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Main definitions

I We will consider finite graphs (multigraphs) with at least one
vertex, maybe with loops and multiple edges.

I Let us define
I V (G ) is set of G ’s verties,
I v(G ) is number of G ’s verties,
I E (G ) is multiset of G ’s edges,
I e(G ) number of G ’s edges,
I k(G ) is number of connectivity components.
I H ⊂ G if H is subgraph of G .
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Formally

I Deleting operation: G − e

= (V ,E − {e}),
I Contraction operation: G/e,

If e is incident with u and v then in G/e vertices u and v are
replaced by single vertex w = (uv) and each element
f ∈ E − {e} that is incident with either u or v is replaced be
an edge or loop incident with w .
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Chromatic polynomial.

Definition: coloring of graph’s vertices is regular if adjacent
vertices have different colors.

Definition: Let CG (s) = C (G , s) be the number of regular
colorings G in s colors.
So CG is function N0 → N0
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Some easy properties of C (G )

I If G has at least 1 loop then C (G ) = 0

I If G = G1 t G2 then C (G ) = C (G1)C (G2)

I C (Kn, s) = sn

I If G is a tree than C (G , s) = s · (s − 1)e(G)

I If G is a forest then C (G , s) = sk(G)(s − 1)e(G)

Note: 00 is equal to 1.
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Proof: It is easier to see that

C (G − e, s) = C (G , s) + C (G/e, s).

Let e = (v1, v2) there two types of coloring G in s colors: in which
v1 and v2 have different colors and in which they have the same.
It’s obvious that there are C (G , s) colorings first type and
C (G/e, s) second.
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So we have

{
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C (G , s) = C (G − e, s)− C (G/e, s)

It implies that C (G , s) is polynomial in s with integer coefficients.
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Probability model

We will consider such model: for every edge of graph let cut it
with probability 1− p and save it with probability p.

Let if H ⊂ G

PG ,p(H) = pe(H)(1− p)e(G)−e(H)

What is probability of graph saving connected?
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Let

Connect(H) =

{
1 if H is connected

0 else

Probability graph saved connected is equal to

R(G , p) =
∑
H⊂G

V (H)=V (G)
k(H)=k(G)

PG ,p(H)Connect(H)
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Some easy properties of R(G )

I if G has no edges and one exactly vertex then R(G ) = 1,

I if G has no edges and more than one vertex then R(G ) = 0,

Like previous, R(G , p) is polynomial with integer coefficients.
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Spanning trees

Let B(G ) is number of G ’s spanning trees.
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except loops
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contraction-deletion

I B(G ) = B(G − e) if e is a loop

I B(G ) = B(G − e) + B(G/e) if e is not a loop
(exercise).
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Important idea

It is interesting that C (G ),R(G ),B(G ) and many others graph
invariants (if they satisfy contraction-deletion relationships) can
be expressed from one more general graph invariant, named Tutte
polynomial.

There are o lot of way’s to define Tutte polynomial and we will try
some of them.
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Definition: Edge is regular if that isn’t neither loop nor bridge.

Let
denote

I E l(G ) is multiset of G ’loops,

I Eb(G ) is multiset of it’s bridges

I E r (G ) is multiset of it’s regular edges.
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Definition 1: Tutte polynomial T (G ) = TG is polynomial on
x ,y that is element Z[x , y ], satisfied following conditions:

I T (Kn) = 1

I if e ∈ Eb(G ) then T (G ) = xT (G/e)

I if e ∈ E l(G ) then T (G ) = yT (G − e)

I if e ∈ E r (G ) then T (G ) = T (G/e) + T (G − e)

It is clear that with this definition one can calculate T (G ) for any
G .
Of course that definition needs in existence proof.
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Applications

CG (s) = (−1)v(G)+k(G)sk(G)TG (1− s, 0)
Proof: Evidently it is enough to prove that it is correct when G
hasn’t regular edges and that for every regular e right part satisfies
property of C : CG = CG−e − CG/e .

(−1)v(G)+k(G)sk(G)TG (1− s, 0) =

(−1)v(G−e)+k(G−e)sk(G−e)TG−e(1− s, 0)−

(−1)v(G/e)+k(G/e)sk(G/e)TG/e(, 1− s, 0)
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I RG (p) = (1− p)e(G)−v(G)+k(G)pv(G)−k(G)TG (1, 1
1−p )

I If A(G ) is the number of acyclic orientations of it’s edges then

A(G ) = T (G , 2, 0)
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Definition 2: Tutte polynomial TG (x , y) by definition is equal
to ∑

H⊂G
V (H)=V (G)

(x − 1)k(H)−k(G)(y − 1)e(H)−v(G)+k(H)

Why does that polynomial satisfy conditions from definition 1?

I T (Kn) = 1

I if e ∈ Eb(G ) then T (G ) = xT (G/e)

I if e ∈ E l(G ) then T (G ) = yT (G − e)

I if e ∈ E r (G ) then T (G ) = T (G/e) + T (G − e)

Proof: Can be an exercise.
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Special values

Let G be connected. By
Definition 2 Tutte polynomial TG (x , y) is equal to∑

H⊂G
V (H)=V (G)

(x − 1)k(H)−k(G)(y − 1)e(H)−v(G)+k(H)

Now it is evident that

TG (1, 1) =
∑
H⊂G

V (H)=V (G)

0k(H)−k(G)0e(H)−v(G)+k(H) =

#

{
H ⊂ G :

{
k(H)− k(G ) = 0

e(H)− v(G ) + k(H) = 0

}
=

#{H is spanning tree}.
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“Exercises” (joke)

We can consider well-known problems as problems about Tutte
polynomial, so it has a lot of properties, doesn’t follow from it
definition easy way.
E.g.

I Let translate any evident statement about coloring of graph
(for example that if s1 ≥ s2 implies C (G , s1) ≥ C (G , s2)) into
terms of Tutte polynomial and try to prove it.

I Try to do it with Brooks theorem

I Try to find sum of coefficients Tutte polynomial for Kn

Note: it is value in (1, 1) equals to number of spanning trees
equals to nn−2 as we know.
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No magic

We have seen that all over the word can be expressed from Tutte
polynomial, so it save a lot of information about graph.
And, for example, chromatic polynomial can lose almost all
information about graph if it has a loop.
It can be explained very easy.
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Universal polynomial

Let introduce universal polynomial U(G , x , y , α, σ, τ) such that

I U(Kn) = αn

I U(G ) =


xU(G − e) if e is a bridge

yU(G/e) if e is a loop

σU(G − e) + τU(G/e) else

It is evident that A(G ),B(G ),C (G ),R(G ),T (G ) and other are
particular cases of U(G ).
And U can be expressed from T !
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Universal polynomial’s construction

U(G ) = αk(G)σe(G)−v(G)+k(G)τ v(G)−k(G)T (G ,
αx

τ
,
y

σ
)

Many formulae from that presentation can be obtained from it.

E.g. our first expression for C (G ) is following from trivial

C (G , s) = U(G , 1, 0, s, 1− 1)
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Another proof of Tutte polynomial’s existence

Let consider auxiliary polynomial

Z (G , q, v) =
∑
H⊂G

V (H)=V (G)

qk(H)v e(H)

It isn’t constriction with physics meaning!!
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And for it there is a relation, similar we have earlier: for e ∈ E (G )
Z (G , q, v) =

∑
H⊂G

V (H)=V (G)

qk(H)v e(H) =

∑
H⊂G

V (H)=V (G)
e /∈E(H)

qk(H)v e(H) +
∑

H⊂G
V (H)=V (G)

e∈E(H)

qk(H)v e(H) =

Z (G − e, q, v) +
∑

H⊂G
V (H)=V (G)

e∈E(H)

qk(H)v e(H)

In second summand we can contract e
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Z (G , q, v) =
∑
H⊂G

V (H)=V (G)

qk(H)v e(H)

Z (G − e, q, v) + vZ (G/e, q, v)

if e is a bridge, Z (G − e, q, v) = qZ (G/e, q, v)
if e is a bridge we have

Z (G , q, v) = (q + v)Z (G/e, q, v)

Definition 3:

T (G ) =
1

(x − 1)k(G)(y − 1)v(G)
Z (G , (x − 1)(y − 1), y − 1)

It can be an exercise - to check that it statement satisfies
properties of Tutte polynomial.



Z (G , q, v) =
∑
H⊂G

V (H)=V (G)

qk(H)v e(H)

Z (G − e, q, v) + vZ (G/e, q, v)

if e is a bridge, Z (G − e, q, v) = qZ (G/e, q, v)

if e is a bridge we have

Z (G , q, v) = (q + v)Z (G/e, q, v)

Definition 3:

T (G ) =
1

(x − 1)k(G)(y − 1)v(G)
Z (G , (x − 1)(y − 1), y − 1)

It can be an exercise - to check that it statement satisfies
properties of Tutte polynomial.



Z (G , q, v) =
∑
H⊂G

V (H)=V (G)

qk(H)v e(H)

Z (G − e, q, v) + vZ (G/e, q, v)

if e is a bridge, Z (G − e, q, v) = qZ (G/e, q, v)
if e is a bridge we have

Z (G , q, v) = (q + v)Z (G/e, q, v)

Definition 3:

T (G ) =
1

(x − 1)k(G)(y − 1)v(G)
Z (G , (x − 1)(y − 1), y − 1)

It can be an exercise - to check that it statement satisfies
properties of Tutte polynomial.



Z (G , q, v) =
∑
H⊂G

V (H)=V (G)

qk(H)v e(H)

Z (G − e, q, v) + vZ (G/e, q, v)

if e is a bridge, Z (G − e, q, v) = qZ (G/e, q, v)
if e is a bridge we have

Z (G , q, v) = (q + v)Z (G/e, q, v)

Definition 3:

T (G ) =
1

(x − 1)k(G)(y − 1)v(G)
Z (G , (x − 1)(y − 1), y − 1)

It can be an exercise - to check that it statement satisfies
properties of Tutte polynomial.



Z (G , q, v) =
∑
H⊂G

V (H)=V (G)

qk(H)v e(H)

Z (G − e, q, v) + vZ (G/e, q, v)

if e is a bridge, Z (G − e, q, v) = qZ (G/e, q, v)
if e is a bridge we have

Z (G , q, v) = (q + v)Z (G/e, q, v)

Definition 3:

T (G ) =
1

(x − 1)k(G)(y − 1)v(G)
Z (G , (x − 1)(y − 1), y − 1)

It can be an exercise - to check that it statement satisfies
properties of Tutte polynomial.



We said that Z (G ) is polynomial with physical meaning.

Why?
Let consider such graph model of crystal: vertices correspond to
atoms and adjacent vertices correspond to adjacent atoms.
Every atom can be in one of q states.
Let σ is system’s state; σ(e) is equal to one if vertices, incident e
have same states and 0 in other cases.
Then potential energy (in model) is equal to

Π(σ) =
∑
e∈E

Jeσ(e)

.
Let Je = J for every e.
According to Boltzmann postulate, probability of having state σ0 is
proportional to exp(− 1

kT Π(σ0)) and therefore is equal to

exp(− 1
kT Π(σ0))∑

σ
exp(− 1

kT Π(σ))
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Then potential energy (in model) is equal to

Π(σ) =
∑
e∈E

Jeσ(e)

.
Let Je = J for every e.
According to Boltzmann postulate, probability of having state σ0 is
proportional to exp(− 1

kT Π(σ0)) and therefore is equal to

exp(− 1
kT Π(σ0))∑

σ
exp(− 1

kT Π(σ))
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[Let v = exp(− 1
kT J)− 1]

If σ is a constant on connectivity components F then∏
e∈F

(exp(− 1
kT Jσ(e))− 1) = v e(F )

else it is equal to 0
It’s trivial that for any F there are qk(F ) constant on connectively
components states.∑
F⊂E

∑
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(exp(− 1
kT Jσ(e))− 1) =

∑
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So denominator is equal to Z (G , q, v)


