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Main definitions

» We will consider finite graphs (multigraphs) with at least one
vertex, maybe with loops and multiple edges.

> Let us define

V(G) is set of G's verties,

v(G) is number of G's verties,

E(G) is multiset of G's edges,

e(G) number of G's edges,

k(G) is number of connectivity components.

H C G if H is subgraph of G.
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Formally

» Deleting operation: G — e = (V,E — {e}),

» Contraction operation: G/e,
If e is incident with u and v then in G/e vertices u and v are
replaced by single vertex w = (uv) and each element
f € E — {e} that is incident with either u or v is replaced be
an edge or loop incident with w.
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Chromatic polynomial.

Definition: coloring of graph'’s vertices is regular if adjacent
vertices have different colors.

Definition: Let C(s) = C(G,s) be the number of regular
colorings G in s colors.
So C¢ is function Ny — Ny
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If G has at least 1 loop then C(G) =0

If G = G1U Gy then C(G) = C(G1)C(Gp)
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Some easy properties of C(G)

» If G has at least 1 loop then C(G) =0

» If G = Gy U Gy then C(G) = C(G1)C(G2)

» C(Kp,s)=s"

> If G is a tree than C(G,s) = s - (s — 1)%(¢)

> If G is a forest then C(G,s) = s¥(¢)(s —1)e(¢)
Note: 0° is equal to 1.
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Proof: It is easier to see that

C(G —e,s) = C(G,s) + C(G/e,s).



Proof: It is easier to see that
C(G —e,5)=C(G,s)+ C(G/e,s).

Let e = (v1, v2) there two types of coloring G in s colors: in which
v1 and v, have different colors and in which they have the same.
It's obvious that there are C(G,s) colorings first type and
C(G/e,s) second.
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So we have






So we have
C(Kn,s) =s"

C(G,s)=C(G —e,s)— C(G/e,s)

It implies that C(G,s) is polynomial in s with integer coefficients.
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We will consider such model: for every edge of graph let cut it
with probability 1 — p and save it with probability p.
Letif HC G

PG’p(H) — pe(H)(]_ _ p)e(G)—e(H)

What is probability of graph saving connected?
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Let
1 if H is connected

Connect(H) = {

0 else

Probability graph saved connected is equal to



Let

Connect(H) =

1 if H is connected
0 else

Probability graph saved connected is equal to

R(G,p)= > Pgp(H)Connect(H)

HCG
V(H)=V(G)
k(H)=k(G)
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R(G) = (1 - p)R(G — €) + pR(G/e)

for every e € E(G)
Relationships like that are named contraction-deletion relationships
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Some easy properties of R(G)

» if G has no edges and one exactly vertex then R(G) =1,

» if G has no edges and more than one vertex then R(G) =0,

Like previous, R(G, p) is polynomial with integer coefficients.
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contraction-deletion

» B(G) = B(G —e) if e is a loop
» B(G) =B(G —e)+ B(G/e) if e is not a loop
(exercise).
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Important idea

It is interesting that C(G), R(G), B(G) and many others graph
invariants (if they satisfy contraction-deletion relationships) can
be expressed from one more general graph invariant, named Tutte
polynomial.

There are o lot of way's to define Tutte polynomial and we will try
some of them.
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Definition: Edge is regular if that isn't neither loop nor bridge. Let
denote

» E(G) is multiset of G'loops,
» EP(G) is multiset of it's bridges
» E’(G) is multiset of it's regular edges.
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Definition 1: Tutte polynomial T(G) = T¢ is polynomial on
x,y that is element Z[x, y], satisfied following conditions:

> T(Ky) =1

> if e € E(G) then T(G) = xT(G/e)

> if e € E'(G) then T(G) = yT(G —e)

> if ec E"(G) then T(G)=T(G/e)+ T(G — e)
It is clear that with this definition one can calculate T(G) for any
G.

Of course that definition needs in existence proof.
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Applications

Co(s) = (~)OITKOKOTE(1 ~ 5,0)
Proof: Evidently it is enough to prove that it is correct when G
hasn't regular edges and that for every regular e right part satisfies
property of C: Cg = Co—e — Cg/e-
(_1)V(G)+k(G)sk(G) T(;(]. — s, 0) _
(_l)v(Gfe)+k(Gfe)sk(Gfe) TGfe(l —s, 0)_
(71)V(G/e)+k(G/e)sk(G/e) TG/e(a 1-—s, 0)
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Application

So Cg(s) = (—1)V(O+K(G)sk(G) T (1 — 5,0)
One can prove
» Rg(p) =(1— p)e(G)—v(G)+k(G)pv(G)—k(G) Te(1, 1T1p)
» If A(G) is the number of acyclic orientations of it's edges then

A(G) = T(G,2,0)
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Definition 2: Tutte polynomial T¢(x,y) by definition is equal

to
Z (X i 1)k(H)fk(G)(y o 1)e(H)7v(G)+k(H)
HCG
V(H)=V(G)

Why does that polynomial satisfy conditions from definition 17
» T(K,) =1
> if e € E(G) then T(G) = xT(G/e)
> if e € E'(G) then T(G) = yT(G —e)
> ifec E"(G) then T(G)=T(G/e)+ T(G — e)

Proof: Can be an exercise.
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Special values

Let G be connected. By
Definition 2 Tutte polynomial Tg(x,y) is equal to

Z (x — 1)"(H)—k(G)(y _ 1)e(H)—v(G)+k(H)
HCG
V(H)=V(G)
Now it is evident that
Te(1,1) = Z 0k(H)=k(G)ge(H)—v(G)+k(H) _

HCG
V(H)=V(G)

) k(H) —k(G)=0 B
#{HCG'{e(H)—v(G)Jrk(H):o }_

#{H is spanning tree}.



Special values
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is equal to number of spanning trees.
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Special values

T(2,1) = Z 1k(H)=k(G)ge(H)—v(G)+k(H)
HCG
V(H)=V(G)
Z 0e(H)—v(G)+k(H)

HCG
V(H)=V(G)

is equal to number of subforests.
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“Exercises” (joke)

We can consider well-known problems as problems about Tutte
polynomial, so it has a lot of properties, doesn’t follow from it
definition easy way.
Eg.
» Let translate any evident statement about coloring of graph
(for example that if s > s, implies C(G,s1) > C(G, s2)) into
terms of Tutte polynomial and try to prove it.

» Try to do it with Brooks theorem

» Try to find sum of coefficients Tutte polynomial for K,
Note: it is value in (1,1) equals to number of spanning trees
equals to n"~2 as we know.
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No magic

We have seen that all over the word can be expressed from Tutte
polynomial, so it save a lot of information about graph.

And, for example, chromatic polynomial can lose almost all
information about graph if it has a loop.

It can be explained very easy.
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Universal polynomial

Let introduce universal polynomial U(G, x, y, «, o, 7) such that

> U(Ky) = a”
xU(G —e) if e is a bridge
» U(G) =< yU(G/e) if e is a loop

oU(G—e)+1U(G/e) else
It is evident that A(G), B(G), C(G),R(G), T(G) and other are
particular cases of U(G).
And U can be expressed from T!
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Universal polynomial's construction

U(G) = ak(€)ge(6)-v(G)+K(G) v(G) k(&) (G, X Yy

T O

Many formulae from that presentation can be obtained from it.
E.g. our first expression for C(G) is following from trivial

C(G,s) = U(G,1,0,s,1— 1)
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Another proof of Tutte polynomial’s existence

Let consider auxiliary polynomial

Z(G,q,v)= Y. gy

HcG
V(H)=V(G)

It isn't constriction with physics meaning!!
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And for it there is a relation, similar we have earlier: for e € E(G)

Z2(G,q,v)= > gy =
HCG
V(H)=V(G)
HCG HCG
V(H)=V(G) V(H)=V(G)
e¢E(H) ecE(H)

Z(G —6,4q, V) + Z qk(H) Ve(H)
HCG
V(H)=V(G)
ecE(H)
In second summand we can contract e



gk (H) e(H) —



Z(G—eqv)+ S gkHyeH) =
HCG
V(H)=V(G)
ecE(H)
Z(G—eqv)+ > giHyet) =
H'CG/e
V(H')=V(G/e)
ecE(H")
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cG
V(H)=V(G)

Z(G—e,q,v)+vZ(G/e,q,v)

if e is a bridge, Z(G — e, q,v) = qZ(G/e, q, V)
if e is a bridge we have

Z(G,q,v) =(q+v)Z(G/e,q,v)

Definition 3:

T(G) = V(G)Z(G,(X—l)(y—l),y—l)

1
(x— DHO(y — 1)

It can be an exercise - to check that it statement satisfies
properties of Tutte polynomial.



We said that Z(G) is polynomial with physical meaning.



We said that Z(G) is polynomial with physical meaning. Why?



We said that Z(G) is polynomial with physical meaning. Why?
Let consider such graph model of crystal: vertices correspond to
atoms and adjacent vertices correspond to adjacent atoms.



We said that Z(G) is polynomial with physical meaning. Why?
Let consider such graph model of crystal: vertices correspond to
atoms and adjacent vertices correspond to adjacent atoms.
Every atom can be in one of g states.



We said that Z(G) is polynomial with physical meaning. Why?
Let consider such graph model of crystal: vertices correspond to
atoms and adjacent vertices correspond to adjacent atoms.

Every atom can be in one of g states.

Let o is system'’s state; o(e) is equal to one if vertices, incident e
have same states and 0 in other cases.

Then potential energy (in model) is equal to

N(o) =) Jeo(e)

ecE



We said that Z(G) is polynomial with physical meaning. Why?
Let consider such graph model of crystal: vertices correspond to
atoms and adjacent vertices correspond to adjacent atoms.

Every atom can be in one of g states.

Let o is system'’s state; o(e) is equal to one if vertices, incident e
have same states and 0 in other cases.

Then potential energy (in model) is equal to

N(o) =) Jeo(e)

ecE

Let J. = J for every e.



We said that Z(G) is polynomial with physical meaning. Why?
Let consider such graph model of crystal: vertices correspond to
atoms and adjacent vertices correspond to adjacent atoms.

Every atom can be in one of g states.

Let o is system'’s state; o(e) is equal to one if vertices, incident e
have same states and 0 in other cases.

Then potential energy (in model) is equal to

N(o) =) Jeo(e)

ecE

Let J. = J for every e.
According to Boltzmann postulate, probability of having state o is
proportional to exp(—7%(00)) and therefore is equal to



We said that Z(G) is polynomial with physical meaning. Why?
Let consider such graph model of crystal: vertices correspond to
atoms and adjacent vertices correspond to adjacent atoms.

Every atom can be in one of g states.

Let o is system'’s state; o(e) is equal to one if vertices, incident e
have same states and 0 in other cases.

Then potential energy (in model) is equal to

N(o) =) Jeo(e)

ecE

Let J. = J for every e.
According to Boltzmann postulate, probability of having state o is
proportional to exp(—7%(00)) and therefore is equal to

exp(—%l'l(ao))
5 exp(— (o)
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> 3 T (exp(— g7 Jo(e)) — 1)

FCE o ecF
1
[Let v = exp(—4+J) — 1]
If o is a constant on connectivity components F then
[T (exp(— g Jo(e)) — 1) = veF)
ecF
else it is equal to 0

It's trivial that for any F there are g%(F) constant on connectively
components states.

S 3 T (exp(— 2 do(e)) —1) = > gk(Fles(P)

FCE o ecF FCE



So denominator is equal to Z(G, q, v)



