Search Trees

Tobias Lieber
April 14, 2008

In this paper I want to introduce the basics on graph theory with respect
to trees. But the main part shows up four approaches for organizing data
in trees for searching. I will show advantages and disadvantages of these
approaches.

1 Graphs and Trees

Definition 1.1 An (undirected) graph G = (V, E) is defined by a set of nodes V and a
set of edges F.

EC <‘2/> ={X: X CV,|X|=2}
A directed graph G = (V, E) is given by a set of nodes and a set of directed edges:
ECV XV
Definition 1.2 The neigborhood of node x is given by:
N(@)={y:z €V, {z,y} € B}

I want to introduce 3 types of graphs which have been given special names due to their
significant role in graph theory:
Path:

PZ:.—. P4:o

Circle:

Nl

Complete graph/ Clique:

Ks:

Definition 1.3 A graph G = (V, E) is called connected, if there is a path from each
node x to each other node y.

Definition 1.4 A graph H = (W, F) is called subgraph of G = (V, E) if
W CV and F C E.
Definition 1.5 An acylic graph G = (V, E) does not contain any circle as a subgraph.
Definition 1.6 A graph G = (V, E) is called a tree if it is connected and acyclic.
Definition 1.7 A rooted binary tree G = (V, E) is a tree with one root node .
IN(r)] <3 reV
1<|N(x)] <3 VxeV\{r}
Definition 1.8 The height of a tree G = (V, E) with root r € V is defined as

h = max{distance from r to x}
zeV

Theorem 1 The following definitions of a tree G = (V, E) are equivalent

e (G is connected and acyclic.

e G is connected and |V| = |E| + 1.

G is acyclic and |V| = |E| + 1.

o When adding a new edge to G the resulting graph will contain a circle.

o When removing an edge from G the resulting graph is not connected anymore.
o For all two nodes x,y € V and x # y there is exactly one path from x to y.

Definition 1.9 A tree H = (W, F) is called a spanning tree of a graph G = (V, E) if
W=V and F C E.

Definition 1.10 The function o(x) returns the subtree, which is rooted in x:

2 Search Trees

The central problem we want to consider is given by a set of items x1, ..., z,. Each item
contains of a key and a value which can be accessed by

x.key and
x.value.

All keys x arise from an ordered set S. The goal is to minimize the total access time on
an arbitrary sequence of operations. The operations can perfom a test for the existence
of a key in the datastructure, insertion or deletion of an element. These operations are
generally called IsElement, Insert and Delete.

There are two different concepts of storing items in a tree. An internal search tree stores
all keys in internal nodes. It leaves contain no further information. Accordingly there is
no need to store them and they can be represented by NIL-pointers.

On the other hand in an external search tree, all keys are stored at the leaves. The
internal nodes only contain information for managing the data structure.

3 Binary search trees

A binary search tree is a binary tree, whose internal nodes contain the keys k =
x.key Vx € S. For each node x the following equation must hold if node y is in the
left subtree of x and node z is in the right subtree of node x:

y.key < x.key < z.key

In a (binary) tree in each node (vertice) we have to store some additional information,
pointers to the left and the right child and for search trees with more than two children
the number of children. This information can be addressed in the same manner as keys
and values. The advantage of binary search trees are their quite simple algorithms.

IsElement (T, k)
{
v:=T.root
while (v!=NIL)
{
if (v.key==k)
return v
else if (v.key>k)
v=v.leftChild
else
v=v.rightChild
}

return v

Insert (T,k)
{
v=IsElement (T, k)
if (v=NIL)
{
// Inserts a node, updates pointers
add a node w with w.key=k
vV=w
}
}

Delete (T, k)
{

v=isElement (T, k)

if (v==NIL)
return
else

replace v by a InOrder—predecessor/successor

Unfortunately there are sequences of operations such that every operation requires
©(n) steps. This leads us to the same worst case complexity like linear lists.

4 AVL-Trees

For reducing this worst case complexity AVL-trees have been invented in 1962 by Georgy
Adelson-Velsky and Yevgeniy Landis [AVL62]. AVL-trees are represented as internal
search trees. The main idea of AVL-trees is to keep the tree height balanced. This

means
|height (o (v.leftchild)) — height(o(v.rightChild))| < 1

has to be valid for every node v in an AVL-tree. Thus

is an AVL-tree. But

is not an AVL-tree because the balancing requirement is not fulfilled in node 4.
Theorem 2 An internal binary search tree with height h contains at most 2" —1 nodes.

Proof

h—1 '
d =21
1=0

Theorem 3 An AVL-tree with height h consists at least of Fj+o — 1 internal nodes.

Proof How could an AVL-tree T with height A and a minimal number of nodes be
constructed?

AVL-condition: height(o(r.leftchild)) — height(o(r.rightchild)) = 1

Height should be h = height(o(r.leftChild)) = h — 1,height(o(r.rightChild)) = h — 2
= n(Th) =1+ n(Th—1) + n(Th-2)

n(T) =1 —2 1 — 1
n(Ty) =2 =31 —F -1
n(Tg) =4 =5-—1 :F5—1
n(Th) =14+n(Th-1) +n(Th-2) =1+Fpp1—14+F, -1 =Fypa—1

O
So we know that the number of nodes n of an AVL-tree with height A is limited by:

h+2
s (1“@) 1)

V5 2

By taking logarithm we receive:

1 1
h< lolgﬁ/g_log (\/5) — 2~ 144logn +1.1 (2)
og (457%)

So the height of a tree is in O(logn).

As the structure of an AVL-tree is equalivalent to the structure of a binary search tree
we can reuse the main parts of the algorithms we developed in the last section. The
IsElement operation is obviously the same as in the last section. For insertion of an item
we just have to add a rebalance operation to the end of the Insert operation for binary
search trees. The rebalance operation has to check if the tree is unbalanced. For this
we can store the balance status of each node with three symbols: — means unbalanced
by 1 to the left side, 0 means balanced and 4+ means unbalanced by 1 to the right side.
Thus, except symmetry, we get the following two cases, which can be solved by single

and double rotations:

h-2 rotate right

h-1 h-2 h-2

double rotation

h-1 h-1 h-1

h-1

The Delete operation on a binary search tree can be fixed in a similar way.
Nevertheless all operations depend on the height of the AVL-tree. As the height is in
O(logn) all the three operations will finish in O(logn) steps.

5 (a,b)-Trees

Although the height of AVL-trees is limited by O(logn) the access times can show large
differences, if we assume costs for accessing each level. This assumption is realistic if we
consider trees which are stored in the memory of computers. Therefore we would like

to have a datastructure in which every node has the same height. One approach are
(a,b)-trees which are defined as follows [OWO02]:

Definition 5.1 An external search tree is an (a,b)-tree if it applies to the following
conditions:

e All leaves appear on the same level.
o FEuvery node, except of the root, has > a children.

The root has at least two children.

e FEvery node has at most b children.
o Fvery node with k children contains k — 1 keys.

e b>2a—1

As an example a (2,4)-tree could look like this:

As in the case of binary search trees the algorithms for this datastructure do not seem
to be to complicated.

IsElement (T, k)
{
v=I.root
while (not v.leaf)
{
i=min{s; 1 < s < v.children+1 and k < key no. s}
// define key no. v.children+l = oo
v=child no. i

}

return v

}

Insert (T,k)
{
w=IsElement (T, k)
v=parent (w)
if (w.key!=k)
{

if (k< max_key(v))
insert k left of w
else
insert k right of w
if (v.children > b)
rebalance (v)

}
}

rebalance (T, 1)
{

w=parent_n(1l) // returns an new root, if w=T.root
r=new node with nodes ([%]..m)
w.add-node (K= ,r)
if (w.children>b)
rebalance (w)

Accordingly inserting 12 in the tree

Delete (T, k)
{
w=IsElement (T, k)
v=parent (w)
if (k=w.key)
remove (w)
if (v.children < a)
rebalance_delete (T,v)

}

rebalance_delete (T,v)

{

w=previous/next_sibling (v)
r=join (v,w)

if (r.children >b)

{

rebalance_delete (r)

}
}

The runtime of the algorthms above is still interesting due to the fact that the Insert,
Delete and IsElement operations depend on the height h of an (a,b)-tree with n nodes.

Theorem 4 Ewvery (a,b)-Tree with height h has
22" <n <"

leaves.

Proof

1. In an (a,b)-tree whose branching factor is as small as possible, the root has two
children and every other node has a children.

2. If we choose the branching factor as high as possible, every node has b children.

O
Thus we get for the height h:

logpgn < h < logag—i— 1

This means that all the algorithms above have runtime O(logn).

Another strategy for rebalancing nodes in an (a,b-tree is the overfull strategy. By
this strategy, we try to reduce splitting nodes by moving nodes from overfull nodes to
siblings. As an example we can consider our last example:

Using this strategy for inserting nodes we receive with small modifications B*-trees.

Definition 5.2 A B*-tree with order b is defined as follows:

All leaves appear on the same level

Every node except when the root has at most b children

FEvery node except when the root has at least (2b — 1)/3 children

The root has at least two and at most 2| (2m — 2)/3] + 1
o Fuvery internal node with k children contains k — 1 keys

For being able to use the new instertion strategy we have to modify the case if two
siblings are full. In this case we split these two siblings into three nodes with at least
(2b — 1)/3 children.

Comparing this strategy to our old algorthims for (a,b)-trees it turns out, that B*-trees
have a filling factor of 87% instead of 67% [Knu98]. This means that the IsElement
operation in total is faster, since the height of a B*-tree and an (a,b)-tree containing
the same nodes is smaller. But as the Insert and Delete operation are slower since it is
more difficult finding siblings and splitting up two nodes into three nodes. But in total,
in applications like databases, we receive a faster access, since there are more IsElement
queries than Insert and Delete queries.

6 Splay-Tree

Since our algorithms get more complex, it is appropriate to think on easier algorithms.
To this approach we achieve self organizing datastructures whose additional target is
minimizing the costs. A good example in which self organizing datastructures succeeded
are linear lists, where the move to the front rule is proveably just twice as bad in an
amortized analysis as an optimal algorithm.
Let us consider splay trees. Splay trees are internal binary search trees. Similar to the
move to the front rule, Tarjan introduced a move to the root rule, which moves a node
x to the root of a tree T" with respect to the properties of binary search trees [ST85].
This mechanism we can apply to a tree with a function splay(T,x). For the moment we
do not care how this works, we first want to look what we can use this splay function
for.
First let there be two help functions join and split which can join two splay-trees or
alternativley split a tree into two trees.

join(T7,T5):

splay (77, max T7) join

10

split(7T',k):

& ey fow g e gy

With these two help functions we can realize easily an Insert and Delete operation:
insert(7',k):

split(7',k) 1nsert

Rre ATATS™

delete(T,k):

/()\ SI)lay (> delete * . join ;é %

But how does splay really work? Splay(7,x) uses single and double rotations for trans-
porting node x to the root of a splay tree 7T'.

Three different cases may occur, when moving a node to the root:

Case 1:

y
- splay
splay

Case 2:

11

Let us consider splay(T,x) on the following tree:

case 2
_—

- @

For analysing the costs of splay, we use amortized analysis. In amortized analysis of
algorithms we investigate the costs of m operations.

S

a;=1t;+®; — ;4

th—zaz+q)i—1_q)i):zai+®0_®
=1 =1

a represents the amortized costs, ¢ the actual costs and @ is a potential function which
we can choose. For the following analysis, we define:

e A weight w(i) for each node i

e The size of node z: s(x) = >,y w(i)
e The rank of node z: r(z) = log s(x)

e The potential of a tree T: ® =3, . 7(i)

Theorem 5 Splay(T,z) needs at most

3(r(v) —r(x)) +1=0(log (jé;;))

amortized time, where v is the root of T'.

Proof We can divide the splay operation in the rotations which are the influential
operations in splay. Thus we consider the number of the rotations.

Just one more notation:

Let r(x) be the rank of x before the rotation and R(x) the rank after the rotation. Let
s(z) be the size of = before the rotation and S(x) the size after the rotation.

Case 1:
y X

_

A splay(y) A
AN N/ N/

1+ R(z) —r(x) since R(y) < r(y)
1+ 3(R(z) —r(x)) since r(z) < R(x)

IA N

Case 2:

24 R(z) + R(y) + R(z) = r(z) = r(y) = r(2)
2+ R(y) + R(z) —r(z) —r(y) since R(X) = r(2)
24 R(z) + R(z) — 2r(x) since R(y) < R(x)

and r(z) < r(y)

IN

13

Claim:

24 R() + R(2) — 2r(x) < 3(R(x) - r(x))
2 < 2R(z)—r(z) — R(z)
2 2 log(g) + loe(5)
s(z)+S5(z) < S(x)
s(z) S(:)
S@ s =1

Since the log function is convex we know that the claim holds.
Case 3:

2+ R(z) + R(y) + R(z) —r(x) —r(y) —r(2)
= 2+ R(y) + R(z) —r(z) — r(y) since R(z) = r(z)
< 2+ R(y) + R(z) — 2r(x) since r(x) — r(y)
This holds with the claim we used in case 2. By adding all rotations we used for splay(T,

X) we receive a telescope sum, which yields us the amortized time < 3(R(z) —r(z))+1 =
3(r(t) —r(z)) + 1.]

Thus we can perform a splay operation in O(logn) time in amortized sense. This means
we can perform the Insertion and Deletion of nodes in O(logn) amortized time, too.

If the weights w(i) are constant, —®,,(z) for a sequence of m splay has the upper
bound:

with

Theorem 6 The costs of m access operations in a splay tree are

O((m +n)logn+m)

Proof Choose w(i) = +.

Because W =1 it follows, a; < 1+ 3logn.
—®,, =" log % =" logn =nlogn
Thus t = a — @, = m(1 + 3logn) + nlogn O

7 Summary

After an short introduction to graph theory four approaches for organizing data in trees
were introduced. Binary search trees and splay trees have simple algorithms while AVL-
trees and (a,b)-trees are more complicated to implement. As AVL-trees, splay trees and
(a,b)-trees have logarithmic runtime for the operations IsElement, Insert and Delete in
at least amortized sense, for binary search trees there exist sequences of operations which
run in ©(n) steps.

References

[AVL62] G.M. Adel’son-Vel’skii and E.M. Landis. An algorithm for the organization of
information. Sov. Math., Dokl., 3:1259-1262, 1962.

[Knu98] Donald E. Knuth. The Art of Computer Programming Volumes 1-3 Boxed Set.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[OWO02] Thomas Ottmann and Peter Widmayer. Algorithmen und Datenstrukturen. 4.
Auflage. Spektrum Akademischer Verlag GmbH, Heidelberg-Berlin, 2002.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees. J. ACM, 32(3):652—-686, 1985.

15

	Graphs and Trees
	Search Trees
	Binary search trees
	AVL-Trees
	(a,b)-Trees
	Splay-Tree
	Summary

