
Lowest Common Ancestor(LCA)
a.k.a

Nearest Common Ancestor(NCA)

Fayssal El Moufatich

Technische Universität München
St. Petersburg

JASS 2008

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 1 / 33

Outline

Introduction

Definitions

Applications

Algorithms
1 Harel-Tarjan’s Algorithm and its variants
2 LCA and DRS
3 RMQ
4 Bender-Farach’s Algorithm
5 Space-economic algorithm for Bender-Farach’s Algorithm

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 2 / 33

Introduction

One of the most fundamental algorithmic problems on trees is how to
find the Least Common Ancestor of a pair of nodes.

Studied intensively because:

It is inherently algorithmically beautifull.
Fast algorithms for the LCA problem can be used to solve other
algorithmic problems.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 3 / 33

Definitions

Let there be a rooted tree T(E,V).

A node x ∈ T is an ancestor of a node y ∈ T if the path from the
root of T to y goes through x.

A node v ∈ T is a common ancestor of x and y if it is an ancestor of
both x and y.

The Nearest/Lowest Common Ancestor, NCA or LCA, of two nodes
x, y is the common ancestor of x and y whose distance to x (and to y)
smaller than the distance to x of any common ancestor of x and y.

We denote the NCA of x and y as nca(x , y).

Efficiently computing NCAs has been studied extensively for the last 3
decades in online and offline settings.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 4 / 33

Definitions

Let there be a rooted tree T(E,V).

A node x ∈ T is an ancestor of a node y ∈ T if the path from the
root of T to y goes through x.

A node v ∈ T is a common ancestor of x and y if it is an ancestor of
both x and y.

The Nearest/Lowest Common Ancestor, NCA or LCA, of two nodes
x, y is the common ancestor of x and y whose distance to x (and to y)
smaller than the distance to x of any common ancestor of x and y.

We denote the NCA of x and y as nca(x , y).

Efficiently computing NCAs has been studied extensively for the last 3
decades in online and offline settings.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 4 / 33

Definitions

Let there be a rooted tree T(E,V).

A node x ∈ T is an ancestor of a node y ∈ T if the path from the
root of T to y goes through x.

A node v ∈ T is a common ancestor of x and y if it is an ancestor of
both x and y.

The Nearest/Lowest Common Ancestor, NCA or LCA, of two nodes
x, y is the common ancestor of x and y whose distance to x (and to y)
smaller than the distance to x of any common ancestor of x and y.

We denote the NCA of x and y as nca(x , y).

Efficiently computing NCAs has been studied extensively for the last 3
decades in online and offline settings.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 4 / 33

Definitions

Let there be a rooted tree T(E,V).

A node x ∈ T is an ancestor of a node y ∈ T if the path from the
root of T to y goes through x.

A node v ∈ T is a common ancestor of x and y if it is an ancestor of
both x and y.

The Nearest/Lowest Common Ancestor, NCA or LCA, of two nodes
x, y is the common ancestor of x and y whose distance to x (and to y)
smaller than the distance to x of any common ancestor of x and y.

We denote the NCA of x and y as nca(x , y).

Efficiently computing NCAs has been studied extensively for the last 3
decades in online and offline settings.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 4 / 33

Definitions

Let there be a rooted tree T(E,V).

A node x ∈ T is an ancestor of a node y ∈ T if the path from the
root of T to y goes through x.

A node v ∈ T is a common ancestor of x and y if it is an ancestor of
both x and y.

The Nearest/Lowest Common Ancestor, NCA or LCA, of two nodes
x, y is the common ancestor of x and y whose distance to x (and to y)
smaller than the distance to x of any common ancestor of x and y.

We denote the NCA of x and y as nca(x , y).

Efficiently computing NCAs has been studied extensively for the last 3
decades in online and offline settings.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 4 / 33

Definitions

Let there be a rooted tree T(E,V).

A node x ∈ T is an ancestor of a node y ∈ T if the path from the
root of T to y goes through x.

A node v ∈ T is a common ancestor of x and y if it is an ancestor of
both x and y.

The Nearest/Lowest Common Ancestor, NCA or LCA, of two nodes
x, y is the common ancestor of x and y whose distance to x (and to y)
smaller than the distance to x of any common ancestor of x and y.

We denote the NCA of x and y as nca(x , y).

Efficiently computing NCAs has been studied extensively for the last 3
decades in online and offline settings.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 4 / 33

Definitions

Let there be a rooted tree T(E,V).

A node x ∈ T is an ancestor of a node y ∈ T if the path from the
root of T to y goes through x.

A node v ∈ T is a common ancestor of x and y if it is an ancestor of
both x and y.

The Nearest/Lowest Common Ancestor, NCA or LCA, of two nodes
x, y is the common ancestor of x and y whose distance to x (and to y)
smaller than the distance to x of any common ancestor of x and y.

We denote the NCA of x and y as nca(x , y).

Efficiently computing NCAs has been studied extensively for the last 3
decades in online and offline settings.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 4 / 33

Example

0

1

2 3

4

5 6 7

8 9

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 5 / 33

Applications

A procedure solving the NCA problem is used by algorithms for:

Finding the maximum weighted matching in a graph.
Finding a minimum spanning tree in a graph.
Finding a dominator tree in a graph in a directed flow-graph.
Several string algorithms.
Dynamic planarity testing.
In network routing.
Solving various geometric problems including range searching.
Finding evolutionary trees.
And in bounded tree-width algorithms.
....

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 6 / 33

Survey of Algorithms

One of the most fundamental results on computing NCAS is that of
Harel and Tarjan [Harel, 1980], [Harel & Tarjan, 1984].

They describe a linear time algorithm to preprocess a tree and build a
data structure that allows subsequent NCA queries to be answered in
constant time!.

Several simpler algorithms with essentially the same properties but
better constant factors were proposed afterwards.

They all use the observation that it is rather easy to solve the
problem when the input tree is a complete binary tree.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 7 / 33

Survey of Algorithms

One of the most fundamental results on computing NCAS is that of
Harel and Tarjan [Harel, 1980], [Harel & Tarjan, 1984].

They describe a linear time algorithm to preprocess a tree and build a
data structure that allows subsequent NCA queries to be answered in
constant time!.

Several simpler algorithms with essentially the same properties but
better constant factors were proposed afterwards.

They all use the observation that it is rather easy to solve the
problem when the input tree is a complete binary tree.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 7 / 33

Survey of Algorithms

One of the most fundamental results on computing NCAS is that of
Harel and Tarjan [Harel, 1980], [Harel & Tarjan, 1984].

They describe a linear time algorithm to preprocess a tree and build a
data structure that allows subsequent NCA queries to be answered in
constant time!.

Several simpler algorithms with essentially the same properties but
better constant factors were proposed afterwards.

They all use the observation that it is rather easy to solve the
problem when the input tree is a complete binary tree.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 7 / 33

Survey of Algorithms

One of the most fundamental results on computing NCAS is that of
Harel and Tarjan [Harel, 1980], [Harel & Tarjan, 1984].

They describe a linear time algorithm to preprocess a tree and build a
data structure that allows subsequent NCA queries to be answered in
constant time!.

Several simpler algorithms with essentially the same properties but
better constant factors were proposed afterwards.

They all use the observation that it is rather easy to solve the
problem when the input tree is a complete binary tree.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 7 / 33

Survey of Algorithms

One of the most fundamental results on computing NCAS is that of
Harel and Tarjan [Harel, 1980], [Harel & Tarjan, 1984].

They describe a linear time algorithm to preprocess a tree and build a
data structure that allows subsequent NCA queries to be answered in
constant time!.

Several simpler algorithms with essentially the same properties but
better constant factors were proposed afterwards.

They all use the observation that it is rather easy to solve the
problem when the input tree is a complete binary tree.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 7 / 33

How do we do it?

Label the nodes by their index in an inorder traversal of the complete
binary tree.

If the tree has n nodes, each such number occupies ` = blog(n)c bits.

Assume the LSB is the rightmost and its index is 0.

Let inorder(x) and inorder(y) be the inorder indexes of x and y.

Let i = max((1), (2), (3)) where:
1 index of the leftmost bit in which inorder(x) and inorder(y) differ.
2 index of the rightmost 1 in inorder(x).
3 index of the rightmost 1 in inorder(y).

It can be proved by induction that:

Lemma:[Shieber & Vishkin, 1987]

the inorder(nca(x , y)) consists of the leftmost `− i bits of inorder(x) (or
inorder(y) if the max was (3)) followed by a 1 and i zeros.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 8 / 33

How do we do it?

Label the nodes by their index in an inorder traversal of the complete
binary tree.

If the tree has n nodes, each such number occupies ` = blog(n)c bits.

Assume the LSB is the rightmost and its index is 0.

Let inorder(x) and inorder(y) be the inorder indexes of x and y.

Let i = max((1), (2), (3)) where:
1 index of the leftmost bit in which inorder(x) and inorder(y) differ.
2 index of the rightmost 1 in inorder(x).
3 index of the rightmost 1 in inorder(y).

It can be proved by induction that:

Lemma:[Shieber & Vishkin, 1987]

the inorder(nca(x , y)) consists of the leftmost `− i bits of inorder(x) (or
inorder(y) if the max was (3)) followed by a 1 and i zeros.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 8 / 33

How do we do it?

Label the nodes by their index in an inorder traversal of the complete
binary tree.

If the tree has n nodes, each such number occupies ` = blog(n)c bits.

Assume the LSB is the rightmost and its index is 0.

Let inorder(x) and inorder(y) be the inorder indexes of x and y.

Let i = max((1), (2), (3)) where:
1 index of the leftmost bit in which inorder(x) and inorder(y) differ.
2 index of the rightmost 1 in inorder(x).
3 index of the rightmost 1 in inorder(y).

It can be proved by induction that:

Lemma:[Shieber & Vishkin, 1987]

the inorder(nca(x , y)) consists of the leftmost `− i bits of inorder(x) (or
inorder(y) if the max was (3)) followed by a 1 and i zeros.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 8 / 33

How do we do it?

Label the nodes by their index in an inorder traversal of the complete
binary tree.

If the tree has n nodes, each such number occupies ` = blog(n)c bits.

Assume the LSB is the rightmost and its index is 0.

Let inorder(x) and inorder(y) be the inorder indexes of x and y.

Let i = max((1), (2), (3)) where:
1 index of the leftmost bit in which inorder(x) and inorder(y) differ.
2 index of the rightmost 1 in inorder(x).
3 index of the rightmost 1 in inorder(y).

It can be proved by induction that:

Lemma:[Shieber & Vishkin, 1987]

the inorder(nca(x , y)) consists of the leftmost `− i bits of inorder(x) (or
inorder(y) if the max was (3)) followed by a 1 and i zeros.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 8 / 33

How do we do it?

Label the nodes by their index in an inorder traversal of the complete
binary tree.

If the tree has n nodes, each such number occupies ` = blog(n)c bits.

Assume the LSB is the rightmost and its index is 0.

Let inorder(x) and inorder(y) be the inorder indexes of x and y.

Let i = max((1), (2), (3)) where:

1 index of the leftmost bit in which inorder(x) and inorder(y) differ.
2 index of the rightmost 1 in inorder(x).
3 index of the rightmost 1 in inorder(y).

It can be proved by induction that:

Lemma:[Shieber & Vishkin, 1987]

the inorder(nca(x , y)) consists of the leftmost `− i bits of inorder(x) (or
inorder(y) if the max was (3)) followed by a 1 and i zeros.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 8 / 33

How do we do it?

Label the nodes by their index in an inorder traversal of the complete
binary tree.

If the tree has n nodes, each such number occupies ` = blog(n)c bits.

Assume the LSB is the rightmost and its index is 0.

Let inorder(x) and inorder(y) be the inorder indexes of x and y.

Let i = max((1), (2), (3)) where:
1 index of the leftmost bit in which inorder(x) and inorder(y) differ.

2 index of the rightmost 1 in inorder(x).
3 index of the rightmost 1 in inorder(y).

It can be proved by induction that:

Lemma:[Shieber & Vishkin, 1987]

the inorder(nca(x , y)) consists of the leftmost `− i bits of inorder(x) (or
inorder(y) if the max was (3)) followed by a 1 and i zeros.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 8 / 33

How do we do it?

Label the nodes by their index in an inorder traversal of the complete
binary tree.

If the tree has n nodes, each such number occupies ` = blog(n)c bits.

Assume the LSB is the rightmost and its index is 0.

Let inorder(x) and inorder(y) be the inorder indexes of x and y.

Let i = max((1), (2), (3)) where:
1 index of the leftmost bit in which inorder(x) and inorder(y) differ.
2 index of the rightmost 1 in inorder(x).

3 index of the rightmost 1 in inorder(y).

It can be proved by induction that:

Lemma:[Shieber & Vishkin, 1987]

the inorder(nca(x , y)) consists of the leftmost `− i bits of inorder(x) (or
inorder(y) if the max was (3)) followed by a 1 and i zeros.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 8 / 33

How do we do it?

Label the nodes by their index in an inorder traversal of the complete
binary tree.

If the tree has n nodes, each such number occupies ` = blog(n)c bits.

Assume the LSB is the rightmost and its index is 0.

Let inorder(x) and inorder(y) be the inorder indexes of x and y.

Let i = max((1), (2), (3)) where:
1 index of the leftmost bit in which inorder(x) and inorder(y) differ.
2 index of the rightmost 1 in inorder(x).
3 index of the rightmost 1 in inorder(y).

It can be proved by induction that:

Lemma:[Shieber & Vishkin, 1987]

the inorder(nca(x , y)) consists of the leftmost `− i bits of inorder(x) (or
inorder(y) if the max was (3)) followed by a 1 and i zeros.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 8 / 33

How do we do it?

Label the nodes by their index in an inorder traversal of the complete
binary tree.

If the tree has n nodes, each such number occupies ` = blog(n)c bits.

Assume the LSB is the rightmost and its index is 0.

Let inorder(x) and inorder(y) be the inorder indexes of x and y.

Let i = max((1), (2), (3)) where:
1 index of the leftmost bit in which inorder(x) and inorder(y) differ.
2 index of the rightmost 1 in inorder(x).
3 index of the rightmost 1 in inorder(y).

It can be proved by induction that:

Lemma:[Shieber & Vishkin, 1987]

the inorder(nca(x , y)) consists of the leftmost `− i bits of inorder(x) (or
inorder(y) if the max was (3)) followed by a 1 and i zeros.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 8 / 33

How do we do it?

Label the nodes by their index in an inorder traversal of the complete
binary tree.

If the tree has n nodes, each such number occupies ` = blog(n)c bits.

Assume the LSB is the rightmost and its index is 0.

Let inorder(x) and inorder(y) be the inorder indexes of x and y.

Let i = max((1), (2), (3)) where:
1 index of the leftmost bit in which inorder(x) and inorder(y) differ.
2 index of the rightmost 1 in inorder(x).
3 index of the rightmost 1 in inorder(y).

It can be proved by induction that:

Lemma:[Shieber & Vishkin, 1987]

the inorder(nca(x , y)) consists of the leftmost `− i bits of inorder(x) (or
inorder(y) if the max was (3)) followed by a 1 and i zeros.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 8 / 33

Example

Basic idea

construct the inorder(nca(x , y)) from inorder(x) and inorder(y) alone and
without accessing the original tree or any other global data structure
⇒constant time!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 9 / 33

Example

Basic idea

construct the inorder(nca(x , y)) from inorder(x) and inorder(y) alone and
without accessing the original tree or any other global data structure
⇒constant time!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 9 / 33

Example

Basic idea

construct the inorder(nca(x , y)) from inorder(x) and inorder(y) alone and
without accessing the original tree or any other global data structure
⇒constant time!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 9 / 33

So what if the input tree is not a completely balanced
binary tree?

Simply do a mapping to a completely binary balanced tree!

Different algorithms differ by the way they do the mapping.

All algorithms have to use some precomputed auxilliary data
structures and the labels of the nodes to compute the NCAS :(.

⇒Most of algorithms for general trees do not allow to compute a
unique identifier of nca(x,y) from short labels associated with x and y
alone.

However, ...

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 10 / 33

So what if the input tree is not a completely balanced
binary tree?

Simply do a mapping to a completely binary balanced tree!

Different algorithms differ by the way they do the mapping.

All algorithms have to use some precomputed auxilliary data
structures and the labels of the nodes to compute the NCAS :(.

⇒Most of algorithms for general trees do not allow to compute a
unique identifier of nca(x,y) from short labels associated with x and y
alone.

However, ...

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 10 / 33

So what if the input tree is not a completely balanced
binary tree?

Simply do a mapping to a completely binary balanced tree!

Different algorithms differ by the way they do the mapping.

All algorithms have to use some precomputed auxilliary data
structures and the labels of the nodes to compute the NCAS :(.

⇒Most of algorithms for general trees do not allow to compute a
unique identifier of nca(x,y) from short labels associated with x and y
alone.

However, ...

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 10 / 33

So what if the input tree is not a completely balanced
binary tree?

Simply do a mapping to a completely binary balanced tree!

Different algorithms differ by the way they do the mapping.

All algorithms have to use some precomputed auxilliary data
structures and the labels of the nodes to compute the NCAS :(.

⇒Most of algorithms for general trees do not allow to compute a
unique identifier of nca(x,y) from short labels associated with x and y
alone.

However, ...

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 10 / 33

So what if the input tree is not a completely balanced
binary tree?

Simply do a mapping to a completely binary balanced tree!

Different algorithms differ by the way they do the mapping.

All algorithms have to use some precomputed auxilliary data
structures and the labels of the nodes to compute the NCAS :(.

⇒Most of algorithms for general trees do not allow to compute a
unique identifier of nca(x,y) from short labels associated with x and y
alone.

However, ...

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 10 / 33

So what if the input tree is not a completely balanced
binary tree?

Simply do a mapping to a completely binary balanced tree!

Different algorithms differ by the way they do the mapping.

All algorithms have to use some precomputed auxilliary data
structures and the labels of the nodes to compute the NCAS :(.

⇒Most of algorithms for general trees do not allow to compute a
unique identifier of nca(x,y) from short labels associated with x and y
alone.

However, ...

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 10 / 33

Cont.

One can prove the following:

Theorem

There is a linear time algorithm that labels the n nodes of a rooted tree T
with labels of length O(log n) bits such that from the labels of nodes x, y
in T alone, one can compute the label of nca(x , y) in constant time.

Proof:[Kaplan et al., 2002]

Use lexigraphic sorting the sequence of intergers or binary strings.

Use results from Gilbert and Moore on alphabetic coding of sequences of
integers 〈b〉k(|bi | < log n − log yi +O(1) for all i).

use labeling along HPs, Heavy Paths.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 11 / 33

Cont.

One can prove the following:

Theorem

There is a linear time algorithm that labels the n nodes of a rooted tree T
with labels of length O(log n) bits such that from the labels of nodes x, y
in T alone, one can compute the label of nca(x , y) in constant time.

Proof:[Kaplan et al., 2002]

Use lexigraphic sorting the sequence of intergers or binary strings.

Use results from Gilbert and Moore on alphabetic coding of sequences of
integers 〈b〉k(|bi | < log n − log yi +O(1) for all i).

use labeling along HPs, Heavy Paths.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 11 / 33

Cont.

One can prove the following:

Theorem

There is a linear time algorithm that labels the n nodes of a rooted tree T
with labels of length O(log n) bits such that from the labels of nodes x, y
in T alone, one can compute the label of nca(x , y) in constant time.

Proof:[Kaplan et al., 2002]

Use lexigraphic sorting the sequence of intergers or binary strings.

Use results from Gilbert and Moore on alphabetic coding of sequences of
integers 〈b〉k(|bi | < log n − log yi +O(1) for all i).

use labeling along HPs, Heavy Paths.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 11 / 33

Cont.

One can prove the following:

Theorem

There is a linear time algorithm that labels the n nodes of a rooted tree T
with labels of length O(log n) bits such that from the labels of nodes x, y
in T alone, one can compute the label of nca(x , y) in constant time.

Proof:[Kaplan et al., 2002]

Use lexigraphic sorting the sequence of intergers or binary strings.

Use results from Gilbert and Moore on alphabetic coding of sequences of
integers 〈b〉k(|bi | < log n − log yi +O(1) for all i).

use labeling along HPs, Heavy Paths.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 11 / 33

NCA and Discrete Range Searching (DRS)

Gabow, Bentley and Tarjan observed that one-dimensional DRS
problem is equivalent to NCA problem.

DRS used by most of simple NCA algorithms.

DRS Problem

Given a sequence of real numbers x1, x2, ...xn, preprocess the sequence so
that one can answer efficiently subsequent queries of the form:
given a pair of indices (i , j), what is the maximum element among xi ,...,xj

or max(i , j).

DRS problem is a fundamental geometric searching problem.

DRS can be reduced to NCA by constructing a Cartesian tree for
the sequence x1, ..., xn [Gabow et al., 1984].

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 12 / 33

NCA and Discrete Range Searching (DRS)

Gabow, Bentley and Tarjan observed that one-dimensional DRS
problem is equivalent to NCA problem.

DRS used by most of simple NCA algorithms.

DRS Problem

Given a sequence of real numbers x1, x2, ...xn, preprocess the sequence so
that one can answer efficiently subsequent queries of the form:
given a pair of indices (i , j), what is the maximum element among xi ,...,xj

or max(i , j).

DRS problem is a fundamental geometric searching problem.

DRS can be reduced to NCA by constructing a Cartesian tree for
the sequence x1, ..., xn [Gabow et al., 1984].

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 12 / 33

NCA and Discrete Range Searching (DRS)

Gabow, Bentley and Tarjan observed that one-dimensional DRS
problem is equivalent to NCA problem.

DRS used by most of simple NCA algorithms.

DRS Problem

Given a sequence of real numbers x1, x2, ...xn, preprocess the sequence so
that one can answer efficiently subsequent queries of the form:
given a pair of indices (i , j), what is the maximum element among xi ,...,xj

or max(i , j).

DRS problem is a fundamental geometric searching problem.

DRS can be reduced to NCA by constructing a Cartesian tree for
the sequence x1, ..., xn [Gabow et al., 1984].

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 12 / 33

NCA and Discrete Range Searching (DRS)

Gabow, Bentley and Tarjan observed that one-dimensional DRS
problem is equivalent to NCA problem.

DRS used by most of simple NCA algorithms.

DRS Problem

Given a sequence of real numbers x1, x2, ...xn, preprocess the sequence so
that one can answer efficiently subsequent queries of the form:
given a pair of indices (i , j), what is the maximum element among xi ,...,xj

or max(i , j).

DRS problem is a fundamental geometric searching problem.

DRS can be reduced to NCA by constructing a Cartesian tree for
the sequence x1, ..., xn [Gabow et al., 1984].

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 12 / 33

What is a Cartesian tree?

Cartesian Tree

The Cartesian tree of the sequence x1, ..., xn is a binary tree with n nodes
each containing a number xi and the following properties:

Let xj = max(x1, ..., xn)

1 The root of the Cartesian tree contains xj .

2 The left subtree of the root is a Cartesian tree for x1, ..., xj−1.

3 The right subtree of the root is a Cartesian tree for xj+1, ..., xn.

Remarks

The Cartesian tree for x1, ..., xn can be constructed in O(n)
[Vuillemin, 1980].

The maximum among xi , ..., xj corresponds to just the NCA of the
node containing xi and the node containing xj .

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 13 / 33

What is a Cartesian tree?

Cartesian Tree

The Cartesian tree of the sequence x1, ..., xn is a binary tree with n nodes
each containing a number xi and the following properties:
Let xj = max(x1, ..., xn)

1 The root of the Cartesian tree contains xj .

2 The left subtree of the root is a Cartesian tree for x1, ..., xj−1.

3 The right subtree of the root is a Cartesian tree for xj+1, ..., xn.

Remarks

The Cartesian tree for x1, ..., xn can be constructed in O(n)
[Vuillemin, 1980].

The maximum among xi , ..., xj corresponds to just the NCA of the
node containing xi and the node containing xj .

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 13 / 33

What is a Cartesian tree?

Cartesian Tree

The Cartesian tree of the sequence x1, ..., xn is a binary tree with n nodes
each containing a number xi and the following properties:
Let xj = max(x1, ..., xn)

1 The root of the Cartesian tree contains xj .

2 The left subtree of the root is a Cartesian tree for x1, ..., xj−1.

3 The right subtree of the root is a Cartesian tree for xj+1, ..., xn.

Remarks

The Cartesian tree for x1, ..., xn can be constructed in O(n)
[Vuillemin, 1980].

The maximum among xi , ..., xj corresponds to just the NCA of the
node containing xi and the node containing xj .

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 13 / 33

What is a Cartesian tree?

Cartesian Tree

The Cartesian tree of the sequence x1, ..., xn is a binary tree with n nodes
each containing a number xi and the following properties:
Let xj = max(x1, ..., xn)

1 The root of the Cartesian tree contains xj .

2 The left subtree of the root is a Cartesian tree for x1, ..., xj−1.

3 The right subtree of the root is a Cartesian tree for xj+1, ..., xn.

Remarks

The Cartesian tree for x1, ..., xn can be constructed in O(n)
[Vuillemin, 1980].

The maximum among xi , ..., xj corresponds to just the NCA of the
node containing xi and the node containing xj .

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 13 / 33

What is a Cartesian tree?

Cartesian Tree

The Cartesian tree of the sequence x1, ..., xn is a binary tree with n nodes
each containing a number xi and the following properties:
Let xj = max(x1, ..., xn)

1 The root of the Cartesian tree contains xj .

2 The left subtree of the root is a Cartesian tree for x1, ..., xj−1.

3 The right subtree of the root is a Cartesian tree for xj+1, ..., xn.

Remarks

The Cartesian tree for x1, ..., xn can be constructed in O(n)
[Vuillemin, 1980].

The maximum among xi , ..., xj corresponds to just the NCA of the
node containing xi and the node containing xj .

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 13 / 33

What is a Cartesian tree?

Cartesian Tree

The Cartesian tree of the sequence x1, ..., xn is a binary tree with n nodes
each containing a number xi and the following properties:
Let xj = max(x1, ..., xn)

1 The root of the Cartesian tree contains xj .

2 The left subtree of the root is a Cartesian tree for x1, ..., xj−1.

3 The right subtree of the root is a Cartesian tree for xj+1, ..., xn.

Remarks

The Cartesian tree for x1, ..., xn can be constructed in O(n)
[Vuillemin, 1980].

The maximum among xi , ..., xj corresponds to just the NCA of the
node containing xi and the node containing xj .

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 13 / 33

What is a Cartesian tree?

Cartesian Tree

The Cartesian tree of the sequence x1, ..., xn is a binary tree with n nodes
each containing a number xi and the following properties:
Let xj = max(x1, ..., xn)

1 The root of the Cartesian tree contains xj .

2 The left subtree of the root is a Cartesian tree for x1, ..., xj−1.

3 The right subtree of the root is a Cartesian tree for xj+1, ..., xn.

Remarks

The Cartesian tree for x1, ..., xn can be constructed in O(n)
[Vuillemin, 1980].

The maximum among xi , ..., xj corresponds to just the NCA of the
node containing xi and the node containing xj .

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 13 / 33

What is a Cartesian tree?

Cartesian Tree

The Cartesian tree of the sequence x1, ..., xn is a binary tree with n nodes
each containing a number xi and the following properties:
Let xj = max(x1, ..., xn)

1 The root of the Cartesian tree contains xj .

2 The left subtree of the root is a Cartesian tree for x1, ..., xj−1.

3 The right subtree of the root is a Cartesian tree for xj+1, ..., xn.

Remarks

The Cartesian tree for x1, ..., xn can be constructed in O(n)
[Vuillemin, 1980].

The maximum among xi , ..., xj corresponds to just the NCA of the
node containing xi and the node containing xj .

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 13 / 33

What about NCA as DRS?

Gabow et al. also show how to reduce the NCA problem to the DRS
problem.

Given a tree, we first construct a sequence of its nodes by doing a
depth first traversal.

Each time we visit a node, we add it to the end of the sequence so
that each node appears in the sequence as many times as its
degree.[a prefix of the Euler tour of the tree]

Let depth(x) be the depth of a node x.

Replace each node x in the sequence by -depth(x).

To compute nca(x , y), we pick arbirary 2 elements xi and xj

representing x and y, and compute the maximum among xi , ..., xj .

The node corresponding to the maximum element is nca(x , y)!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 14 / 33

What about NCA as DRS?

Gabow et al. also show how to reduce the NCA problem to the DRS
problem.

Given a tree, we first construct a sequence of its nodes by doing a
depth first traversal.

Each time we visit a node, we add it to the end of the sequence so
that each node appears in the sequence as many times as its
degree.[a prefix of the Euler tour of the tree]

Let depth(x) be the depth of a node x.

Replace each node x in the sequence by -depth(x).

To compute nca(x , y), we pick arbirary 2 elements xi and xj

representing x and y, and compute the maximum among xi , ..., xj .

The node corresponding to the maximum element is nca(x , y)!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 14 / 33

What about NCA as DRS?

Gabow et al. also show how to reduce the NCA problem to the DRS
problem.

Given a tree, we first construct a sequence of its nodes by doing a
depth first traversal.

Each time we visit a node, we add it to the end of the sequence so
that each node appears in the sequence as many times as its
degree.[a prefix of the Euler tour of the tree]

Let depth(x) be the depth of a node x.

Replace each node x in the sequence by -depth(x).

To compute nca(x , y), we pick arbirary 2 elements xi and xj

representing x and y, and compute the maximum among xi , ..., xj .

The node corresponding to the maximum element is nca(x , y)!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 14 / 33

What about NCA as DRS?

Gabow et al. also show how to reduce the NCA problem to the DRS
problem.

Given a tree, we first construct a sequence of its nodes by doing a
depth first traversal.

Each time we visit a node, we add it to the end of the sequence so
that each node appears in the sequence as many times as its
degree.[a prefix of the Euler tour of the tree]

Let depth(x) be the depth of a node x.

Replace each node x in the sequence by -depth(x).

To compute nca(x , y), we pick arbirary 2 elements xi and xj

representing x and y, and compute the maximum among xi , ..., xj .

The node corresponding to the maximum element is nca(x , y)!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 14 / 33

What about NCA as DRS?

Gabow et al. also show how to reduce the NCA problem to the DRS
problem.

Given a tree, we first construct a sequence of its nodes by doing a
depth first traversal.

Each time we visit a node, we add it to the end of the sequence so
that each node appears in the sequence as many times as its
degree.[a prefix of the Euler tour of the tree]

Let depth(x) be the depth of a node x.

Replace each node x in the sequence by -depth(x).

To compute nca(x , y), we pick arbirary 2 elements xi and xj

representing x and y, and compute the maximum among xi , ..., xj .

The node corresponding to the maximum element is nca(x , y)!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 14 / 33

What about NCA as DRS?

Gabow et al. also show how to reduce the NCA problem to the DRS
problem.

Given a tree, we first construct a sequence of its nodes by doing a
depth first traversal.

Each time we visit a node, we add it to the end of the sequence so
that each node appears in the sequence as many times as its
degree.[a prefix of the Euler tour of the tree]

Let depth(x) be the depth of a node x.

Replace each node x in the sequence by -depth(x).

To compute nca(x , y), we pick arbirary 2 elements xi and xj

representing x and y, and compute the maximum among xi , ..., xj .

The node corresponding to the maximum element is nca(x , y)!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 14 / 33

What about NCA as DRS?

Gabow et al. also show how to reduce the NCA problem to the DRS
problem.

Given a tree, we first construct a sequence of its nodes by doing a
depth first traversal.

Each time we visit a node, we add it to the end of the sequence so
that each node appears in the sequence as many times as its
degree.[a prefix of the Euler tour of the tree]

Let depth(x) be the depth of a node x.

Replace each node x in the sequence by -depth(x).

To compute nca(x , y), we pick arbirary 2 elements xi and xj

representing x and y, and compute the maximum among xi , ..., xj .

The node corresponding to the maximum element is nca(x , y)!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 14 / 33

Euler tour of a tree

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 15 / 33

What is the LCA of given two nodes then?

Simply the node of the least depth (i.e. Closest to the root) that lies
between the nodes in the Euler tour.

Hence, finding specific node in the tree ⇔ finding minimum element
in the proper interval in the array of numbers.

Latter problem can be solved by min-range queries.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 16 / 33

What is the LCA of given two nodes then?

Simply the node of the least depth (i.e. Closest to the root) that lies
between the nodes in the Euler tour.

Hence, finding specific node in the tree ⇔ finding minimum element
in the proper interval in the array of numbers.

Latter problem can be solved by min-range queries.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 16 / 33

What is the LCA of given two nodes then?

Simply the node of the least depth (i.e. Closest to the root) that lies
between the nodes in the Euler tour.

Hence, finding specific node in the tree ⇔ finding minimum element
in the proper interval in the array of numbers.

Latter problem can be solved by min-range queries.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 16 / 33

What is the LCA of given two nodes then?

Simply the node of the least depth (i.e. Closest to the root) that lies
between the nodes in the Euler tour.

Hence, finding specific node in the tree ⇔ finding minimum element
in the proper interval in the array of numbers.

Latter problem can be solved by min-range queries.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 16 / 33

Range Minimum Query (RMQ) Problem

Definition of RMQ Problem

Same as the DSR problem but outputs the minimum instead.

Structure to Preprocess: an array of numbers of length n.

Query: for indices i and j and n, query RMQ(x,y) returns the index
of the smallest element in the subarray A[i...j].

Remark

As with the DSR algorithm, LCA can be reduced to an RMQ
problem.[Bender-Farach, 2000]

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 17 / 33

Range Minimum Query (RMQ) Problem

Definition of RMQ Problem

Same as the DSR problem but outputs the minimum instead.

Structure to Preprocess: an array of numbers of length n.

Query: for indices i and j and n, query RMQ(x,y) returns the index
of the smallest element in the subarray A[i...j].

Remark

As with the DSR algorithm, LCA can be reduced to an RMQ
problem.[Bender-Farach, 2000]

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 17 / 33

Range Minimum Query (RMQ) Problem

Definition of RMQ Problem

Same as the DSR problem but outputs the minimum instead.

Structure to Preprocess: an array of numbers of length n.

Query: for indices i and j and n, query RMQ(x,y) returns the index
of the smallest element in the subarray A[i...j].

Remark

As with the DSR algorithm, LCA can be reduced to an RMQ
problem.[Bender-Farach, 2000]

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 17 / 33

Range Minimum Query (RMQ) Problem

Definition of RMQ Problem

Same as the DSR problem but outputs the minimum instead.

Structure to Preprocess: an array of numbers of length n.

Query: for indices i and j and n, query RMQ(x,y) returns the index
of the smallest element in the subarray A[i...j].

Remark

As with the DSR algorithm, LCA can be reduced to an RMQ
problem.[Bender-Farach, 2000]

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 17 / 33

Range Minimum Query (RMQ) Problem

Definition of RMQ Problem

Same as the DSR problem but outputs the minimum instead.

Structure to Preprocess: an array of numbers of length n.

Query: for indices i and j and n, query RMQ(x,y) returns the index
of the smallest element in the subarray A[i...j].

Remark

As with the DSR algorithm, LCA can be reduced to an RMQ
problem.[Bender-Farach, 2000]

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 17 / 33

Isn’t that a loop in our reduction?

We started by reducing the range-min/DSR problem to an LCA
problem

Answer is no!

The constructed array of numbers has a special property known as ∓1
property:

∓1 property

Each number differs by exactly one from its preceding number.

Hence, our reduction is a special case of the range-min query problem
that can be solved without further reductions.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 18 / 33

Isn’t that a loop in our reduction?

We started by reducing the range-min/DSR problem to an LCA
problem

Answer is no!

The constructed array of numbers has a special property known as ∓1
property:

∓1 property

Each number differs by exactly one from its preceding number.

Hence, our reduction is a special case of the range-min query problem
that can be solved without further reductions.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 18 / 33

Isn’t that a loop in our reduction?

We started by reducing the range-min/DSR problem to an LCA
problem

Answer is no!

The constructed array of numbers has a special property known as ∓1
property:

∓1 property

Each number differs by exactly one from its preceding number.

Hence, our reduction is a special case of the range-min query problem
that can be solved without further reductions.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 18 / 33

Isn’t that a loop in our reduction?

We started by reducing the range-min/DSR problem to an LCA
problem

Answer is no!

The constructed array of numbers has a special property known as ∓1
property:

∓1 property

Each number differs by exactly one from its preceding number.

Hence, our reduction is a special case of the range-min query problem
that can be solved without further reductions.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 18 / 33

Isn’t that a loop in our reduction?

We started by reducing the range-min/DSR problem to an LCA
problem

Answer is no!

The constructed array of numbers has a special property known as ∓1
property:

∓1 property

Each number differs by exactly one from its preceding number.

Hence, our reduction is a special case of the range-min query problem
that can be solved without further reductions.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 18 / 33

Isn’t that a loop in our reduction?

We started by reducing the range-min/DSR problem to an LCA
problem

Answer is no!

The constructed array of numbers has a special property known as ∓1
property:

∓1 property

Each number differs by exactly one from its preceding number.

Hence, our reduction is a special case of the range-min query problem
that can be solved without further reductions.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 18 / 33

Cont.

Our goal then is to solve the following problem:

Problem

Preprocess an array of n numbers satisfying the ∓1 property such that
given two indices i and j in the array, determine the index of the minimum
element within the given range [i , j], O(1) time and O(n) space.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 19 / 33

Cont.

Our goal then is to solve the following problem:

Problem

Preprocess an array of n numbers satisfying the ∓1 property such that
given two indices i and j in the array, determine the index of the minimum
element within the given range [i , j], O(1) time and O(n) space.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 19 / 33

Cont.

Our goal then is to solve the following problem:

Problem

Preprocess an array of n numbers satisfying the ∓1 property such that
given two indices i and j in the array, determine the index of the minimum
element within the given range [i , j], O(1) time and O(n) space.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 19 / 33

Bender-Farach Algorithm for LCA

Reengineered from existing complicated LCA algorithms. (PRAM
from Berkman et al.)

Reduces the LCA problem to an RMQ problem and considers RMQ
solutions rather.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 20 / 33

Bender-Farach Algorithm for LCA

Reengineered from existing complicated LCA algorithms. (PRAM
from Berkman et al.)

Reduces the LCA problem to an RMQ problem and considers RMQ
solutions rather.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 20 / 33

Bender-Farach Algorithm for LCA

Reengineered from existing complicated LCA algorithms. (PRAM
from Berkman et al.)

Reduces the LCA problem to an RMQ problem and considers RMQ
solutions rather.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 20 / 33

Näıve Attempt

RMQ has a simple solution with complexity
〈
O(n2),O(1)

〉
:

Build a lookup table storing answers to all the n2 possible queries.

To achieve O(n2) preprocessing rather than O(n3), we use a trivial
dynamic program.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 21 / 33

Näıve Attempt

RMQ has a simple solution with complexity
〈
O(n2),O(1)

〉
:

Build a lookup table storing answers to all the n2 possible queries.

To achieve O(n2) preprocessing rather than O(n3), we use a trivial
dynamic program.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 21 / 33

Näıve Attempt

RMQ has a simple solution with complexity
〈
O(n2),O(1)

〉
:

Build a lookup table storing answers to all the n2 possible queries.

To achieve O(n2) preprocessing rather than O(n3), we use a trivial
dynamic program.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 21 / 33

Näıve Attempt

RMQ has a simple solution with complexity
〈
O(n2),O(1)

〉
:

Build a lookup table storing answers to all the n2 possible queries.

To achieve O(n2) preprocessing rather than O(n3), we use a trivial
dynamic program.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 21 / 33

A Faster RMQ Algorithm

Idea: precompute each query whose length is a power of 2.

i.e. for each i in [1, n] and every j in [1, log n], find the minimum of
the block starting at i and has length 2j

i.e.

(1) M[i , j] = argmink=i ...i+2j−1A[k]

Table M has size O(n log n)
We fill it in using dynamic programming.
Find the minimum in a block of size 2j by comparing the two minima
of its constituent blocks of size 2j−1.
Formally speaking,

(2) M[i , j] = M[i , j − 1] if A[M[i , j − 1]] ≤ A[M[i + 2j−1, j − 1]]

and

(3) M[i , j] = M[i + 2j−1, j − 1]otherwise

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 22 / 33

A Faster RMQ Algorithm

Idea: precompute each query whose length is a power of 2.
i.e. for each i in [1, n] and every j in [1, log n], find the minimum of
the block starting at i and has length 2j

i.e.

(1) M[i , j] = argmink=i ...i+2j−1A[k]

Table M has size O(n log n)
We fill it in using dynamic programming.
Find the minimum in a block of size 2j by comparing the two minima
of its constituent blocks of size 2j−1.
Formally speaking,

(2) M[i , j] = M[i , j − 1] if A[M[i , j − 1]] ≤ A[M[i + 2j−1, j − 1]]

and

(3) M[i , j] = M[i + 2j−1, j − 1]otherwise

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 22 / 33

A Faster RMQ Algorithm

Idea: precompute each query whose length is a power of 2.
i.e. for each i in [1, n] and every j in [1, log n], find the minimum of
the block starting at i and has length 2j

i.e.

(1) M[i , j] = argmink=i ...i+2j−1A[k]

Table M has size O(n log n)
We fill it in using dynamic programming.
Find the minimum in a block of size 2j by comparing the two minima
of its constituent blocks of size 2j−1.
Formally speaking,

(2) M[i , j] = M[i , j − 1] if A[M[i , j − 1]] ≤ A[M[i + 2j−1, j − 1]]

and

(3) M[i , j] = M[i + 2j−1, j − 1]otherwise

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 22 / 33

A Faster RMQ Algorithm

Idea: precompute each query whose length is a power of 2.
i.e. for each i in [1, n] and every j in [1, log n], find the minimum of
the block starting at i and has length 2j

i.e.

(1) M[i , j] = argmink=i ...i+2j−1A[k]

Table M has size O(n log n)

We fill it in using dynamic programming.
Find the minimum in a block of size 2j by comparing the two minima
of its constituent blocks of size 2j−1.
Formally speaking,

(2) M[i , j] = M[i , j − 1] if A[M[i , j − 1]] ≤ A[M[i + 2j−1, j − 1]]

and

(3) M[i , j] = M[i + 2j−1, j − 1]otherwise

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 22 / 33

A Faster RMQ Algorithm

Idea: precompute each query whose length is a power of 2.
i.e. for each i in [1, n] and every j in [1, log n], find the minimum of
the block starting at i and has length 2j

i.e.

(1) M[i , j] = argmink=i ...i+2j−1A[k]

Table M has size O(n log n)
We fill it in using dynamic programming.

Find the minimum in a block of size 2j by comparing the two minima
of its constituent blocks of size 2j−1.
Formally speaking,

(2) M[i , j] = M[i , j − 1] if A[M[i , j − 1]] ≤ A[M[i + 2j−1, j − 1]]

and

(3) M[i , j] = M[i + 2j−1, j − 1]otherwise

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 22 / 33

A Faster RMQ Algorithm

Idea: precompute each query whose length is a power of 2.
i.e. for each i in [1, n] and every j in [1, log n], find the minimum of
the block starting at i and has length 2j

i.e.

(1) M[i , j] = argmink=i ...i+2j−1A[k]

Table M has size O(n log n)
We fill it in using dynamic programming.
Find the minimum in a block of size 2j by comparing the two minima
of its constituent blocks of size 2j−1.

Formally speaking,

(2) M[i , j] = M[i , j − 1] if A[M[i , j − 1]] ≤ A[M[i + 2j−1, j − 1]]

and

(3) M[i , j] = M[i + 2j−1, j − 1]otherwise

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 22 / 33

A Faster RMQ Algorithm

Idea: precompute each query whose length is a power of 2.
i.e. for each i in [1, n] and every j in [1, log n], find the minimum of
the block starting at i and has length 2j

i.e.

(1) M[i , j] = argmink=i ...i+2j−1A[k]

Table M has size O(n log n)
We fill it in using dynamic programming.
Find the minimum in a block of size 2j by comparing the two minima
of its constituent blocks of size 2j−1.
Formally speaking,

(2) M[i , j] = M[i , j − 1] if A[M[i , j − 1]] ≤ A[M[i + 2j−1, j − 1]]

and

(3) M[i , j] = M[i + 2j−1, j − 1]otherwise

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 22 / 33

A Faster RMQ Algorithm

Idea: precompute each query whose length is a power of 2.
i.e. for each i in [1, n] and every j in [1, log n], find the minimum of
the block starting at i and has length 2j

i.e.

(1) M[i , j] = argmink=i ...i+2j−1A[k]

Table M has size O(n log n)
We fill it in using dynamic programming.
Find the minimum in a block of size 2j by comparing the two minima
of its constituent blocks of size 2j−1.
Formally speaking,

(2) M[i , j] = M[i , j − 1] if A[M[i , j − 1]] ≤ A[M[i + 2j−1, j − 1]]

and

(3) M[i , j] = M[i + 2j−1, j − 1]otherwise

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 22 / 33

How do we use blocks to compute an arbitrary RMQ(i,j)?

Select 2 overlapping blocks that entirely cover the subrange.

Let 2k be the size of the largest block that fits into the range from i
to j, i.e. k = blog(j − i)c .
RMQ(i , j) can be computed by comparing the minima of the 2 blocks:
i to i + 2k − 1 (M(i,k)) and j − 2k + 1 to j (M(j − 2k + 1, k)).

Already computed values ⇒ we can find RMQ in constant time!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 23 / 33

How do we use blocks to compute an arbitrary RMQ(i,j)?

Select 2 overlapping blocks that entirely cover the subrange.

Let 2k be the size of the largest block that fits into the range from i
to j, i.e. k = blog(j − i)c .

RMQ(i , j) can be computed by comparing the minima of the 2 blocks:
i to i + 2k − 1 (M(i,k)) and j − 2k + 1 to j (M(j − 2k + 1, k)).

Already computed values ⇒ we can find RMQ in constant time!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 23 / 33

How do we use blocks to compute an arbitrary RMQ(i,j)?

Select 2 overlapping blocks that entirely cover the subrange.

Let 2k be the size of the largest block that fits into the range from i
to j, i.e. k = blog(j − i)c .
RMQ(i , j) can be computed by comparing the minima of the 2 blocks:
i to i + 2k − 1 (M(i,k)) and j − 2k + 1 to j (M(j − 2k + 1, k)).

Already computed values ⇒ we can find RMQ in constant time!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 23 / 33

How do we use blocks to compute an arbitrary RMQ(i,j)?

Select 2 overlapping blocks that entirely cover the subrange.

Let 2k be the size of the largest block that fits into the range from i
to j, i.e. k = blog(j − i)c .
RMQ(i , j) can be computed by comparing the minima of the 2 blocks:
i to i + 2k − 1 (M(i,k)) and j − 2k + 1 to j (M(j − 2k + 1, k)).

Already computed values ⇒ we can find RMQ in constant time!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 23 / 33

How do we use blocks to compute an arbitrary RMQ(i,j)?

Select 2 overlapping blocks that entirely cover the subrange.

Let 2k be the size of the largest block that fits into the range from i
to j, i.e. k = blog(j − i)c .
RMQ(i , j) can be computed by comparing the minima of the 2 blocks:
i to i + 2k − 1 (M(i,k)) and j − 2k + 1 to j (M(j − 2k + 1, k)).

Already computed values ⇒ we can find RMQ in constant time!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 23 / 33

Remarks

This gives the Sparse Table(TS) algorithm for RMQ with complexity
〈O(n log n),O(1)〉 .

Total computation to answer an RMQ query is 3 additions, 4 array
reference and a minimum, and 2 ops: log and floor.

Can be seen as problem of finding the MSB of a word.

LCA problem shown to have Ω(log log n)on a pointer machine by
Harel and Tarjan.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 24 / 33

Remarks

This gives the Sparse Table(TS) algorithm for RMQ with complexity
〈O(n log n),O(1)〉 .
Total computation to answer an RMQ query is 3 additions, 4 array
reference and a minimum, and 2 ops: log and floor.

Can be seen as problem of finding the MSB of a word.

LCA problem shown to have Ω(log log n)on a pointer machine by
Harel and Tarjan.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 24 / 33

Remarks

This gives the Sparse Table(TS) algorithm for RMQ with complexity
〈O(n log n),O(1)〉 .
Total computation to answer an RMQ query is 3 additions, 4 array
reference and a minimum, and 2 ops: log and floor.

Can be seen as problem of finding the MSB of a word.

LCA problem shown to have Ω(log log n)on a pointer machine by
Harel and Tarjan.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 24 / 33

Remarks

This gives the Sparse Table(TS) algorithm for RMQ with complexity
〈O(n log n),O(1)〉 .
Total computation to answer an RMQ query is 3 additions, 4 array
reference and a minimum, and 2 ops: log and floor.

Can be seen as problem of finding the MSB of a word.

LCA problem shown to have Ω(log log n)on a pointer machine by
Harel and Tarjan.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 24 / 33

Remarks

This gives the Sparse Table(TS) algorithm for RMQ with complexity
〈O(n log n),O(1)〉 .
Total computation to answer an RMQ query is 3 additions, 4 array
reference and a minimum, and 2 ops: log and floor.

Can be seen as problem of finding the MSB of a word.

LCA problem shown to have Ω(log log n)on a pointer machine by
Harel and Tarjan.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 24 / 33

An 〈O(n),O(1)〉 algorithm for ∓RMQ

Faster algorithm for ∓RMQ!

Suppose we have array A with ∓ restriction.

Use lookup-table to precompute answers for small subarrays? ⇒
remove log factor from preprocessing!

Partition A into blocks of size log n
2 .

Define an arrayA’[1,..., 2n
log n] where A’[i] is the minimum of the ith

block of A.

Define an equal size array B where B[i] is a position in the ith block in
which A[i] occurs.

B used to keep track of where the minima of A came from.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 25 / 33

An 〈O(n),O(1)〉 algorithm for ∓RMQ

Faster algorithm for ∓RMQ!

Suppose we have array A with ∓ restriction.

Use lookup-table to precompute answers for small subarrays? ⇒
remove log factor from preprocessing!

Partition A into blocks of size log n
2 .

Define an arrayA’[1,..., 2n
log n] where A’[i] is the minimum of the ith

block of A.

Define an equal size array B where B[i] is a position in the ith block in
which A[i] occurs.

B used to keep track of where the minima of A came from.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 25 / 33

An 〈O(n),O(1)〉 algorithm for ∓RMQ

Faster algorithm for ∓RMQ!

Suppose we have array A with ∓ restriction.

Use lookup-table to precompute answers for small subarrays? ⇒
remove log factor from preprocessing!

Partition A into blocks of size log n
2 .

Define an arrayA’[1,..., 2n
log n] where A’[i] is the minimum of the ith

block of A.

Define an equal size array B where B[i] is a position in the ith block in
which A[i] occurs.

B used to keep track of where the minima of A came from.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 25 / 33

An 〈O(n),O(1)〉 algorithm for ∓RMQ

Faster algorithm for ∓RMQ!

Suppose we have array A with ∓ restriction.

Use lookup-table to precompute answers for small subarrays? ⇒
remove log factor from preprocessing!

Partition A into blocks of size log n
2 .

Define an arrayA’[1,..., 2n
log n] where A’[i] is the minimum of the ith

block of A.

Define an equal size array B where B[i] is a position in the ith block in
which A[i] occurs.

B used to keep track of where the minima of A came from.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 25 / 33

An 〈O(n),O(1)〉 algorithm for ∓RMQ

Faster algorithm for ∓RMQ!

Suppose we have array A with ∓ restriction.

Use lookup-table to precompute answers for small subarrays? ⇒
remove log factor from preprocessing!

Partition A into blocks of size log n
2 .

Define an arrayA’[1,..., 2n
log n] where A’[i] is the minimum of the ith

block of A.

Define an equal size array B where B[i] is a position in the ith block in
which A[i] occurs.

B used to keep track of where the minima of A came from.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 25 / 33

An 〈O(n),O(1)〉 algorithm for ∓RMQ

Faster algorithm for ∓RMQ!

Suppose we have array A with ∓ restriction.

Use lookup-table to precompute answers for small subarrays? ⇒
remove log factor from preprocessing!

Partition A into blocks of size log n
2 .

Define an arrayA’[1,..., 2n
log n] where A’[i] is the minimum of the ith

block of A.

Define an equal size array B where B[i] is a position in the ith block in
which A[i] occurs.

B used to keep track of where the minima of A came from.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 25 / 33

An 〈O(n),O(1)〉 algorithm for ∓RMQ

Faster algorithm for ∓RMQ!

Suppose we have array A with ∓ restriction.

Use lookup-table to precompute answers for small subarrays? ⇒
remove log factor from preprocessing!

Partition A into blocks of size log n
2 .

Define an arrayA’[1,..., 2n
log n] where A’[i] is the minimum of the ith

block of A.

Define an equal size array B where B[i] is a position in the ith block in
which A[i] occurs.

B used to keep track of where the minima of A came from.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 25 / 33

An 〈O(n),O(1)〉 algorithm for ∓RMQ

Faster algorithm for ∓RMQ!

Suppose we have array A with ∓ restriction.

Use lookup-table to precompute answers for small subarrays? ⇒
remove log factor from preprocessing!

Partition A into blocks of size log n
2 .

Define an arrayA’[1,..., 2n
log n] where A’[i] is the minimum of the ith

block of A.

Define an equal size array B where B[i] is a position in the ith block in
which A[i] occurs.

B used to keep track of where the minima of A came from.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 25 / 33

Cont.

ST algorithm runs on A in time 〈O(n),O(1)〉.

Consider RMQ(i,j) in A:

i and j can be in same block? ⇒ process each block to answer RMQ
queries.
i < j :

Minimum from i forward to end of its block.
Minimum of all blocks btw. is block and js block.
Minimum from beginning of js block to j.

2nd minimum is found in constant time by RMQ on A.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 26 / 33

Cont.

ST algorithm runs on A in time 〈O(n),O(1)〉.
Consider RMQ(i,j) in A:

i and j can be in same block? ⇒ process each block to answer RMQ
queries.

i < j :

Minimum from i forward to end of its block.
Minimum of all blocks btw. is block and js block.
Minimum from beginning of js block to j.

2nd minimum is found in constant time by RMQ on A.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 26 / 33

Cont.

ST algorithm runs on A in time 〈O(n),O(1)〉.
Consider RMQ(i,j) in A:

i and j can be in same block? ⇒ process each block to answer RMQ
queries.
i < j :

Minimum from i forward to end of its block.
Minimum of all blocks btw. is block and js block.
Minimum from beginning of js block to j.

2nd minimum is found in constant time by RMQ on A.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 26 / 33

Cont.

ST algorithm runs on A in time 〈O(n),O(1)〉.
Consider RMQ(i,j) in A:

i and j can be in same block? ⇒ process each block to answer RMQ
queries.
i < j :

Minimum from i forward to end of its block.

Minimum of all blocks btw. is block and js block.
Minimum from beginning of js block to j.

2nd minimum is found in constant time by RMQ on A.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 26 / 33

Cont.

ST algorithm runs on A in time 〈O(n),O(1)〉.
Consider RMQ(i,j) in A:

i and j can be in same block? ⇒ process each block to answer RMQ
queries.
i < j :

Minimum from i forward to end of its block.
Minimum of all blocks btw. is block and js block.

Minimum from beginning of js block to j.

2nd minimum is found in constant time by RMQ on A.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 26 / 33

Cont.

ST algorithm runs on A in time 〈O(n),O(1)〉.
Consider RMQ(i,j) in A:

i and j can be in same block? ⇒ process each block to answer RMQ
queries.
i < j :

Minimum from i forward to end of its block.
Minimum of all blocks btw. is block and js block.
Minimum from beginning of js block to j.

2nd minimum is found in constant time by RMQ on A.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 26 / 33

Cont.

ST algorithm runs on A in time 〈O(n),O(1)〉.
Consider RMQ(i,j) in A:

i and j can be in same block? ⇒ process each block to answer RMQ
queries.
i < j :

Minimum from i forward to end of its block.
Minimum of all blocks btw. is block and js block.
Minimum from beginning of js block to j.

2nd minimum is found in constant time by RMQ on A.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 26 / 33

Cont.

ST algorithm runs on A in time 〈O(n),O(1)〉.
Consider RMQ(i,j) in A:

i and j can be in same block? ⇒ process each block to answer RMQ
queries.
i < j :

Minimum from i forward to end of its block.
Minimum of all blocks btw. is block and js block.
Minimum from beginning of js block to j.

2nd minimum is found in constant time by RMQ on A.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 26 / 33

How to answer range RMQ queries inside blocks?

In-block queries needed for 1st and 3rd values to complete algorithm.

RMQ processing on each block ⇒ too much time in processing!

2 blocks identical? ⇒ share their processing!

Too much hope that blocks would be so repeated!:(

Observation

If two arrays X[1,...,k] and Y[1,...,k] differ by some fixed value at each
position, that is, there is a c such that X[i]=Y[i] + c for every i, then all
RMQ answers will be the same for Xand Y.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 27 / 33

How to answer range RMQ queries inside blocks?

In-block queries needed for 1st and 3rd values to complete algorithm.

RMQ processing on each block ⇒ too much time in processing!

2 blocks identical? ⇒ share their processing!

Too much hope that blocks would be so repeated!:(

Observation

If two arrays X[1,...,k] and Y[1,...,k] differ by some fixed value at each
position, that is, there is a c such that X[i]=Y[i] + c for every i, then all
RMQ answers will be the same for Xand Y.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 27 / 33

How to answer range RMQ queries inside blocks?

In-block queries needed for 1st and 3rd values to complete algorithm.

RMQ processing on each block ⇒ too much time in processing!

2 blocks identical? ⇒ share their processing!

Too much hope that blocks would be so repeated!:(

Observation

If two arrays X[1,...,k] and Y[1,...,k] differ by some fixed value at each
position, that is, there is a c such that X[i]=Y[i] + c for every i, then all
RMQ answers will be the same for Xand Y.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 27 / 33

How to answer range RMQ queries inside blocks?

In-block queries needed for 1st and 3rd values to complete algorithm.

RMQ processing on each block ⇒ too much time in processing!

2 blocks identical? ⇒ share their processing!

Too much hope that blocks would be so repeated!:(

Observation

If two arrays X[1,...,k] and Y[1,...,k] differ by some fixed value at each
position, that is, there is a c such that X[i]=Y[i] + c for every i, then all
RMQ answers will be the same for Xand Y.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 27 / 33

How to answer range RMQ queries inside blocks?

In-block queries needed for 1st and 3rd values to complete algorithm.

RMQ processing on each block ⇒ too much time in processing!

2 blocks identical? ⇒ share their processing!

Too much hope that blocks would be so repeated!:(

Observation

If two arrays X[1,...,k] and Y[1,...,k] differ by some fixed value at each
position, that is, there is a c such that X[i]=Y[i] + c for every i, then all
RMQ answers will be the same for Xand Y.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 27 / 33

How to answer range RMQ queries inside blocks?

In-block queries needed for 1st and 3rd values to complete algorithm.

RMQ processing on each block ⇒ too much time in processing!

2 blocks identical? ⇒ share their processing!

Too much hope that blocks would be so repeated!:(

Observation

If two arrays X[1,...,k] and Y[1,...,k] differ by some fixed value at each
position, that is, there is a c such that X[i]=Y[i] + c for every i, then all
RMQ answers will be the same for Xand Y.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 27 / 33

Cont.

Normalize a block by subtracting its initial offset from every element.

Use the ∓1 property to show there very few kinds of normlized blocks:

Lemma

There are O(
√

n) kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus,
normalized blocks are specified by ∓1 vector of length 1

2 log n − 1. There

are 2
1

2 log n
−1 =O(

√
n) such vectors ([Farach-Bender, 2000])

We are basically done!
Create O(

√
n) tables, one for each possible normalized block.

A total of O(
√

n) log2 n total processing of normalized block tables
and O(1) query time.
Finally compute for each block in A which normalized block table it
should use for its RMQ queries.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 28 / 33

Cont.

Normalize a block by subtracting its initial offset from every element.
Use the ∓1 property to show there very few kinds of normlized blocks:

Lemma

There are O(
√

n) kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus,
normalized blocks are specified by ∓1 vector of length 1

2 log n − 1. There

are 2
1

2 log n
−1 =O(

√
n) such vectors ([Farach-Bender, 2000])

We are basically done!
Create O(

√
n) tables, one for each possible normalized block.

A total of O(
√

n) log2 n total processing of normalized block tables
and O(1) query time.
Finally compute for each block in A which normalized block table it
should use for its RMQ queries.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 28 / 33

Cont.

Normalize a block by subtracting its initial offset from every element.
Use the ∓1 property to show there very few kinds of normlized blocks:

Lemma

There are O(
√

n) kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus,
normalized blocks are specified by ∓1 vector of length 1

2 log n − 1. There

are 2
1

2 log n
−1 =O(

√
n) such vectors ([Farach-Bender, 2000])

We are basically done!
Create O(

√
n) tables, one for each possible normalized block.

A total of O(
√

n) log2 n total processing of normalized block tables
and O(1) query time.
Finally compute for each block in A which normalized block table it
should use for its RMQ queries.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 28 / 33

Cont.

Normalize a block by subtracting its initial offset from every element.
Use the ∓1 property to show there very few kinds of normlized blocks:

Lemma

There are O(
√

n) kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus,
normalized blocks are specified by ∓1 vector of length 1

2 log n − 1. There

are 2
1

2 log n
−1 =O(

√
n) such vectors ([Farach-Bender, 2000])

We are basically done!
Create O(

√
n) tables, one for each possible normalized block.

A total of O(
√

n) log2 n total processing of normalized block tables
and O(1) query time.
Finally compute for each block in A which normalized block table it
should use for its RMQ queries.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 28 / 33

Cont.

Normalize a block by subtracting its initial offset from every element.
Use the ∓1 property to show there very few kinds of normlized blocks:

Lemma

There are O(
√

n) kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus,
normalized blocks are specified by ∓1 vector of length 1

2 log n − 1. There

are 2
1

2 log n
−1 =O(

√
n) such vectors ([Farach-Bender, 2000])

We are basically done!

Create O(
√

n) tables, one for each possible normalized block.
A total of O(

√
n) log2 n total processing of normalized block tables

and O(1) query time.
Finally compute for each block in A which normalized block table it
should use for its RMQ queries.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 28 / 33

Cont.

Normalize a block by subtracting its initial offset from every element.
Use the ∓1 property to show there very few kinds of normlized blocks:

Lemma

There are O(
√

n) kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus,
normalized blocks are specified by ∓1 vector of length 1

2 log n − 1. There

are 2
1

2 log n
−1 =O(

√
n) such vectors ([Farach-Bender, 2000])

We are basically done!
Create O(

√
n) tables, one for each possible normalized block.

A total of O(
√

n) log2 n total processing of normalized block tables
and O(1) query time.
Finally compute for each block in A which normalized block table it
should use for its RMQ queries.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 28 / 33

Cont.

Normalize a block by subtracting its initial offset from every element.
Use the ∓1 property to show there very few kinds of normlized blocks:

Lemma

There are O(
√

n) kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus,
normalized blocks are specified by ∓1 vector of length 1

2 log n − 1. There

are 2
1

2 log n
−1 =O(

√
n) such vectors ([Farach-Bender, 2000])

We are basically done!
Create O(

√
n) tables, one for each possible normalized block.

A total of O(
√

n) log2 n total processing of normalized block tables
and O(1) query time.

Finally compute for each block in A which normalized block table it
should use for its RMQ queries.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 28 / 33

Cont.

Normalize a block by subtracting its initial offset from every element.
Use the ∓1 property to show there very few kinds of normlized blocks:

Lemma

There are O(
√

n) kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus,
normalized blocks are specified by ∓1 vector of length 1

2 log n − 1. There

are 2
1

2 log n
−1 =O(

√
n) such vectors ([Farach-Bender, 2000])

We are basically done!
Create O(

√
n) tables, one for each possible normalized block.

A total of O(
√

n) log2 n total processing of normalized block tables
and O(1) query time.
Finally compute for each block in A which normalized block table it
should use for its RMQ queries.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 28 / 33

Cont.

Normalize a block by subtracting its initial offset from every element.
Use the ∓1 property to show there very few kinds of normlized blocks:

Lemma

There are O(
√

n) kinds of normalized blocks

Proof.

Adjacent elements in normalized blocks differ by +1 or -1. Thus,
normalized blocks are specified by ∓1 vector of length 1

2 log n − 1. There

are 2
1

2 log n
−1 =O(

√
n) such vectors ([Farach-Bender, 2000])

We are basically done!
Create O(

√
n) tables, one for each possible normalized block.

A total of O(
√

n) log2 n total processing of normalized block tables
and O(1) query time.
Finally compute for each block in A which normalized block table it
should use for its RMQ queries.

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 28 / 33

Wrapping up!

Started by reducing from LCA problem to RMQ problem given
reduction leads to ∓1RMQ problem.

Gave a trivial
〈
O(n2),O(1)

〉
time table-lookup algorithm for RMQ

and show how to sparsify the table to get 〈O(n log n),O(1)〉-time
table-lookup algorithm.

Used latter algorithm on a smaller summary array A and needed only
to process small blocks to finish algorithm.

Finally, noticed most of these blocks are the same by using the ∓1
assumption from original reduction.(from RMQ problem point of
view).

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 29 / 33

Wrapping up!

Started by reducing from LCA problem to RMQ problem given
reduction leads to ∓1RMQ problem.

Gave a trivial
〈
O(n2),O(1)

〉
time table-lookup algorithm for RMQ

and show how to sparsify the table to get 〈O(n log n),O(1)〉-time
table-lookup algorithm.

Used latter algorithm on a smaller summary array A and needed only
to process small blocks to finish algorithm.

Finally, noticed most of these blocks are the same by using the ∓1
assumption from original reduction.(from RMQ problem point of
view).

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 29 / 33

Wrapping up!

Started by reducing from LCA problem to RMQ problem given
reduction leads to ∓1RMQ problem.

Gave a trivial
〈
O(n2),O(1)

〉
time table-lookup algorithm for RMQ

and show how to sparsify the table to get 〈O(n log n),O(1)〉-time
table-lookup algorithm.

Used latter algorithm on a smaller summary array A and needed only
to process small blocks to finish algorithm.

Finally, noticed most of these blocks are the same by using the ∓1
assumption from original reduction.(from RMQ problem point of
view).

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 29 / 33

Wrapping up!

Started by reducing from LCA problem to RMQ problem given
reduction leads to ∓1RMQ problem.

Gave a trivial
〈
O(n2),O(1)

〉
time table-lookup algorithm for RMQ

and show how to sparsify the table to get 〈O(n log n),O(1)〉-time
table-lookup algorithm.

Used latter algorithm on a smaller summary array A and needed only
to process small blocks to finish algorithm.

Finally, noticed most of these blocks are the same by using the ∓1
assumption from original reduction.(from RMQ problem point of
view).

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 29 / 33

Wrapping up!

Started by reducing from LCA problem to RMQ problem given
reduction leads to ∓1RMQ problem.

Gave a trivial
〈
O(n2),O(1)

〉
time table-lookup algorithm for RMQ

and show how to sparsify the table to get 〈O(n log n),O(1)〉-time
table-lookup algorithm.

Used latter algorithm on a smaller summary array A and needed only
to process small blocks to finish algorithm.

Finally, noticed most of these blocks are the same by using the ∓1
assumption from original reduction.(from RMQ problem point of
view).

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 29 / 33

A Fast Algorithm for RMQ!

We have 〈O(n),O(1)〉 ∓RMQ.

General RMQ can be solved in the same complexity!

By reducing RMQ problem to LCA problem again!

To solve a general RMQ problem, one would convert it to an LCA
problem and then back to ∓1RMQ problem!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 30 / 33

A Fast Algorithm for RMQ!

We have 〈O(n),O(1)〉 ∓RMQ.

General RMQ can be solved in the same complexity!

By reducing RMQ problem to LCA problem again!

To solve a general RMQ problem, one would convert it to an LCA
problem and then back to ∓1RMQ problem!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 30 / 33

A Fast Algorithm for RMQ!

We have 〈O(n),O(1)〉 ∓RMQ.

General RMQ can be solved in the same complexity!

By reducing RMQ problem to LCA problem again!

To solve a general RMQ problem, one would convert it to an LCA
problem and then back to ∓1RMQ problem!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 30 / 33

A Fast Algorithm for RMQ!

We have 〈O(n),O(1)〉 ∓RMQ.

General RMQ can be solved in the same complexity!

By reducing RMQ problem to LCA problem again!

To solve a general RMQ problem, one would convert it to an LCA
problem and then back to ∓1RMQ problem!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 30 / 33

A Fast Algorithm for RMQ!

We have 〈O(n),O(1)〉 ∓RMQ.

General RMQ can be solved in the same complexity!

By reducing RMQ problem to LCA problem again!

To solve a general RMQ problem, one would convert it to an LCA
problem and then back to ∓1RMQ problem!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 30 / 33

How?

Lemma

If there is a 〈O(n),O(1)〉 solution for LCA, then there is a 〈O(n),O(1)〉
solution for RMQ.

O(n) comes from time needed to build Cartesian Tree C of A and
O(1) comes from time needed to convert LCA to an RMQ answer on
A.

We can prove that:

(4) RMQA(i , j) = LCAC (i , j)

.

Reduction completed!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 31 / 33

How?

Lemma

If there is a 〈O(n),O(1)〉 solution for LCA, then there is a 〈O(n),O(1)〉
solution for RMQ.

O(n) comes from time needed to build Cartesian Tree C of A and
O(1) comes from time needed to convert LCA to an RMQ answer on
A.

We can prove that:

(4) RMQA(i , j) = LCAC (i , j)

.

Reduction completed!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 31 / 33

How?

Lemma

If there is a 〈O(n),O(1)〉 solution for LCA, then there is a 〈O(n),O(1)〉
solution for RMQ.

O(n) comes from time needed to build Cartesian Tree C of A and
O(1) comes from time needed to convert LCA to an RMQ answer on
A.

We can prove that:

(4) RMQA(i , j) = LCAC (i , j)

.

Reduction completed!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 31 / 33

How?

Lemma

If there is a 〈O(n),O(1)〉 solution for LCA, then there is a 〈O(n),O(1)〉
solution for RMQ.

O(n) comes from time needed to build Cartesian Tree C of A and
O(1) comes from time needed to convert LCA to an RMQ answer on
A.

We can prove that:

(4) RMQA(i , j) = LCAC (i , j)

.

Reduction completed!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 31 / 33

How?

Lemma

If there is a 〈O(n),O(1)〉 solution for LCA, then there is a 〈O(n),O(1)〉
solution for RMQ.

O(n) comes from time needed to build Cartesian Tree C of A and
O(1) comes from time needed to convert LCA to an RMQ answer on
A.

We can prove that:

(4) RMQA(i , j) = LCAC (i , j)

.

Reduction completed!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 31 / 33

Final Remarks

We can solve the range-min query problem in an array of n numbers
with ∓1 property in O(1) and O(n) space.

Divide array A into m= 2n
log n buckets, each of size k= log n

2 .

Parallel and distributed versions for algorithm exist!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 32 / 33

Final Remarks

We can solve the range-min query problem in an array of n numbers
with ∓1 property in O(1) and O(n) space.

Divide array A into m= 2n
log n buckets, each of size k= log n

2 .

Parallel and distributed versions for algorithm exist!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 32 / 33

Final Remarks

We can solve the range-min query problem in an array of n numbers
with ∓1 property in O(1) and O(n) space.

Divide array A into m= 2n
log n buckets, each of size k= log n

2 .

Parallel and distributed versions for algorithm exist!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 32 / 33

Thank you for your attention!

Fayssal El Moufatich () Lowest Common Ancestor JASS 2008 33 / 33

