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What this talk is about:

Linial’s conjecture (posed in 1988)

Storer’s algorithm of finding a spanning tree with many leaves
for cubic graphs (1981)

The maximum leaf spanning tree problem is NP-complete
(P. Lemke 1988)

Nikolay Gravin JASS 2008: Trees



Introduction
Linial’s Conjecture

Storer’s Algorithm for cubic graphs
NP-completeness

Problem’s definition

We are given a graph and we want to find a spanning tree in this
graph.
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Problem definition

Moreover we want to pick out the most “nonsingular” tree.

A good criteria of such “nonsingularity” is the number of leaves in
a tree.
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Problem definition

So we get the following problem:

Given a graph we need to find a spanning tree with maximal
number of leaves.
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Definitions:
Notations:

Spanning tree definition

Definition (Spanning tree)

A tree which is a subgraph of some graph G and contains all its
vertices called a spanning tree of G .
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Definitions:
Notations:

Leaf definition

Definition (Pendant vertex)

A vertex in a tree with degree one called a pendant vertex or a
leaf.
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Notations:

Leaf definition

Definition (Pendant vertex)

A vertex in a tree with degree one called a pendant vertex or a
leaf.
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Notations

V (G ) — Set of all vertices of the graph G

δ(G ) := Minimum degree of the graph G

L(T ) := Number of leaves in the tree T

L(G ) := Maximal number of leaves over all spanning trees
of the graph G .
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Linial’s Conjecture

Conjecture

Let G be a graph on N vertices with δ(G ) = k. Then

L(G ) ≥ k − 2

k + 1
N + ck

where ck depends only on k.
δ(G ) := Minimum degree of the graph G .
L(G ) := Maximal number of leaves over all spanning trees of the
graph G .
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Tightness

The lower bound of L(G ) (k−2
k+1N + ck), where k is minimum

degree of G , is tight.

A series of examples for k = 4.
The same “necklace” example suits for another values of k.

Nikolay Gravin JASS 2008: Trees



Introduction
Linial’s Conjecture

Storer’s Algorithm for cubic graphs
NP-completeness

Conjecture
Tightness of the Bound
Known Results

Known results about Linial’s conjecture

δ(G ) = 3 Linial’s conjecture holds (Storer 1981)

δ(G ) = 4 Linial’s conjecture holds (Jerrold, R. Griggs,
Mingshen Wu 1992)

δ(G ) = 5 Linial’s conjecture holds (Jerrold, R. Griggs,
Mingshen Wu 1992)

δ(G ) ≥ 6 open problem

δ(G ) →∞ Linial’s conjecture fails. (N. Alon 1990)
There are series of graphs Gk with δ(Gk) = k such

L(Gk) ≤
(

1− log(k)

k + 1

)
|V (Gk)|

(
1 +

O(1)

k + 1

)
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Algorithm
Proof

Assumptions

Cubic is a graph where all vertices have degree equal to three.

Now and then G be a cubic graph on N vertices.

We want to pick out a spanning tree with at least b1
4Nc+ 2

leaves.

We will construct such tree consequently and at each step of
algorithm we have a partial tree of G .
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Algorithm
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Definitions of a dead leaf

Definition Dead vertex

A leaf v of a partial tree T of G called dead iff v has no adjacent
to it vertices outside T .
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Definitions of a dead leaf

Definition Dead vertex

A leaf v of a partial tree T of G called dead iff v has no adjacent
to it vertices outside T .
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Definitions, Assumptions
Algorithm
Proof

Definitions of a dead leaf

Definition Dead vertex

A leaf v of a partial tree T of G called dead iff v has no adjacent
to it vertices outside T .

D(T ) := number of dead leaves in the partial tree T .
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Storer’s Algorithm

Plan of algorithm

We would construct a spanning tree consequently.

Consider cost function involving the number of leaves, dead
leaves and vertices of T

f (T ) := 3L(T ) + D(T )− |V (T )|.

At each step of algorithm we shall always seek to enlarge a
constructed partial tree T of G while not decreasing f (T ).

L(T ) := Number of leaves in T .
D(T ) := Number of dead leaves in T

Nikolay Gravin JASS 2008: Trees
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Definitions, Assumptions
Algorithm
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Storer’s Algorithm

Plan of algorithm

We would construct a spanning tree consequently.

Starting tree T would be any vertex with its neighborhood, so
f (T ) ≥ 3 ∗ 3 + 0− 4 ≥ 5

At the end of algorithm T would be some spanning tree of G .
So D(T ) = L(T ) as all leaves would be dead.

3L(T ) + L(T )− |V (T )| ≥ 5, so 4L(T ) ≥ N + 5

L(T ) := Number of leaves in T .
D(T ) := Number of dead leaves in T
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Algorithm
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Why we could enlarge T and do not decrease f (T )

Non leaf vertex of T is adjacent to vertex outside T .

L(T ) D(T ) |V (T )|
+1 + ≥ 0 +1

f (T ) := 3L(T ) + D(T )− |V (T )|
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Definitions, Assumptions
Algorithm
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Why we could enlarge T and do not decrease f (T )

Some leaf of T is adjacent to an outside vertex with two neighbors
outside T .

L(T ) D(T ) |V (T )|
+1 + ≥ 0 +3

f (T ) := 3L(T ) + D(T )− |V (T )|
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NP-completeness

Theorem (Lemke) 1988

A maximum leaf spanning tree problem for cubic graphs is
NP-complete.

INSTANCE: A cubic graph G and an integer number k

QUESTION: Does G posses a spanning tree with at least k leaves?
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NP-completeness

Theorem (Lemke) 1988

INSTANCE: A cubic graph G

QUESTION: Does G posses a spanning tree with at least
|V (G)|

2 + 1 leaves?

EQUIVALENT QUESTION: Does G posses a spanning tree with
no vertices of degree two?
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Why equivalent question

a1 := number of vertices in spanning tree with degree 1.
a2 := number of vertices in spanning tree with degree 2.
a3 := number of vertices in spanning tree with degree 3.
N := number of vertices in T .
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Why equivalent question

Then
a1 + a2 + a3 = N

a1 + 2a2 + 3a3 = 2 ∗ (N − 1)

a1 − a3 = 2

a1 + a3 ≤ N

We want

a2 = 0 ⇔ a1 ≥
N

2
+ 1.
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reduction

The proof is by reduction of known NP-complete problem EXACT
COVER BY 3-SETS to ours.

INSTANCE: Positive integers n and m, subsets S1,S2, ...,Sm of
{1, 2, ...., n}, with |Si | = 3 for all i ∈ {1, 2, ...,m}.

QUESTION: Is there a subset Q ⊆ {1, 2, ...,m} such that⋃
i∈Q

Si = {1, 2, ..., n} and ∀i1, i2 ∈ Q, i1 6= i2 ⇒ Si1 ∩ Si2 = ø ?
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EXACT COVER BY 3-SETS instance representation as a bipartite
graph
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construction

In this representation we take every vertex from the set {1, 2, ..., n}
and all adjacent to it edges.
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construction

Draw the construction above for every vertex j ∈ {1, 2, ..., n}. In
the figure uji corresponds to the i-th edge coming out from the
vertex j .
Call graph constructed above Uj .
Draw the same construction U0 with 2m vertices
u0,1, u0,2, ..., u0,2m of degree one.
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The only two ways to assign the edges of a repeating sub-unit so
that its nine interior vertices have odd degree in a spanning tree.
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construction

The final cubic graph G will consists of
n⋃

j=0
Uj and some other

vertices and edges.

For every set Si consider three edges coming out from
corresponding vertex of the bipartite graph. This three edges
corresponds to some three vertices ui1e1 , ui2e2 , ui3e3 .

Now let us describe the Hi graph corresponding to Si .
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corresponding vertex of the bipartite graph. This three edges
corresponds to some three vertices ui1e1 , ui2e2 , ui3e3 .

Now let us describe the Hi graph corresponding to Si .
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Uj :
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So now the union of all Uj and Hi is a cubic graph.
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We know that if a spanning tree has no vertices of degree two then
all exterior edges (belong to some Uj) should belong to spanning
tree.
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The only two ways to assign the edges of Hi so that its seven
vertices have odd degree in a spanning tree.
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The first way corresponds to the situation when we take Si in the
covering.
And the second when we do not take Si .
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The part of spanning tree corresponding to Uj is a connected
subgraph.

In the first situation we connect Ui1 ,Ui2 ,Ui3 with U0.

In the second we do no connections between Ui1 ,Ui2 ,Ui3 ,U0
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subgraph.
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