JASS 2008: Trees

Trees with many leaves

Nikolay Gravin

Saint-Petersburg State University
Faculty of Mathematics and Mechanics

March 2008

Nikolay Gravin JASS 2008: Trees



What this talk is about:

@ Linial's conjecture (posed in 1988)

@ Storer's algorithm of finding a spanning tree with many leaves
for cubic graphs (1981)

@ The maximum leaf spanning tree problem is NP-complete
(P. Lemke 1988)
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Problem’s definition

We are given a graph and we want to find a spanning tree in this
graph.
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Problem definition

Moreover we want to pick out the most “nonsingular” tree.

A good criteria of such “nonsingularity” is the number of leaves in
a tree.

Nikolay Gravin JASS 2008: Trees



Problem definition

So we get the following problem:

Given a graph we need to find a spanning tree with maximal
number of leaves.
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Introduction
Definitions:
Notations:

Spanning tree definition

Definition (Spanning tree)

A tree which is a subgraph of some graph G and contains all its
vertices called a spanning tree of G.
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Definition (Spanning tree)

A tree which is a subgraph of some graph G and contains all its
vertices called a spanning tree of G.
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Introduction
Definitions:
Notations:

Leaf definition

Definition (Pendant vertex)

A vertex in a tree with degree one called a pendant vertex or a
leaf.
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Introduction
Definitions:
Notations:

Leaf definition

Definition (Pendant vertex)

A vertex in a tree with degree one called a pendant vertex or a
leaf.
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Introduction
Definitions:
Notations:

Notations

V(G) —  Set of all vertices of the graph G

0(G) := Minimum degree of the graph G

L(T) := Number of leaves in the tree T

L(G) := Maximal number of leaves over all spanning trees

of the graph G.
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Conjecture
Tightness of the Bound
Known Results

Linial’s Conjecture

Linial's Conjecture

Let G be a graph on N vertices with 5(G) = k. Then

where ¢, depends only on k.

d(G) := Minimum degree of the graph G.

L(G) := Maximal number of leaves over all spanning trees of the
graph G.
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Conjecture
Tightness of the Bound
Known Results

Linial’s Conjecture

Tightness

The lower bound of L(G) (f—ﬁN + ck), where k is minimum
degree of G, is tight.

A series of examples for k = 4.
The same “necklace” example suits for another values of k.
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Conjecture
Tightness of the Bound
Known Results

Linial’s Conjecture

Known results about Linial's conjecture

@ §(G) = 3 Linial's conjecture holds (Storer 1981)
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Conjecture
Tightness of the Bound
Known Results

Linial’s Conjecture

Known results about Linial's conjecture

@ §(G) = 3 Linial's conjecture holds (Storer 1981)

@ )(G) = 4 Linial's conjecture holds (Jerrold, R. Griggs,
Mingshen Wu 1992)

Nikolay Gravin JASS 2008: Trees



Conjecture
Tightness of the Bound
Known Results

Linial’s Conjecture

Known results about Linial's conjecture

@ §(G) = 3 Linial's conjecture holds (Storer 1981)

@ )(G) = 4 Linial's conjecture holds (Jerrold, R. Griggs,
Mingshen Wu 1992)

@ §(G) =5 Linial's conjecture holds (Jerrold, R. Griggs,
Mingshen Wu 1992)

Nikolay Gravin JASS 2008: Trees



Conjecture
Tightness of the Bound
Known Results

Linial’s Conjecture

Known results about Linial's conjecture

@ §(G) = 3 Linial's conjecture holds (Storer 1981)

@ )(G) = 4 Linial's conjecture holds (Jerrold, R. Griggs,
Mingshen Wu 1992)

@ §(G) =5 Linial's conjecture holds (Jerrold, R. Griggs,
Mingshen Wu 1992)

@ 0(G) > 6 open problem
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Conjecture
Tightness of the Bound
Known Results

Linial’s Conjecture

Known results about Linial's conjecture

d(G) = 3 Linial's conjecture holds (Storer 1981)

d(G) = 4 Linial's conjecture holds (Jerrold, R. Griggs,
Mingshen Wu 1992)

d(G) =5 Linial's conjecture holds (Jerrold, R. Griggs,
Mingshen Wu 1992)

d(G) > 6 open problem
d(G) — oo Linial's conjecture fails. (N. Alon 1990)
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Conjecture
Tightness of the Bound
Known Results

Linial’s Conjecture

Known results about Linial's conjecture

@ §(G) = 3 Linial's conjecture holds (Storer 1981)

@ )(G) = 4 Linial's conjecture holds (Jerrold, R. Griggs,
Mingshen Wu 1992)

@ §(G) =5 Linial's conjecture holds (Jerrold, R. Griggs,
Mingshen Wu 1992)

@ 0(G) > 6 open problem

@ 0(G) — oo Linial's conjecture fails. (N. Alon 1990)
There are series of graphs Gi with §(Gx) = k such

L(Gy) < <1 —~ lff?) V(G <1 + I?J(rl)1>

Nikolay Gravin JASS 2008: Trees



Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Assumptions

@ Cubic is a graph where all vertices have degree equal to three.
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Definitions, Assumptions
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Storer’s Algorithm for cubic graphs Proof

Assumptions

@ Cubic is a graph where all vertices have degree equal to three.

@ Now and then G be a cubic graph on N vertices.

Nikolay Gravin JASS 2008: Trees



Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Assumptions

@ Cubic is a graph where all vertices have degree equal to three.
@ Now and then G be a cubic graph on N vertices.

o We want to pick out a spanning tree with at least XN + 2
leaves.
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Assumptions

@ Cubic is a graph where all vertices have degree equal to three.
@ Now and then G be a cubic graph on N vertices.

o We want to pick out a spanning tree with at least XN + 2
leaves.

@ We will construct such tree consequently and at each step of
algorithm we have a partial tree of G.
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Assumptions

@ Cubic is a graph where all vertices have degree equal to three.
@ Now and then G be a cubic graph on N vertices.

o We want to pick out a spanning tree with at least XN + 2
leaves.

@ We will construct such tree consequently and at each step of
algorithm we have a partial tree of G.
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Definitions of a dead leaf

Definition Dead vertex

A leaf v of a partial tree T of G called dead iff v has no adjacent
to it vertices outside T.
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Definitions of a dead leaf

Definition Dead vertex

A leaf v of a partial tree T of G called dead iff v has no adjacent
to it vertices outside T.

—
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Definitions of a dead leaf

Definition Dead vertex

A leaf v of a partial tree T of G called dead iff v has no adjacent
to it vertices outside T.
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Definitions of a dead leaf

Definition Dead vertex

A leaf v of a partial tree T of G called dead iff v has no adjacent

to it vertices outside T.

D(T) := number of dead leaves in the partial tree T.
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Storer’s Algorithm

Plan of algorithm

We would construct a spanning tree consequently.
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Storer’s Algorithm

Plan of algorithm

We would construct a spanning tree consequently.

@ Consider cost function involving the number of leaves, dead
leaves and vertices of T

f(T):=3L(T)+D(T)—|V(T)|.
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Storer’s Algorithm

Plan of algorithm

We would construct a spanning tree consequently.

@ Consider cost function involving the number of leaves, dead
leaves and vertices of T

f(T):=3L(T)+D(T)—|V(T)|.

@ At each step of algorithm we shall always seek to enlarge a
constructed partial tree T of G while not decreasing f(T).

L(T) := Number of leaves in T.
D(T) := Number of dead leaves in T
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Definitions, Assumptions
Algorithm
Proof

Storer’s Algorithm for cubic graphs

Storer’s Algorithm

P of algorithm

We would construct a spanning tree consequently.
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Definitions, Assumptions
Algorithm
Proof

Storer’s Algorithm for cubic graphs

Storer’s Algorithm

Plan of algorithm

We would construct a spanning tree consequently.

@ Starting tree T would be any vertex with its neighborhood, so
f(T)>3%x3+0—4>5
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Definitions, Assumptions
Algorithm
Proof

Storer’s Algorithm for cubic graphs

Storer’s Algorithm

Plan of algorithm

We would construct a spanning tree consequently.

@ Starting tree T would be any vertex with its neighborhood, so
f(T)>3%x3+0—4>5

@ At the end of algorithm T would be some spanning tree of G.
So D(T) = L(T) as all leaves would be dead.
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Definitions, Assumptions
Algorithm
Proof

Storer’s Algorithm for cubic graphs

Storer’s Algorithm

Plan of algorithm

We would construct a spanning tree consequently.

@ Starting tree T would be any vertex with its neighborhood, so
f(T)>3%x3+0—4>5

@ At the end of algorithm T would be some spanning tree of G.
So D(T) = L(T) as all leaves would be dead.

0 3L(T)+ L(T)—|V(T)| =5, 50 4L(T) > N +5

L(T) := Number of leaves in T.
D(T) := Number of dead leaves in T

Nikolay Gravin JASS 2008: Trees



Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Why we could enlarge T and do not decrease f(T)

Non leaf vertex of T is adjacent to vertex outside T.
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Why we could enlarge T and do not decrease f(T)

Non leaf vertex of T is adjacent to vertex outside T.

f(T):=3L(T)+D(T)—|V(T)|
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Why we could enlarge T and do not decrease f(T)

Some leaf of T is adjacent to two vertices outside T.
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Why we could enlarge T and do not decrease f(T)

Some leaf of T is adjacent to two vertices outside T.

f(T):=3L(T)+D(T)—|V(T)|
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Why we could enlarge T and do not decrease f(T)

Some leaf of T is adjacent to an outside vertex with two neighbors
outside T.

Nikolay Gravin JASS 2008: Trees



Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Why we could enlarge T and do not decrease f(T)

Some leaf of T is adjacent to an outside vertex with two neighbors
outside T.

f(T):=3L(T)+ D(T)—|V(T)|
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Why we could enlarge T and do not decrease f(T)

Outside T there is a vertex v adjacent to at least two leaves of T
and this two leaves are adjacent to only v outside T.
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Definitions, Assumptions
Algorithm

Storer’s Algorithm for cubic graphs Proof

Why we could enlarge T and do not decrease f(T)

Outside T there is a vertex v adjacent to at least two leaves of T

and this two leaves are adjacent to only v outside T.
Dead

f(T):=3L(T)+ D(T)—|V(T)|
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Assertion
Reduction

Construction
NP-completeness

NP-completeness

Theorem (Lemke) 1988

A maximum leaf spanning tree problem for cubic graphs is
NP-complete.

INSTANCE: A cubic graph G and an integer number k

QUESTION: Does G posses a spanning tree with at least k leaves?
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Assertion
Reduction

Construction
NP-completeness

NP-completeness

INSTANCE: A cubic graph G

QUESTION: Does G posses a spanning tree with at least
WV(G) + 1 leaves?
E /

EQUIVALENT QUESTION: Does G posses a spanning tree with
no vertices of degree two?
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Assertion
Reduction

Construction
NP-completeness

Why equivalent question

a; ;= number of vertices in spanning tree with degree 1.
a» := number of vertices in spanning tree with degree 2.
az := number of vertices in spanning tree with degree 3.
N := number of vertices in T.
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Assertion
Reduction

Construction
NP-completeness

Why equivalent question

Then
aat+a+a=N

ay+2a+3a3=2x(N—-1)
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Assertion
Reduction

Construction
NP-completeness

Why equivalent question

Then
aat+a+a=N
ay+2a+3a3=2x(N—-1)
ag—az3=2
ai+a3 <N
We want

N
32:0@31254‘1.
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Assertion
Reduction

Construction
NP-completeness

reduction

The proof is by reduction of known NP-complete problem EXACT
COVER BY 3-SETS to ours.
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Assertion
Reduction

Construction
NP-completeness

reduction

The proof is by reduction of known NP-complete problem EXACT
COVER BY 3-SETS to ours.

INSTANCE: Positive integers n and m, subsets 51, Sy, ..., Sy of
{1,2,....,n}, with |5;| =3 for all i € {1,2,..., m}.

QUESTION: Is there a subset Q C {1,2, ..., m} such that

U S; = {1,2,...,n} and Vip, b € Q, i1 # Ih = 5,'1 ﬂ5i2 =g?7?
ieQ
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Assertion
Reduction

NP-completeness Construction

construction

EXACT COVER BY 3-SETS instance representation as a bipartite
graph
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Assertion
Reduction

NP-completeness Construction

construction

In this representation we take every vertex from the set {1,2, ..., n}
and all adjacent to it edges.
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Assertion
Reduction

NP-completeness Construction

construction

352 Tuj3 o i,a -1
1
u,
“J’,},_% i % } _____ @i";

Draw the construction above for every vertex j € {1,2,...,n}. In
the figure uj; corresponds to the i-th edge coming out from the
vertex j.
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Assertion
Reduction

NP-completeness Construction

construction

352 Tuj3 o'j,a
u,
"1l % i % } _____ @i";

Draw the construction above for every vertex j € {1,2,...,n}. In
the figure uj; corresponds to the i-th edge coming out from the

vertex j.
Call graph constructed above U;.
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Assertion
Reduction

NP-completeness Construction

construction

Tuj3 ouj,aj-l

Uio

u
u, j,a.
Jé__{ l % } _____ @’ j

Draw the construction above for every vertex j € {1,2,...,n}. In
the figure uj; corresponds to the i-th edge coming out from the
vertex j.

Call graph constructed above U;.

Draw the same construction Uy with 2m vertices

uo,1, Up 2, ..., Ug,2m of degree one.
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Assertion
Reduction

NP-completeness Construction

construction

The only two ways to assign the edges of a repeating sub-unit so
that its nine interior vertices have odd degree in a spanning tree.

@)
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Assertion
Reduction

NP-completeness Construction

construction

n
The final cubic graph G will consists of |J U; and some other
Jj=0
vertices and edges.
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Assertion
Reduction

NP-completeness Construction

construction

n
The final cubic graph G will consists of |J U; and some other
Jj=0
vertices and edges.

For every set S; consider three edges coming out from

corresponding vertex of the bipartite graph. This three edges
corresponds to some three vertices uj e, Ujey, Uises-
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Assertion
Reduction

NP-completeness Construction

construction

n
The final cubic graph G will consists of |J U; and some other
Jj=0
vertices and edges.

For every set S; consider three edges coming out from
corresponding vertex of the bipartite graph. This three edges

corresponds to some three vertices uj e, Ujey, Uises-

Now let us describe the H; graph corresponding to S;.
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Assertion
Reduction

NP-completeness Construction

construction

o'i2 013 o'j a gl
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Assertion
Reduction

NP-completeness Construction

construction

So now the union of all U; and H; is a cubic graph.
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Assertion
Reduction

NP-completeness Construction

construction

021+l

We know that if a spanning tree has no vertices of degree two then
all exterior edges (belong to some U;) should belong to spanning
tree.
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Assertion
Reduction
Construction

NP-completeness

construction

The only two ways to assign the edges of H; so that its seven
vertices have odd degree in a spanning tree.
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Assertion
Reduction

NP-completeness Construction

construction

The first way corresponds to the situation when we take S; in the
covering.
And the second when we do not take S;.
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Assertion
Reduction

NP-completeness Construction

construction

The part of spanning tree corresponding to U; is a connected
subgraph.
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Assertion
Reduction

NP-completeness (s sy

construction

The part of spanning tree corresponding to U; is a connected
subgraph.

In the first situation we connect U;;, U;,, U;; with Up.

In the second we do no connections between U; , U;,, U, Up
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Assertion
Reduction
Construction

NP-completeness

THANK YOU!
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