
Trees with many leaves
N.V.Gravin

Abstract
In this note we consider the problem of �nding a spanning tree with large number of

leaves. We overview some known facts about this question. In details We consider Storer's
algorithm of �nding a spanning tree with many leaves for cubic graphs and make sure that
such problem of �nding a tree with maximal possible number of leaves is NP-complete.
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1 Introduction
We are given a graph and we want to �nd a spanning tree in this graph. Moreover we
want to pick out the most �nontrivial� tree. And a good criteria for such nontriviality is
the number of leaves in the tree.

The �rst natural question arising in this connection is to �nd a spanning tree with
maximal possible number of leaves but this problem was shown to be Np-complete [1] by
Paul Lemke in 1988. Also in the same period of time there emerged questions of the lower
bounds for number of leaves in spanning trees and how to �nd such trees. And in 1988
Linial posed the following conjecture:
Notations.
δ(G) := Minimum degree of the graph G.
L(T ) := Number of leaves in the tree T
L(G) := Maximal number of leaves over all spanning trees of the graph G.
Conjecture (Linial). Let G be a graph on N vertices with δ(G) = k. Then

L(G) ≥ k − 2
k + 1

N + ck

where ck depends only on k.
It is easy to see the tightness of the bound in Linial's conjecture.

A series of examples for k = 4.
This �necklace� example extends to another values of k.

At present there exist some following results concerning Linial's conjecture.
• δ(G) = 3 Linial's conjecture holds [3] (Storer 1981)
• δ(G) = 4 Linial's conjecture holds [2] (Jerrold, R.Griggs, Mingshen Wu 1992)
• δ(G) = 5 Linial's conjecture holds [2] (Jerrold, R.Griggs, Mingshen Wu 1992)
• δ(G) ≥ 6 open problem
• δ(G) →∞ Linial's conjecture fails. (N.Alon 1990)
There are series of graphs Gk with δ(Gk) = k such

L(Gk) ≤
(

1− log(k)
k + 1

)
|V (Gk)|

(
1 +

O(1)
k + 1

)
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2 Strorer's Algorithm
De�nition 1. Cubic is a graph where all vertices have degree equal to three.

In this section we suppose G be a cubic connected graph on N vertices. And we want
to pick out a spanning tree with at least b1

4Nc+ 2 leaves according to Linial's conjecture
for δ(G) = 3 and ck = 2.

2.1 Algorithm description
We will construct such spanning tree consequently at each step of the algorithm having a
partial tree of G and always seeking to enlarge it in a proper way.

De�nition 2. A leaf v of a partial tree T of G called dead if and only if v has no adjacent
to it vertices outside T . And by D(T ) we denote the number of dead leaves in the partial
tree T of G.

Consider cost function involving the number of leaves, dead leaves and vertices of T

f(T ) := 3L(T ) + D(T )− |V (T )|.

So at each step of the algorithm we will seek for such enlargement of partial tree T
that f(T ) do not decrease.

2.2 Algorithm's proof
Suppose for a while that we always can enlarge our partial tree that f(T ) do not decrease.
Then starting from some partial tree T0 at the end we get some spanning tree T1 of G
with f(T1) ≥ f(T0).

Let us remember that f(T1) = 3L(T1) + D(T1)− |V (T1)|. As T1 is a spanning tree of
G then V (T1) = N and D(T1) = L(T1) because all leaves are dead in a spanning tree. So
we get f(T1) = 4L(T1)−N ≥ f(T0).

Let us take as T0 a vertex and all its neighbors. Then we get f(T0) ≥ 3 ∗ 3 + 0− 4, so
f(T0) ≥ 5. Then 4L(T1) ≥ N + 5 and we are done.

So the only thing we have to prove is why we always are able to enlarge partial tree T
and do not decrease f(T ).

Let us suppose contrary to this claim. Then the following assertions hold:

1. There are no non leaf vertices of T adjacent to vertex outside T as in other case we
can enlarge T and do not decrease f(T ).

2. There are no leaf vertices of T adjacent to at least two vertices outside T .
3. There are no leaves of T adjacent to an outside vertex with two neighbors also outside

T .

Then every vertex outside T either has not edges into T , or has at least two neighbors
in T in other case we get contradiction with the third assertion. As T is not jet a whole
spanning tree and G is connected then there is a vertex v outside T adjacent to at least
two vertices in T . By the �rst assertion all neighbors of v are leaves in T and by the second
assertion both of this two neighbors have only v as a neighbors outside T . So adding v to
T we increase number of dead leaves and it means that we do not decrease f(T ). Then
we arrive at a contradiction and we are done.
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3 NP-completeness
Theorem (Lemke). A maximum leaf spanning tree problem for cubic graphs is
NP-complete.

Proof. So we consider the following decision problem associated with the maximum leaf
spanning tree problem:

INSTANCE: A cubic graph G and an integer number k.
QUESTION: Does G posses a spanning tree with at least k leaves?

Instead of this decision problem let us consider more speci�c decision problem:
INSTANCE: A cubic graph G.
QUESTION: Does G posses a spanning tree with at least |V (G)|

2 + 1 leaves?

The last question has an equivalent reformulation for cubic graphs:
EQUIVALENT QUESTION: Does G posses a spanning tree with no vertices of degree

two?

Remark 1. Indeed why this is equivalent reformulation?

Proof.
Notations.
a1 := number of vertices in spanning tree T with degree 1.
a2 := number of vertices in spanning tree T with degree 2.
a3 := number of vertices in spanning tree T with degree 3.
N := number of vertices in T .

We know that a1 + a2 + a3 = N as T is a spanning tree and contains all the vertices
of G. Also we know that a1 + 2a2 + 3a3 = 2(N − 1) as every tree on N vertices contains
exactly N − 1 edges. So subtract the second equality from the doubled �rst one we get
a1 − a3 = 2.

Suppose now T has at least |V (G)|
2 + 1 leaves. It means a1 ≥ |N |

2 + 1 and so by the
third equality a3 ≥ |N |

2 − 1. And as a1 + a2 + a3 = N we get a2 = 0. It means that T has
no vertices of degree two.

In the other direction. Let T has no vertices of degree two then a2 = 0 and so
3a1 + 3a3 − a1 − 3a3 = 3N − 2(N − 1). And we get a1 = N

2 + 1.

Let us return to the proof of theorem. The proof will be by reduction of known
NP-complete problem EXACT COVER BY 3-SETS [4] to ours.

The EXACT COVER BY 3-SETS is as follows:
INSTANCE: Positive integers n and m, subsets S1, S2, ..., Sm of {1, 2, ...., n}, with

|Si| = 3 for all i ∈ {1, 2, ...,m}.

QUESTION: Is there a subset Q ⊆ {1, 2, ..., m} such that
⋃

i∈Q

Si = {1, 2, ..., n} and

∀i1, i2 ∈ Q, i1 6= i2 ⇒ Si1 ∩ Si2 = ø ?

Given an instance of EXACT COVER BY 3-SETS we construct a graph G as follows:

De�ne the numbers a0, a1, ..., an by:
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a0 = 2m
aj = |{i|j ∈ Si}| for j = 1, 2, ..., n.

For the construction given below we need aj ≥ 3 ∀j. If this is not the case, we can
always make it so by adding duplicate sets to {S1, S2, ..., Sm}.

The vertex set V of G is de�ned to be the union the pairwise disjoint sets
U0, U1, ..., Un,W , and X, where:

|Uj | = 10aj − 18 for j = 0, 1, ..., n
W = {w1, w2, ..., wm}
X = {x1, x2, ..., xm}.

Now we have to describe the edge set E of G. It will be a union of edge sets of some
graphs with vertices taken in some subsets of V (G). And now we describe this graphs.
They consist of two series of graphs Gj , j = 0, 1, ..., n and Hi, i = 1, 2, ..., m.

We take Gj with the Uj vertex set as shown on the �gure (j = 0, 1, ..., n)

So every Gj has exactly aj vertices of degree one and all remaining vertices have degree
three. By de�nition of aj we can put in one to one correspondence ujk, k ∈ {1, 2, ..., aj}
where j = 1, 2, ..., n with inclusion of j-th element into some 3-set Si. Let us �x this
correspondence.

We take Hi corresponding to Si = {i1, i2, i3} on the
{ui1,e1 , ui2,e2 , ui3,e3 , u0,2i, u0,2i+1, wi, xi} set of vertices, where ui1,e1 corresponds to
the inclusion of i1 element into Si, ui2,e2 , ui3,e3 correspond to the inclusion of i2 and i3
elements into Si, u0,2i, u0,2i+1 ∈ U0 and wi ∈ W,xi ∈ X. The edges we draw for Hi as
depicted on the following �gure.
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Green edges do not belongs to Hi but belongs to corresponding graphs of type Gj .

So now we get a cubic graph. We are only to show why the constructed graph has a
spanning tree without vertices of degree two if and only if the corresponding problem of
EXACT COVER BY 3-SETS has positive answer. Let us just do it for �only if� part of
the statement because for �if� part it will be easy to construct such a spanning tree relying
on reasoning of �only if� part.

If we consider the unit block on nine vertices of Gj then there are only two possibilities
to assign edges so that nine interior vertices has odd degree (see the following �gure).
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So every Gj should be a connected graph with all edges coming to vertices of degree
one in Gj assigned into the spanning tree.

For Hi there are also only two possibilities to assign edges so that seven interior vertices
have odd degree (see the following �gure).

In the �rst case we join G0, Gi1 , Gi2 , Gi3 into one component of connectivity in the
second case we make no connection between this four components. So in the �rst case we
take Si into covering set, and in the second case we does not take it. Then we get EXACT
COVERING BY 3-SETS we are needed in as in the other case we have joined G0 and Gi

twice or we have had disconnected spanning tree.
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