nca(x, y)!

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.
- Each time we visit a node, we add it to the end of the sequence so that each node appears in the sequence as many times as its degree.[a prefix of the Euler tour of the tree]
- Let *depth*(x) be the depth of a node x.
- Replace each node x in the sequence by -depth(x).
- To compute *nca*(*x*, *y*), we pick arbirary 2 elements *x_i* and *x_j* representing x and y, and compute the maximum among *x_i*, ..., *x_j*.
- The node corresponding to the maximum element is nca(x, y)!

Euler tour of a tree

Euler tour of the tree on the left

• Simply the node of the least depth (i.e. Closest to the root) that lies between the nodes in the Euler tour.

- Simply the node of the least depth (i.e. Closest to the root) that lies between the nodes in the Euler tour.
- Hence, finding specific node in the tree ⇔ finding minimum element in the proper interval in the array of numbers.

- Simply the node of the least depth (i.e. Closest to the root) that lies between the nodes in the Euler tour.
- Hence, finding specific node in the tree ⇔ finding minimum element in the proper interval in the array of numbers.
- Latter problem can be solved by min-range queries.

- Simply the node of the least depth (i.e. Closest to the root) that lies between the nodes in the Euler tour.
- Hence, finding specific node in the tree ⇔ finding minimum element in the proper interval in the array of numbers.
- Latter problem can be solved by min-range queries.

Definition of RMQ Problem

- Same as the DSR problem but outputs the minimum instead.
- Structure to Preprocess: an array of numbers of length n.

Definition of RMQ Problem

- Same as the DSR problem but outputs the minimum instead.
- Structure to Preprocess: an array of numbers of length n.
- **Query:** for indices i and j and n, query **RMQ(x,y)** returns the index of the smallest element in the subarray A[i...j].

Definition of RMQ Problem

- Same as the DSR problem but outputs the minimum instead.
- Structure to Preprocess: an array of numbers of length n.
- **Query:** for indices i and j and n, query **RMQ(x,y)** returns the index of the smallest element in the subarray A[i...j].

Remark

As with the DSR algorithm, LCA can be reduced to an RMQ problem.[Bender-Farach, 2000]

Definition of RMQ Problem

- Same as the DSR problem but outputs the minimum instead.
- Structure to Preprocess: an array of numbers of length n.
- **Query:** for indices i and j and n, query **RMQ(x,y)** returns the index of the smallest element in the subarray A[i...j].

Remark

As with the DSR algorithm, LCA can be reduced to an RMQ problem.[Bender-Farach, 2000]

Definition of RMQ Problem

- Same as the DSR problem but outputs the minimum instead.
- Structure to Preprocess: an array of numbers of length n.
- **Query:** for indices i and j and n, query **RMQ(x,y)** returns the index of the smallest element in the subarray A[i...j].

Remark

As with the DSR algorithm, LCA can be reduced to an RMQ problem.[Bender-Farach, 2000]

• We started by reducing the range-min/DSR problem to an LCA problem

- We started by reducing the range-min/DSR problem to an LCA problem
- Answer is no!

- We started by reducing the range-min/DSR problem to an LCA problem
- Answer is no!
- The constructed array of numbers has a special property known as ∓ 1 property:
- We started by reducing the range-min/DSR problem to an LCA problem
- Answer is no!
- The constructed array of numbers has a special property known as ∓ 1 property:

∓ 1 property

Each number differs by exactly one from its preceding number.

- We started by reducing the range-min/DSR problem to an LCA problem
- Answer is no!
- The constructed array of numbers has a special property known as ∓ 1 property:

∓ 1 property

Each number differs by exactly one from its preceding number.

• Hence, our reduction is a special case of the range-min query problem that can be solved without further reductions.

- We started by reducing the range-min/DSR problem to an LCA problem
- Answer is no!
- The constructed array of numbers has a special property known as ∓ 1 property:

∓ 1 property

Each number differs by exactly one from its preceding number.

• Hence, our reduction is a special case of the range-min query problem that can be solved without further reductions.

• Our goal then is to solve the following problem:

• Our goal then is to solve the following problem:

Problem

Preprocess an array of n numbers satisfying the ∓ 1 property such that given two indices i and j in the array, determine the index of the minimum element within the given range [i, j], $\mathcal{O}(1)$ time and $\mathcal{O}(n)$ space.

• Our goal then is to solve the following problem:

Problem

Preprocess an array of n numbers satisfying the ∓ 1 property such that given two indices i and j in the array, determine the index of the minimum element within the given range [i, j], $\mathcal{O}(1)$ time and $\mathcal{O}(n)$ space.

• Reengineered from existing complicated LCA algorithms. (PRAM from Berkman et al.)

- Reengineered from existing complicated LCA algorithms. (PRAM from Berkman et al.)
- Reduces the LCA problem to an RMQ problem and considers RMQ solutions rather.

- Reengineered from existing complicated LCA algorithms. (PRAM from Berkman et al.)
- Reduces the LCA problem to an RMQ problem and considers RMQ solutions rather.

• RMQ has a simple solution with complexity $\langle \mathcal{O}(n^2), \mathcal{O}(1) \rangle$:

- RMQ has a simple solution with complexity $\langle \mathcal{O}(n^2), \mathcal{O}(1) \rangle$:
- Build a lookup table storing answers to all the n^2 possible queries.

- RMQ has a simple solution with complexity $\langle \mathcal{O}(n^2), \mathcal{O}(1) \rangle$:
- Build a lookup table storing answers to all the n^2 possible queries.
- To achieve $\mathcal{O}(n^2)$ preprocessing rather than $\mathcal{O}(n^3)$, we use a trivial dynamic program.

- RMQ has a simple solution with complexity $\langle \mathcal{O}(n^2), \mathcal{O}(1) \rangle$:
- Build a lookup table storing answers to all the n^2 possible queries.
- To achieve $\mathcal{O}(n^2)$ preprocessing rather than $\mathcal{O}(n^3)$, we use a trivial dynamic program.

• Idea: precompute each query whose length is a power of 2.

- Idea: precompute each query whose length is a power of 2.
- i.e. for each i in [1, n] and every j in [1, log n], find the minimum of the block starting at i and has length 2^j

- Idea: precompute each query whose length is a power of 2.
- i.e. for each i in [1, n] and every j in [1, log n], find the minimum of the block starting at i and has length 2^j
- i.e.

(1)
$$M[i,j] = \operatorname{argmin}_{k=i\dots i+2^{j}-1}A[k]$$

- Idea: precompute each query whose length is a power of 2.
- i.e. for each i in [1, n] and every j in [1, log n], find the minimum of the block starting at i and has length 2^j

• i.e.

(1)
$$M[i,j] = \operatorname{argmin}_{k=i\dots i+2^{j}-1}A[k]$$

• Table M has size $\mathcal{O}(n \log n)$

- Idea: precompute each query whose length is a power of 2.
- i.e. for each i in [1, n] and every j in [1, log n], find the minimum of the block starting at i and has length 2^j

• i.e.

(1)
$$M[i,j] = \operatorname{argmin}_{k=i\dots i+2^{j}-1}A[k]$$

- Table M has size $\mathcal{O}(n \log n)$
- We fill it in using dynamic programming.

- Idea: precompute each query whose length is a power of 2.
- i.e. for each i in [1, n] and every j in [1, log n], find the minimum of the block starting at i and has length 2^j

• i.e.

(1)
$$M[i,j] = \operatorname{argmin}_{k=i\dots i+2^{j}-1}A[k]$$

- Table M has size $\mathcal{O}(n \log n)$
- We fill it in using dynamic programming.
- Find the minimum in a block of size 2^j by comparing the two minima of its constituent blocks of size 2^{j-1}.

- Idea: precompute each query whose length is a power of 2.
- i.e. for each i in [1, n] and every j in [1, log n], find the minimum of the block starting at i and has length 2^j

• i.e.

(1)
$$M[i,j] = \operatorname{argmin}_{k=i\dots i+2^{j}-1}A[k]$$

- Table M has size $\mathcal{O}(n \log n)$
- We fill it in using dynamic programming.
- Find the minimum in a block of size 2^j by comparing the two minima of its constituent blocks of size 2^{j-1}.
- Formally speaking,

(2)
$$M[i,j] = M[i,j-1]$$
 if $A[M[i,j-1]] \le A[M[i+2^{j-1},j-1]]$

and

(3)
$$M[i,j] = M[i+2^{j-1},j-1]$$
 otherwise

- Idea: precompute each query whose length is a power of 2.
- i.e. for each i in [1, n] and every j in [1, log n], find the minimum of the block starting at i and has length 2^j

• i.e.

(1)
$$M[i,j] = \operatorname{argmin}_{k=i\dots i+2^{j}-1}A[k]$$

- Table M has size $\mathcal{O}(n \log n)$
- We fill it in using dynamic programming.
- Find the minimum in a block of size 2^j by comparing the two minima of its constituent blocks of size 2^{j-1}.
- Formally speaking,

(2)
$$M[i,j] = M[i,j-1]$$
 if $A[M[i,j-1]] \le A[M[i+2^{j-1},j-1]]$

and

(3)
$$M[i,j] = M[i+2^{j-1},j-1]$$
 otherwise

• Select 2 overlapping blocks that entirely cover the subrange.

- Select 2 overlapping blocks that entirely cover the subrange.
- Let 2^k be the size of the largest block that fits into the range from i to j, i.e. k = ⌊log(j i)⌋.

- Select 2 overlapping blocks that entirely cover the subrange.
- Let 2^k be the size of the largest block that fits into the range from i to j, i.e. k = ⌊log(j i)⌋.
- RMQ(i, j) can be computed by comparing the minima of the 2 blocks: i to $i + 2^k - 1$ (M(i,k)) and $j - 2^k + 1$ to j ($M(j - 2^k + 1, k)$).

- Select 2 overlapping blocks that entirely cover the subrange.
- Let 2^k be the size of the largest block that fits into the range from i to j, i.e. k = ⌊log(j i)⌋.
- RMQ(i, j) can be computed by comparing the minima of the 2 blocks: i to $i + 2^k - 1$ (M(i,k)) and $j - 2^k + 1$ to j ($M(j - 2^k + 1, k)$).
- Already computed values \Rightarrow we can find RMQ in constant time!

- Select 2 overlapping blocks that entirely cover the subrange.
- Let 2^k be the size of the largest block that fits into the range from i to j, i.e. k = ⌊log(j i)⌋.
- RMQ(i, j) can be computed by comparing the minima of the 2 blocks: i to $i + 2^k - 1$ (M(i,k)) and $j - 2^k + 1$ to j ($M(j - 2^k + 1, k)$).
- Already computed values \Rightarrow we can find RMQ in constant time!

• This gives the **Sparse Table(TS)** algorithm for RMQ with complexity $\langle \mathcal{O}(n \log n), \mathcal{O}(1) \rangle$.

- This gives the **Sparse Table(TS)** algorithm for RMQ with complexity $\langle \mathcal{O}(n \log n), \mathcal{O}(1) \rangle$.
- Total computation to answer an RMQ query is 3 additions, 4 array reference and a minimum, and 2 ops: log and floor.

- This gives the **Sparse Table(TS)** algorithm for RMQ with complexity $\langle \mathcal{O}(n \log n), \mathcal{O}(1) \rangle$.
- Total computation to answer an RMQ query is 3 additions, 4 array reference and a minimum, and 2 ops: log and floor.
- Can be seen as problem of finding the MSB of a word.

- This gives the **Sparse Table(TS)** algorithm for RMQ with complexity $\langle \mathcal{O}(n \log n), \mathcal{O}(1) \rangle$.
- Total computation to answer an RMQ query is 3 additions, 4 array reference and a minimum, and 2 ops: log and floor.
- Can be seen as problem of finding the MSB of a word.
- LCA problem shown to have Ω(log log n)on a pointer machine by Harel and Tarjan.

- This gives the **Sparse Table(TS)** algorithm for RMQ with complexity $\langle \mathcal{O}(n \log n), \mathcal{O}(1) \rangle$.
- Total computation to answer an RMQ query is 3 additions, 4 array reference and a minimum, and 2 ops: log and floor.
- Can be seen as problem of finding the MSB of a word.
- LCA problem shown to have Ω(log log n)on a pointer machine by Harel and Tarjan.

An $\langle \overline{\mathcal{O}}(n), \mathcal{O}(1) angle$ algorithm for $\mp \mathsf{RMQ}$

• Faster algorithm for $\mp RMQ!$

→ Ξ →

< < >>

An $\langle \mathcal{O}(n), \mathcal{O}(1) angle$ algorithm for $\mp \mathsf{RMQ}$

- Faster algorithm for $\mp RMQ!$
- Suppose we have array A with \mp restriction.

An $\langle \mathcal{O}(n), \mathcal{O}(1) angle$ algorithm for $\mp \mathsf{RMQ}$

- Faster algorithm for $\mp RMQ!$
- Suppose we have array A with \mp restriction.
- Use lookup-table to precompute answers for small subarrays? \Rightarrow remove log factor from preprocessing!

An $\langle \mathcal{O}(n), \mathcal{O}(1) angle$ algorithm for $\mp \mathsf{RMQ}$

- Faster algorithm for $\mp RMQ!$
- Suppose we have array A with \mp restriction.
- Use lookup-table to precompute answers for small subarrays? \Rightarrow remove log factor from preprocessing!
- Partition A into blocks of size $\frac{\log n}{2}$.

An $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ algorithm for $\mp \mathsf{RMQ}$

- Faster algorithm for $\mp RMQ!$
- Suppose we have array A with \mp restriction.
- Use lookup-table to precompute answers for small subarrays? \Rightarrow remove log factor from preprocessing!
- Partition A into blocks of size $\frac{\log n}{2}$.
- Define an arrayA'[1,..., $\frac{2n}{\log n}$] where A'[i] is the minimum of the ith block of A.
An $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ algorithm for $\mp \mathsf{RMQ}$

- Faster algorithm for $\mp RMQ!$
- Suppose we have array A with \mp restriction.
- Use lookup-table to precompute answers for small subarrays? \Rightarrow remove log factor from preprocessing!
- Partition A into blocks of size $\frac{\log n}{2}$.
- Define an arrayA'[1,..., $\frac{2n}{\log n}$] where A'[i] is the minimum of the ith block of A.
- Define an equal size array B where B[i] is a position in the ith block in which A[i] occurs.

An $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ algorithm for $\mp \mathsf{RMQ}$

- Faster algorithm for $\mp RMQ!$
- Suppose we have array A with \mp restriction.
- Use lookup-table to precompute answers for small subarrays? \Rightarrow remove log factor from preprocessing!
- Partition A into blocks of size $\frac{\log n}{2}$.
- Define an arrayA'[1,..., $\frac{2n}{\log n}$] where A'[i] is the minimum of the ith block of A.
- Define an equal size array B where B[i] is a position in the ith block in which A[i] occurs.
- B used to keep track of where the minima of A came from.

An $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ algorithm for $\mp \mathsf{RMQ}$

- Faster algorithm for $\mp RMQ!$
- Suppose we have array A with \mp restriction.
- Use lookup-table to precompute answers for small subarrays? \Rightarrow remove log factor from preprocessing!
- Partition A into blocks of size $\frac{\log n}{2}$.
- Define an arrayA'[1,..., $\frac{2n}{\log n}$] where A'[i] is the minimum of the ith block of A.
- Define an equal size array B where B[i] is a position in the ith block in which A[i] occurs.
- B used to keep track of where the minima of A came from.

• ST algorithm runs on A in time $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$.

.

- ST algorithm runs on A in time $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$.
- Consider RMQ(i,j) in A:
 - i and j can be in same block? \Rightarrow process each block to answer RMQ queries.

∃ ▶ ∢

- ST algorithm runs on A in time $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$.
- Consider RMQ(i,j) in A:
 - i and j can be in same block? \Rightarrow process each block to answer RMQ queries.
 - *i* < *j*:

3 1 4

- ST algorithm runs on A in time $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$.
- Consider RMQ(i,j) in A:
 - i and j can be in same block? \Rightarrow process each block to answer RMQ queries.
 - *i* < *j*:
 - Minimum from i forward to end of its block.

- ST algorithm runs on A in time $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$.
- Consider RMQ(i,j) in A:
 - i and j can be in same block? \Rightarrow process each block to answer RMQ queries.
 - i < j:
 - Minimum from i forward to end of its block.
 - Minimum of all blocks btw. is block and js block.

- ST algorithm runs on A in time $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$.
- Consider RMQ(i,j) in A:
 - i and j can be in same block? \Rightarrow process each block to answer RMQ queries.
 - i < j:
 - Minimum from i forward to end of its block.
 - Minimum of all blocks btw. is block and js block.
 - Minimum from beginning of js block to j.

- ST algorithm runs on A in time $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$.
- Consider RMQ(i,j) in A:
 - i and j can be in same block? \Rightarrow process each block to answer RMQ queries.
 - i < j:</p>
 - Minimum from i forward to end of its block.
 - Minimum of all blocks btw. is block and js block.
 - Minimum from beginning of js block to j.
- 2nd minimum is found in constant time by RMQ on A.

- ST algorithm runs on A in time $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$.
- Consider RMQ(i,j) in A:
 - i and j can be in same block? \Rightarrow process each block to answer RMQ queries.
 - i < j:</p>
 - Minimum from i forward to end of its block.
 - Minimum of all blocks btw. is block and js block.
 - Minimum from beginning of js block to j.
- 2nd minimum is found in constant time by RMQ on A.

• In-block queries needed for 1st and 3rd values to complete algorithm.

- In-block queries needed for 1st and 3rd values to complete algorithm.
- RMQ processing on each block \Rightarrow too much time in processing!

- In-block queries needed for 1st and 3rd values to complete algorithm.
- RMQ processing on each block \Rightarrow too much time in processing!
- 2 blocks identical? \Rightarrow share their processing!

- In-block queries needed for 1st and 3rd values to complete algorithm.
- RMQ processing on each block \Rightarrow too much time in processing!
- 2 blocks identical? \Rightarrow share their processing!
- Too much hope that blocks would be so repeated!:(

- In-block queries needed for 1st and 3rd values to complete algorithm.
- RMQ processing on each block \Rightarrow too much time in processing!
- 2 blocks identical? \Rightarrow share their processing!
- Too much hope that blocks would be so repeated!:(

Observation

If two arrays X[1,...,k] and Y[1,...,k] differ by some fixed value at each position, that is, there is a *c* such that X[i]=Y[i] + c for every i, then all RMQ answers will be the same for Xand Y.

- In-block queries needed for 1st and 3rd values to complete algorithm.
- RMQ processing on each block \Rightarrow too much time in processing!
- 2 blocks identical? \Rightarrow share their processing!
- Too much hope that blocks would be so repeated!:(

Observation

If two arrays X[1,...,k] and Y[1,...,k] differ by some fixed value at each position, that is, there is a *c* such that X[i]=Y[i] + c for every i, then all RMQ answers will be the same for Xand Y.

• Normalize a block by subtracting its initial offset from every element.

- Normalize a block by subtracting its initial offset from every element.
- Use the ∓ 1 property to show there very few kinds of normlized blocks:

Normalize a block by subtracting its initial offset from every element.
Use the ∓1 property to show there very few kinds of normlized blocks:

Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

- Normalize a block by subtracting its initial offset from every element.
 Use the ∓1 property to show there very few kinds of normlized blocks:
- Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus, normalized blocks are specified by ∓ 1 vector of length $\frac{1}{2\log n} - 1$. There are $2^{\frac{1}{2\log n}-1} = \mathcal{O}(\sqrt{n})$ such vectors ([Farach-Bender, 2000])

- Normalize a block by subtracting its initial offset from every element.
 Use the ∓1 property to show there very few kinds of normlized blocks:
- Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus, normalized blocks are specified by ∓ 1 vector of length $\frac{1}{2\log n} - 1$. There are $2^{\frac{1}{2\log n}-1} = \mathcal{O}(\sqrt{n})$ such vectors ([Farach-Bender, 2000])

• We are basically done!

- Normalize a block by subtracting its initial offset from every element.
 Use the ∓1 property to show there very few kinds of normlized blocks:
- Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus, normalized blocks are specified by ∓ 1 vector of length $\frac{1}{2 \log n} - 1$. There are $2^{\frac{1}{2 \log n} - 1} = \mathcal{O}(\sqrt{n})$ such vectors ([Farach-Bender, 2000])

- We are basically done!
- Create $\mathcal{O}(\sqrt{n})$ tables, one for each possible normalized block.

- Normalize a block by subtracting its initial offset from every element.
 Use the ∓1 property to show there very few kinds of normlized blocks:
- Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus, normalized blocks are specified by ∓ 1 vector of length $\frac{1}{2 \log n} - 1$. There are $2^{\frac{1}{2 \log n} - 1} = \mathcal{O}(\sqrt{n})$ such vectors ([Farach-Bender, 2000])

- We are basically done!
- Create $\mathcal{O}(\sqrt{n})$ tables, one for each possible normalized block.
- A total of O(√n) log² n total processing of normalized block tables and O(1) query time.

・ロン ・四 ・ ・ ヨン ・ ヨン

Normalize a block by subtracting its initial offset from every element.
Use the ∓1 property to show there very few kinds of normlized blocks:

Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus, normalized blocks are specified by ∓ 1 vector of length $\frac{1}{2\log n} - 1$. There are $2^{\frac{1}{2\log n}-1} = \mathcal{O}(\sqrt{n})$ such vectors ([Farach-Bender, 2000])

- We are basically done!
- Create $\mathcal{O}(\sqrt{n})$ tables, one for each possible normalized block.
- A total of O(√n) log² n total processing of normalized block tables and O(1) query time.
- Finally compute for each block in A which normalized block table it should use for its RMQ queries.

Fayssal El Moufatich ()

Lowest Common Ancestor

Normalize a block by subtracting its initial offset from every element.
Use the ∓1 property to show there very few kinds of normlized blocks:

Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus, normalized blocks are specified by ∓ 1 vector of length $\frac{1}{2\log n} - 1$. There are $2^{\frac{1}{2\log n}-1} = \mathcal{O}(\sqrt{n})$ such vectors ([Farach-Bender, 2000])

- We are basically done!
- Create $\mathcal{O}(\sqrt{n})$ tables, one for each possible normalized block.
- A total of O(√n) log² n total processing of normalized block tables and O(1) query time.
- Finally compute for each block in A which normalized block table it should use for its RMQ queries.

Fayssal El Moufatich ()

Lowest Common Ancestor

• Started by reducing from LCA problem to RMQ problem given reduction leads to ∓ 1 RMQ problem.

- Started by reducing from LCA problem to RMQ problem given reduction leads to ∓ 1 RMQ problem.
- Gave a trivial $\langle \mathcal{O}(n^2), \mathcal{O}(1) \rangle$ time table-lookup algorithm for RMQ and show how to sparsify the table to get $\langle \mathcal{O}(n \log n), \mathcal{O}(1) \rangle$ -time table-lookup algorithm.

- Started by reducing from LCA problem to RMQ problem given reduction leads to ∓ 1 RMQ problem.
- Gave a trivial $\langle \mathcal{O}(n^2), \mathcal{O}(1) \rangle$ time table-lookup algorithm for RMQ and show how to sparsify the table to get $\langle \mathcal{O}(n \log n), \mathcal{O}(1) \rangle$ -time table-lookup algorithm.
- Used latter algorithm on a smaller summary array A and needed only to process small blocks to finish algorithm.

- Started by reducing from LCA problem to RMQ problem given reduction leads to ∓ 1 RMQ problem.
- Gave a trivial $\langle \mathcal{O}(n^2), \mathcal{O}(1) \rangle$ time table-lookup algorithm for RMQ and show how to sparsify the table to get $\langle \mathcal{O}(n \log n), \mathcal{O}(1) \rangle$ -time table-lookup algorithm.
- Used latter algorithm on a smaller summary array A and needed only to process small blocks to finish algorithm.
- Finally, noticed most of these blocks are the same by using the ∓ 1 assumption from original reduction.(from RMQ problem point of view).

- Started by reducing from LCA problem to RMQ problem given reduction leads to ∓ 1 RMQ problem.
- Gave a trivial $\langle \mathcal{O}(n^2), \mathcal{O}(1) \rangle$ time table-lookup algorithm for RMQ and show how to sparsify the table to get $\langle \mathcal{O}(n \log n), \mathcal{O}(1) \rangle$ -time table-lookup algorithm.
- Used latter algorithm on a smaller summary array A and needed only to process small blocks to finish algorithm.
- Finally, noticed most of these blocks are the same by using the ∓ 1 assumption from original reduction.(from RMQ problem point of view).

• We have $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle \mp \mathsf{RMQ}$.

< ∃ >

- We have $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle \mp \mathsf{RMQ}$.
- General RMQ can be solved in the same complexity!

- We have $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle \mp \mathsf{RMQ}$.
- General RMQ can be solved in the same complexity!
- By reducing RMQ problem to LCA problem again!

- We have $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle \mp \mathsf{RMQ}$.
- General RMQ can be solved in the same complexity!
- By reducing RMQ problem to LCA problem again!
- To solve a general RMQ problem, one would convert it to an LCA problem and then back to ∓ 1 RMQ problem!

- We have $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle \mp \mathsf{RMQ}$.
- General RMQ can be solved in the same complexity!
- By reducing RMQ problem to LCA problem again!
- To solve a general RMQ problem, one would convert it to an LCA problem and then back to ∓ 1 RMQ problem!

If there is a $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ solution for LCA, then there is a $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ solution for RMQ.

< A

∃ ▶ ∢

If there is a $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ solution for LCA, then there is a $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ solution for RMQ.

• $\mathcal{O}(n)$ comes from time needed to build Cartesian Tree C of A and $\mathcal{O}(1)$ comes from time needed to convert LCA to an RMQ answer on A.

If there is a $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ solution for LCA, then there is a $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ solution for RMQ.

- $\mathcal{O}(n)$ comes from time needed to build Cartesian Tree C of A and $\mathcal{O}(1)$ comes from time needed to convert LCA to an RMQ answer on A.
- We can prove that:

(4)
$$RMQ_A(i,j) = LCA_C(i,j)$$

.

If there is a $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ solution for LCA, then there is a $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ solution for RMQ.

- $\mathcal{O}(n)$ comes from time needed to build Cartesian Tree C of A and $\mathcal{O}(1)$ comes from time needed to convert LCA to an RMQ answer on A.
- We can prove that:

(4)
$$RMQ_A(i,j) = LCA_C(i,j)$$

• Reduction completed!

.

If there is a $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ solution for LCA, then there is a $\langle \mathcal{O}(n), \mathcal{O}(1) \rangle$ solution for RMQ.

- $\mathcal{O}(n)$ comes from time needed to build Cartesian Tree C of A and $\mathcal{O}(1)$ comes from time needed to convert LCA to an RMQ answer on A.
- We can prove that:

(4)
$$RMQ_A(i,j) = LCA_C(i,j)$$

• Reduction completed!

 We can solve the range-min query problem in an array of n numbers with ∓1 property in O(1) and O(n) space.

- We can solve the range-min query problem in an array of n numbers with ∓1 property in O(1) and O(n) space.
- Divide array A into $m = \frac{2n}{\log n}$ buckets, each of size $k = \frac{\log n}{2}$.

- We can solve the range-min query problem in an array of n numbers with ∓1 property in O(1) and O(n) space.
- Divide array A into $m = \frac{2n}{\log n}$ buckets, each of size $k = \frac{\log n}{2}$.
- Parallel and distributed versions for algorithm exist!

Thank you for your attention!