Tobias Lieber

April 14, 2008

Tobias Lieber Search Trees April 14, 2008 1/57

Graphs and Trees
Binary Search Trees
AVL-Trees
(a,b)-Trees

Splay-Trees

Tobias Lieber Search Trees April 14, 2008 2 /57

Graphs and Trees

Definition
An (undirected) graph G = (V/, E) is defined by a set of nodes V and a
set of edges E.

Eg<\2/> = {X:XCV,|Xl=2}

A directed graph G = (V, E) is given by a set of nodes and a set of

directed edges:
ECVxV

Definition
The neigborhood of node x is given by:

N(x)={y:xeV, {x,y} € E}

Tobias Lieber Search Trees April 14, 2008

Graphs and Trees

Special Graphs

Path: ,
P2: P4: —
Circle:

Complete graph/ Clique:

K5Z

Tobias Lieber Search Trees April 14, 2008 4 /57

Graphs and Trees

Definition
A graph G = (V, E) is called connected, if there is a path from each node
x to each other node y.

Definition
A graph H = (W, F) is called subgraph of G = (V, E) if

WCVand FCE.

Definition
An acylic graph G = (V, E) does not contain any circle as a subgraph.

Tobias Lieber Search Trees April 14, 2008 5 /57

Graphs and Trees

Definition
A graph G = (V,E) is called a tree if it is connected and acyclic.

Definition
A rooted binary tree G = (V, E) is a tree with one root node r.

IN(r)| <3 reV
1< |N(x)| <3 VYxeV\{r}

Definition
The height of a tree G = (V, E) with root r € V is defined as

h = max{distance from r to x}
xeV

Tobias Lieber Search Trees April 14, 2008

Graphs and Trees

Theorem
The following definitions of a tree G = (V/, E) are equivalent

» G is connected and acyclic.

» G is connected and |V| = |E| + 1.

» G is acyclic and |V| = |E| + 1.

» When adding a new edge to G the resulting graph will contain a
circle.

v

When removing an edge from G the resulting graph is not connected
anymore.

For all two nodes x,y € V and x # y there is exactly one path from
x toy.

v

Tobias Lieber Search Trees April 14, 2008 7 /57

Graphs and Trees

Definition
A tree H= (W, F) is called a spanning tree of a graph G = (V,E) if
W=Vand FCE.

Definition
The function o(x) returns the subtree, which is rooted in x:

Tobias Lieber Search Trees April 14, 2008 8 /57

Binary Search Trees

Problem:
For a set of items xg, ..., X, where each dataset consists of a key and a

value, we want to minimize the total access time on an arbitrary sequence

of operations.
One operation can perform
> a test if a key is stored in the data structure (IsElement),

» the insertion of an item in the data structure (Insert)

» or a deletion of a key in the data structure (Delete).

April 14, 2008 9 /57

Tobias Lieber Search Trees

Binary Search Trees

» An internal search tree stores all keys in internal nodes. The leaves
contain no further information. Accordingly there is no need to store
them and they can be represented by NIL-pointers.

» In an external search tree, all keys are stored at the leaves. The

internal nodes only contain information for managing the data
structure.

Tobias Lieber Search Trees April 14, 2008 10 / 57

Binary Search Trees

A binary search tree is a binary tree, whose internal nodes contain the keys
k = x.key Vx € S. For each node x the following equation must hold if
node y is in the left subtree of x and node z is in the right subtree of node
X:

y.key < x.key < z.key

Tobias Lieber Search Trees

April 14, 2008 11 / 57

Binary Search Trees

A binary search tree is a binary tree, whose internal nodes contain the keys
k = x.key Vx € S. For each node x the following equation must hold if
node y is in the left subtree of x and node z is in the right subtree of node
X:

y.key < x.key < z.key

Tobias Lieber Search Trees April 14, 2008 11 / 57

Binary Search Trees

For making algorithms more understandable, here are more definitions.
A node v of a search tree stores several values:

> key — key of the stored item

» leftChild, rightChild which are pointers to left/right child (only if it is
a binary tree)

» children, the number of children

The items are accessible in pseudocode as follows: G 6 a

k=v.key // stores 8 in k if v is the root

Tobias Lieber Search Trees April 14, 2008 12 / 57

Binary Search Trees

IsElement (T, k)
{
v:i=T.root
while (vI=NIL)
{
if (v.key=k)
return v
else if(v.key>k)
v=v.leftChild
else
v=v.rightChild
}

return v

Tobias Lieber Search Trees April 14, 2008 13 / 57

Binary Search Trees

Insert (T, k)
{
v=IsElement (T, k)
if (v=NIL)
{
// Inserts a node, updates pointers
add a node w with w. key=k
v=w

Tobias Lieber Search Trees April 14, 2008 14 / 57

Binary Search Trees

Delete (T, k)
{

v=isElement (T, k)

if(v=NIL)
return
else

replace v by a InOrder—predecessor/successor

Tobias Lieber Search Trees April 14, 2008 15 / 57

Binary Search Trees

There are sequences of operations, such that each operation requires ©(n)
operations, if n is the number of nodes in the tree.
Thus the worst-case complexity of a binary search tree is

©(n)

Tobias Lieber Search Trees April 14, 2008

Binary Search Trees

There are sequences of operations, such that each operation requires ©(n)
operations, if n is the number of nodes in the tree.
Thus the worst-case complexity of a binary search tree is

©(n)

Tobias Lieber Search Trees April 14, 2008

AVL-Trees

AVL-trees have been invented in 1962 and are internal binary search trees.

They are named after their inventors: Georgy Adelson-Velsky and Yevgeniy
Landis.

The main idea of AVL-trees is to keep the tree height balanced. This
means

|height(o(v.leftchild)) — height(c(v.rightChild))| < 1

has to be valid for every node v in an AVL-tree.

Tobias Lieber Search Trees April 14, 2008 17 / 57

AVL-Trees

is an AVL tree.

Tobias Lie Search Trees

AVL-Trees

is not an AVL tree.

Tobias Lie Search Trees

AVL-Trees

Theorem
An internal binary search tree with height h contains at most 2" — 1 nodes.

Proof.

h—1 '
Zz' —2h_1
i=0

Tobias Lieber Search Trees April 14, 2008 20 / 57

AVL-Trees

Theorem
An AVL-tree with height h consists at least of Fp1o — 1 internal nodes.

Proof.

How could an AVL-tree Tj with height h and a minimal number of nodes
be constructed?

AVL-condition: height(o(r.leftchild)) — height(o(r.rightchild)) =

Height should be h =

height(o(r.leftChild)) = h — 1, height(o(r.rightChild)) = h — 2

= n(Th) =1+ n(Th—l) + n(Th_g)

n(T1) =1 =2-1 :F3—1
n(Ty) =2 —3-1 —F-1
n(Ts) =4 51 —Fs-1
n(Tp) =14+n(Th-1)+n(Tp—2) =1+Fp1—1+F,—1 = Fpr—1

L]

Tobias Lieber Search Trees April 14, 2008 21 / 57

AVL-Trees

We know:

n>i 1+\/§ h+2
_\/g 5

_logn 1) _
g vy (J5) -2
1.44logn+1.1

%

Tobias Lieber Search Trees April 14, 2008

AVL-Trees

Single rotation:

h-2
h-2 rotate right

1 h-1 h2 h2

Tobias Lieber Search Trees April 14, 2008 23 / 57

AVL-Trees

Double rotation:

(o)
/\

h-2

double rotation

h-1 h-1 h-1

Tobias Lieber Search Trees April 14, 2008 24 / 57

(a,b)-Trees

Definition
An external search tree is an (a, b)-tree if it applies to the following
conditions:

v

All leaves appear on the same level.

Every node, except of the root, has > a children.
The root has at least two children.

Every node has at most b children.

Every node with k children contains kK — 1 keys.
b>2a—-1

vV v v v Y

Tobias Lieber Search Trees April 14, 2008

(a,b)-Trees

A (2,4)-tree:

Tobias Lieber Search Trees April 14, 2008 26 / 57

(a,b)-Trees

Theorem
Every (a, b)-Tree with height h has

22" 1< n<ph

leaves.

Proof.

1. In an (a, b)-tree which branching factor is as small as possible, the
root has two children and every other node has a children.

2. If we choose the branching factor as high as possible, every node has
b children.

O

logrn < h < Iogag+1

Tobias Lieber Search Trees April 14, 2008 27 / 57

(a,b)-Trees

IsElement (T, k)
{
v=[.root
while (not v.leaf)

{

i=min{s; 1 < s < v.children+1 and k < key no. s}
// define key no. v.children+l = oo
v=child no. i

}

return v

Tobias Lieber Search Trees April 14, 2008 28 / 57

(a,b)-Trees

Insert (T, k)
{
w=IsElement (T, k)
v=parent (w)
if (w.keyl=k)
{
if (k< max_key(v))
insert k left of w
else
insert k right of w
if(v.children > b)
rebalance(v)

Tobias Lieber

Search Trees

April 14, 2008 29 / 57

(a,b)-Trees

rebalance (T, |)
{

w=parent_n(1) // returns an new root, if w=TI.root
r=new node with nodes ([%] .. m)

w.add_node(Km ,r)
2

if (w.children>b)
rebalance (w)

Tobias Lieber Search Trees April 14, 2008 30 / 57

(a,b)-Trees

Tobias Lieber Search Trees April 14, 2008 31 /57

(a,b)-Trees

Tobias Lieber Search Trees April 14, 2008 32 /57

(a,b)-Trees

Delete (T, k)
{
w=IsElement (T, k)
v=parent (w)
if (k=w.key)
remove (w)
if(v.children < a)
rebalance_delete (T, v)

Tobias Lieber Search Trees April 14, 2008 33 /57

(a,b)-Trees

rebalance_delete (T, v)
{
w=previous/next_sibling (v)
r=join (v,w)
if(r.children >b)
{

}
}

rebalance_delete(r)

Tobias Lieber Search Trees April 14, 2008 34 / 57

(a,b)-Trees

An alternative way for rebalancing is the idea of overflow.
Test if a sibling can adopt a child of an overfull node.

Tobias Lieber Search Trees April 14, 2008 35/ 57

(a,b)-Trees

Search Trees April 14, 2008 36 / 57

(a,b)-Trees

Definition
A B*-tree with order b is defined as follows:

v

All leaves appear on the same level

Every node except when the root has at most b children

Every node except when the root has at least (2b — 1)/3 children
The root has at least two and at most 2|(2m —2)/3] +1

Every internal node with k children contains kK — 1 keys

Tobias Lieber Search Trees April 14, 2008 37 /57

Splay-Trees

Splay trees are self-organizing internal binary search trees.
Basic idea: Self-adjusting linear list with the move to front rule.

» Simple algorithm

» Good run time in an amortized sense

The splay operation moves a node x with respect to the properties of a
search tree to the root of a binary tree T.

Tobias Lieber Search Trees April 14, 2008 38 /57

Splay-Trees

jOin(Tl,Tg):
splay(T1,max T1) join
split(T,k):

o=t dpmd g g

Tobias Lieber Search Trees April 14, 2008

Splay-Trees

insert(T,k):

splik msert
Re AR
delete(T, k):

T BRPEE

Tobias Lieber Search Trees April 14, 2008

Splay-Trees

Splay(T ,x) uses single and double rotations for transporting node x to the
root of a splay tree T.
y X

. splay(x) y

B —

A splay(y) A
/AT B

Tobias Lieber Search Trees April 14, 2008 41 /57

splay(T,x):

case 3
_

Search Trees April 14, 2008 43 / 57

splay(T,x):

case 2

Search Trees April 14, 2008 44 / 57

splay(T,x):

case 1

Search Trees April 14, 2008 45 / 57

Splay-Trees

In amortized analysis of algorithms we investigate the costs of m
operations.
ai=t+® —d;

m m

Zt,- = Z(a;—kcb,-,l - ;) = Zai+¢o—¢m
i=1

i=1 i=1
For the following analysis, we define:
> A weight w(i) for each node i
> The size of node x: s(x) = >_,c () w(i)
» The rank of node x: r(x) = log s(x)
> The potential of a tree T: ® =3, r(i)

Tobias Lieber Search Trees April 14, 2008

Splay-Trees

Theorem
Splay(T,x) needs at most

3(r(v) — r(x)) + 1= O(log <ZE)\3>)

amortized time, where v is the root of T.

We can divide the splay operation in the rotations which are the influential
operations in splay. Thus we consider the number of the rotations.

Just one more notation:

Let r(x) be the rank of x before the rotation and R(x) the rank after the
rotation. Let s(x) be the size of x before the rotation and S(x) the size
after the rotation.

Tobias Lieber Search Trees April 14, 2008 47 / 57

Splay-Trees

1+ R(X) r(x) since R(y) <r
1+ 3(R(x) — r(x)) since r(x) < R(x)

VANVAN

Tobias Lieber Search Trees April 14, 2008 48 / 57

24 R(x) + R(y) + R(z) — r(x) — r(y) — r(2)
24+ R(y)+ R(z) — r(x) — r(y) since R(X) =r
24+ R(x) + R(z) — 2r(x) since R(y) < R(x)
and r(x) < r(y)

IA I

April 14, 2008 49 / 57

Splay-Trees

Claim:

2+ R(x) + R(z) — 2r(x)
2

A IA
2
=
X

!
~
Y

-2

A%
o
0]

s(x)+5(z) < S(x)
s(x) S(z)
S(x) S(x)

April 14, 2008

Splay-Trees

The log-function is strictly increasing. Thus the maximum of
f(x,y) =logx + logy is given by x,y with y =1 — x.
For maximization we receive the function g(x) = log, x + log,(1 — x).

gx)= G-)
/,(X) = ﬁ % + (1_1X)2)

This leads us to x = 3. Since g”()%) is negative we can be sure that x = 3

is a local maximum. Because g(5) = —2 equation

>(2)
S(x)) + |0g(5(X))

holds.

Tobias Lieber Search Trees April 14, 2008 51 / 57

splay(x)

A A LA P

2+ R(x) + R(y) + R(2) = r(x) = r(y) = r(2)
2+ R(y)+ R(z) — r(x) — r(y) since R(x) = r(z)
2+ R(y)+ R(z) — 2r(x) since r(x) — r(y)

IA

April 14, 2008 52 / 57

Splay-Trees

Proof.
By adding all rotations used for splay(T, x) we receive a telescope sum,
which yields us the amortized time

< 3(R(x) — r(x)) + 1 = 3(r(t) — r(x)) + 1.

Tobias Lieber Search Trees April 14, 2008 53 / 57

Splay-Trees

If the weights w(i) are constant, —®,(x) for a sequence of m splay has
the upper bound:

n

Z log W — log w(i) = Z WV(VI)

i=1 i=1

with

n

W=> w(i

i=1

Tobias Lieber Search Trees April 14, 2008

Splay-Trees

Theorem
The costs of m access operations in a splay tree are

O((m + n)log n+ m)

Proof.
Choose w(i) = 1.
Because W =1 it follows, a; <1+ 3logn.

b, =31, Iog% =3 " logn=nlogn
Thus t =a— &, = m(1+ 3logn)+ nlogn O

Tobias Lieber Search Trees April 14, 2008

Splay-Trees

Summary

>
>
>
|
>

Graph theory
Binary search trees
AVL-trees

(a, b)-trees

Splay trees

Tobias Lieber Search Trees April 14, 2008 56 / 57

Splay-Trees

Thank you for your attention

Tobias Lieber Search Trees April 14, 2008 57 / 57

	Graphs and Trees
	Binary Search Trees
	AVL-Trees
	(a,b)-Trees
	Splay-Trees

