
How to get
“cinematic real-time”?
Progress in
bisplacement
shader development

Artem Andreev // rybets@mail.ru
Russia, St Petersburg GUT,
E&CG dept.
Revision: April 2 2007

Bisplacent? Why not
displacement?

� There are several solutions to achieve cinematic
quality using displacement maps on planes or
non-planar surfaces in real - time…

� But do gamers really needs all 0…255 height
variations?

� May be 0 or 1 height levels is enough for
photorealism?
(“Bi…” – means 2. Besides, Google shows, that “bisplacement” appears in Chinese
diesel ENGINES ☺).

� In 50% cases – ENOUGH, if it is used in a
combination with a bump map and good shading
formula.

Something like this:
ALL Screenshot taken from NVIDIA FX Composer tm Scene Window

Not like this: Image generated
using “parallax
mapping” with
offset limiting.

What wrong with parallax mapping?
� Introduced by Kaneko [Kaneko 2001]

� Improved by Welsh [Welsh 2004]

� Broadly popularized by CG community.
� Use height map to determine texture coordinate

offset for approximating parallax
� Uses view vector in tangent space to determine

how to offset the texels
� When displacement seen from grazing angles,

texture pattern appears twice /

� May be this brick wall looks pretty,
but parallax mapping shows that
type of artifacts (texture doubling)
on a grazing angles, anyway…

� It is very fast because of its simple
math…

� It fails because it uses too simple
math…

Seems, this problem
was solved long ago…

� Use simple textured hulls (parallelepiped is good
for brick walls of buildings), update their
appearance each time camera translates
noticeably. This stage – “warping” does not use
rotation, but only horizontal and vertical shifts, and
could be done in software [Oliveira 2000].

� “Relief texture mapping” seems very attractive but
needs additional resources to keep data (view
independent and dependent).

� May be not 60 times per second, but sometimes
we need to update everything, even if object is not
visible!

� Optimization trick, it was an incarnation of MS
Talisman Architecture, [Kajiya 1996]: Instead of
performing complex rendering for every frame, use
view dependent textured layers… in 1996, when
graphic memory and bandwidth was small, it was a
temptation…

Hypercube?…
� Solutions, were 4

or 5 dimensional
textures are used
[Wang 2003].
Approach could
not compete in a
3d gaming
industry: too much
memory required
for a small pattern.

� Competitor #1: “Dynamic image-
space per-texel displacement
mapping with silhouette antialiasing
via parallax occlusion mapping”?
[Brawley - Tatarchuk 2005 - 2006]

� Competitor #2: “Per – pixel
displacement mapping with
distance functions” [Donnelly
2005] or “Steep Parallax
Mapping” [McGuire 2005]?

� Sources like [Lobel 2004] or [Policarpo 2004]
represent evolution of subject. But in a “heavy weight”
there are 2 competitors:

As a research problem – No
doubt. But!
� [Brawley - Tatarchuk 2005] First competitor

requires 8 samples (texture access) in 64
instructions.

� It was 200, now it is 96 instructions, if it works on
SM 3 model…

� At higher frequencies (detailed height field)
needed 2-3 passes.

� That is all Technological Demos Stuff!!!

Technological demos shaders
are not “in game” shaders!
� There is no explicit definition what is T.D., but practically it is created to

demonstrate 100% of computational horsepower of last generation of 3d
hardware.

� NOT a D3D or OpenGL standard (new features not standard yet), T.D. use
to cut corners accessing hardware via special drivers tricks (good example
– R2VB functions).

� Runs on ATI or NVIDIA, “reverse engineering” is prohibited.
� Camera is not free -> artifacts are hidden…
� GAME use a lot of visual phenomena's to render. Techno – demos are often

“about something cool”. Cool stuff “eats” all horsepower.
� Games must SHARE performance between visual phenomena's!
� Hence – there are no “skin”, ”displacement”, modern diffuse lightning

approximations, scattering… Game development focus on easy tricks, like
PM, Blooms, HDR…

In a blue corner of a ring…
� Competitor #2 [Donnelly 2005]:
� Requires: “Spherical distance” data, and tools to

compute them is not available yet (afaik). This
volumetric texture 256*256*16 bytes or 512*512*32
bytes takes a lot: I could not imagine, that 128Mb
video card could keep a game level with a
massively usage of displacement, implemented that
way. May be in 2008 it would be a mainstream…

� 16 iterations, old hardware require multiple passes.
� Fast, but how about game titles? I mean not a one

pattern, but hundreds textures of a game level?

IMPATIENCE?
� Shader also make a SHADING, not just evaluation of texture

coordinate and fetching…
� Fourth generation of graphic hardware – ATI 9x00, Nvidia 6x00

family must be supported (it is: via multi pass).
Do you mean all that 4 pixel pipeline, 128 megabyte

stuff?
� They are slow: do not support dynamic branching, simultaneous

texture fetching and computation…

� Boss says: No objections! Game MUST FLY
on them!

� This means – forget about displacement…

…and use Bisplacement!

� Easy to create texture, bump and height field.
� Single pass on ps_2_0, ps_2_b.
� 6 reads of texture in total (diffuse OR bump) if DFC is

non-supported in GPU.
� If DFC supported it may be faster (but that is

compilation / hardware dependent).
� Diffuse texture RGBA (A channel stores preprocessed

binary height field)
� Bump map RGB, A channel is used for gloss map.
� 47 – 53 app. arithmetic slots used in a pixel shader.

� No iterations
� It is not per-fragment “ray-

tracing”
� Appearance is not a set of

patterns, like classic “fur
rendering” makes

� All pixels on a vertical “wall”
appear smoothly in a normal
direction

� Feature: sometimes small
details are still plane (like
fonts serif)…

� Not only 2 levels of height!

Bisplacement:

Combined with Advanced Shaders to
achieve cinematic realism

� Two levels of displacement is not enough to achieve
cinematic realism… But displacement is not an only way
that promise it.

� Bump-mapping is a relatively old method, [Blinn 1978], and
since that time a lot of techniques were developed. Good
overview of basic methods programming could be founded
in [Fernando-Kilgard 2003], or in various articles from web.

� Combining Bump Mapping with specular and diffuse terms
with bisplacement, a new level of realism could be achieved
in a single pass shader…

If you need bricks with mortar –
no need a 0…255 height field…

Take a look, and imagine, how
many polygons was used!

Do you still pray “LOD”?

� It is not easy to convince CG people: everybody believe that vertex
displacement is not for “current generation of games”.

� They say: “displacement is a good and old idea, but it was never used in
games via software tessellation “on the fly” on curved surfaces…”

� They say: “In a real-time, we need a sophisticated geometry LOD
processing”

� Empty pixels in quads must be pumped too…
� They say: “Rendering displacement map in hardware via vertex shaders was

introduced in Matrox Parhelia as a part of DirectX9, and we still do not have
any game title that supports it…”

� They say: “May be unified shader architecture could spend its power for
intensive vertex T&L…”

Heights in pseudo-colors:

It is not a vertex displacement!

Wire frame
representation of
octagon shape,
used to show
texture tiling

Bisplacement on
non-planar surface?
Easy.

Silhouette is smooth, unlike
“vertex” displacement
techniques, but this is not a
severe limitation of bisplacment

How about other 50%?

•You could compare images, generated via P.M. (left) and B.M. There is no Alpha channel in B.M., because
semi – transparent patterns make order – dependent artifacts. But all pixels, placed on a lowest plain, could
share same semi-transparent (or translucent) value.
•Notice: B.M. via 3 height field accesses makes much stronger appearance of relief, then P.M., and without
“texture doubling” artifact.
•There is no way to show such things via vertex displacement: if window contains 100 000 rings, we need
millions of triangles to preserve topology…

How about grazing angles?
� If anisotropic filtering is ON, no problem.
� Bisplacent does not substitute “true

displacement”, it is developed to make “near -
planar” surfaces look realistic

“Rusted wood“

Three color light sources!
Diffuse and Specular with specular control
map!
Fast Blinn shading (new implementation
saves n instructions in case of n lights!)
Fog support!
Stencil shadows and fog Supported
together!

Stencil shadows
(Carmack’s reverse +
double stencil!)

That is better in static:

Three color light sources used (no bisplacement)
Three shadows seen
Carmack’s reverse stencil shadows introduced in
Doom 3 !
Double stencil was a cool optimization (DirectX 9) to
make it faster!
MRT (ATI 9x00, NVIDIA 6x00) allow much faster
shadow mapping with multiple light sources!
Dedicated hardware Fog is available!

“Medieval
something”

Height map
could be
generated
directly from a
contrast image.

“Wicker Basket”

“Octagon Stars”: pattern with chamfers.

�Shiny reflex seems to appear in a
wrong place. But it is OK,
Camera has a very small FOV.

“Bronze Varnish”

�This pattern shows combination of high and small biases on surface.
�All effects are done using bisplacent and bump – mapping, texture is a common wood
pattern.
� Artistic notice: season rings on a wood has a different gloss. If you make it a same,
wood appears covered with varnish. Using just 2 colors, and a described trick, wood
appears as a cheap plastic with an “offset printed” wood pattern.

Wood craft

“Drops of Steel”

�“Drops” are simulated using bump-mapping, thanks to NVIDIA normal-map
generator plug-in for Photoshop.

“Smolensk Virgin”

Notice: this icon looks like a fake, because oil-painted part has a same
glossiness. If you need a more “life-like” icon, use a different gloss values
for different oil-painted parts, and simulate brush strokes in bump-mapping,
too.

“Iron Grid”

Same textures. Same shader.
Different materials.

“Material”, “Shader” and “Texture” are commonly mixed concept. Materials:
“Asbestos roof slate”, and “tin covered with zinc” share the same texture and
geometry, but gloss and bump make a deal. Shader is a same, too.
“Material” is something, that our mind recognize, this concept refers to a real life
experience.

Lightning model:

� Good lightning emphasizes a beauty of bisplacement mapping.
� There are 3 lights currently supported: 1 is static, and imitates sun, moon

or main light source in a room. Lightmap is calculated using that
lightsource and (if a lightmap generation software could), a
reflections/irradiance transfer in a scene. That makes a soft lightning, and
take in account light attenuation. Reflections from this light source is
multiplied with a specula component of lightmap. Surely, a bump-map
direction is used, when both diffuse and specular component computed.

� Another 2 lights are added: on a next sample they are made blue and
red. Only diffuse component taken in account, they used to make shape
much more relief and realistic. No attenuation computed.

� There is an ambient component, too, but it makes image less sharp,
hence they are always made close to 0.

� In a future work, a stencil shadows would be used for each of this 3 light
sources, if all 3 lightsources are shielded, ambient light would make
image nicer. (Nextgen shader would make a light attenuation, too).

� Surely, everything was generated in a single pass in a PS_2_0.

Realistic sunlight is an old problem in CG, and all that high dynamic stuff has
nothing in common with a sunlight simulation: do not multiply a texture RGB and
light, but add a specular component with a small exponent in a non – shadowed
areas, and use a realistically smoothed shadows.
Artistic notice: Grids of windows and plains of walls, floor and ceilings are
“linked” using shadows in a single impressive pattern.

Conclusion:

�Microsioft with their “Vista” OS, “NVidia” and “ATI” do a great job: customer’s
hardware became more ready and closer to a cinematic real time…
�Thanks for a tools they making, as well as Adobe, Mc Neel & Association, and
Fabio Policarpo for his plug-in for 3d Max, originally developed for his displacement
solution.
�Adding more and more brute force in hardware, more and more FPS and better
antialiasing could be achieved…
�But we are still very far from “Cinematic Quality in a real time” applications: it
require change in a mind of developers, but it is not easy to upgrade brains, as
simply, as advanced video card of 2002 with a one, made in 2006.
�So: it is not simply about realism. It is about technological leadership…

Future work
� Implement self shadowing term from a

“hemisphere light source”
� Achieve greater depths and higher

frequencies of height field in PS_3_0
� More material samples (ceramics, wood,

plastic, anisotropic etc.) and more 3d objects
with bisplacement…

� Apply Stencil Shadows in a multi-pass
rendering.

Some comments:
� *.fx, *.fxproj, *.x and all textures are available

upon request, after negotiations ☺
� Shaders were tested on ATI9800 and NVIDIA

6600GT, no visible difference.

Appendix: Vertex Shader
� vertexOutput VS_HeuristicalDisplacement(vertexInput IN)
� {
� vertexOutput OUT;
� OUT.hPosition = mul(float4(IN.position.xyz , 1.0) , worldViewProj);
� OUT.texCoordDiffuse = IN.texCoordDiffuse;
� OUT.texCoordBump = IN.texCoordDiffuse; ;

� // Calculate Vertex world space position.
� float4 pos = mul(worldViewProj, float4(IN.position.xyz, 1.f));

� // Build TBN matrix.
� float3x3 tbnMatrix;
�

� tbnMatrix[0] = mul(IN.tangent, world);
� tbnMatrix[1] = mul(IN.binormal, world);
� tbnMatrix[2] = mul(IN.normal, world);

� float3 worldEyePos = viewInverse[3].xyz;
�

� // Set the view direction; convert to texture space.
� OUT.viewDirect = worldEyePos - IN.position.xyz;
� OUT.viewDirect = normalize (mul((tbnMatrix), OUT.viewDirect));
�

� // Set the light direction; convert to texture space.
�

� OUT.lightDirection = lightPos - IN.position.xyz;
� OUT.lightDirection = normalize (mul((tbnMatrix), OUT.lightDirection));
� return OUT;
� }

Appendix: Fragment Shader
ps_2_0 or PS_2_b info.

� **
� Target: GeForce 6800 Ultra (NV40) :: Unified Compiler: v77.72
� Cycles: 34.50 :: R Regs Used: 6 :: R Regs Max Index (0 based): 5
� Pixel throughput (assuming 1 cycle texture lookup) 188.24 MP/s
� ===
� Shader performance using all FP16
� Cycles: 28.50 :: R Regs Used: 3 :: R Regs Max Index (0 based): 2
� Pixel throughput (assuming 1 cycle texture lookup) 228.57 MP/s
� ===
� Shader performance using all FP32
� Cycles: 34.50 :: R Regs Used: 6 :: R Regs Max Index (0 based): 5
� Pixel throughput (assuming 1 cycle texture lookup) 188.24 MP/s
� **
� PS Instructions: 60
� ps_2_0

PS_3_0 info
� **
� Target: GeForce 6800 Ultra (NV40) :: Unified Compiler: v77.72
� Cycles: 51.50 :: R Regs Used: 5 :: R Regs Max Index (0 based): 4
� Pixel throughput (assuming 1 cycle texture lookup) 125.49 MP/s
� ===
� Shader performance using all FP16
� Cycles: 46.50 :: R Regs Used: 4 :: R Regs Max Index (0 based): 3
� Pixel throughput (assuming 1 cycle texture lookup) 139.13 MP/s
� ===
� Shader performance using all FP32
� Cycles: 51.50 :: R Regs Used: 5 :: R Regs Max Index (0 based): 4
� Pixel throughput (assuming 1 cycle texture lookup) 125.49 MP/s
� **
� PS Instructions: 67
� ps_3_0

References
� [Blinn 1978], Blinn James F. “Simulation of Wrinkled Surfaces” Computer graphics vol.12 pp286 –

292. Proc. Siggraph 78. http://research.microsoft.com/users/blinn/
� [Fernando-Kilgard 2003] Kilgard Mark J. “The Cg Tutorial” Addison – Wesley 2003. “Chapter 8.

Bump Mapping” pp 199 – 233.
� [Kaneko 2001] Kaneko T. et Al “Detailed shape representation with parallax mapping”. In

Proceedings of the ICAT 2001 (The 11th international conference on artificial reality and
Teleexistence), Tokyo, Dec. 2001 pp.205-208

� [Welsh 2004] Welsh T. “Parallax Mapping with offset limiting: a Per Pixel approximation of uneven
surfaces”, 2004 http://www.infiscape.com/doc/parallax_mapping.pdf

� [Wang 2003] Wang L et al. “View dependent displacement mapping”, Siggraph 2003
� [Brawley – Tatarchuk 2004] Brawley Z, Tatarchuk N. “Parallax occlusion mapping: Self Shadowing,

Perspective correct bump-mapping using Reverse Height Map Tracing”, ShaderX3, 2004
� [Policarpo 2004] Policarpo Fabio “Relief Mapping in a Pixel Shader using Binary Search.”

http://www.paralelo.com.br/arquivos/ReliefMapping.pdf
� [Oliveira 2000] Oliveira Manuel. “Relief Texture Mapping”, Siggraph 2000

http://www.cs.unc.edu/~ibr/pubs/oliveira-sg2000/RTM.pdf
� [Kajiya 1996]]J. Torborg and J.T. Kajiya, "Talisman: Commodity Realtime 3D Graphics for the PC,"

Proc. ACM Conf. on Computer Graphics Conference(SIGGRAPH '96), ACM, New York, NY, 1996,
pp. 353-363.

� [Donnelly 2005] “Per Pixel Displacement Mapping with Distance Functions” GPU Gems2 2005
� [McGuire 2005] McGuire Morgan, McGuire Max. “Steep Parallax Mapping” I3D 2005.
� [Lobel 2004] Lobel Robin. www.divideconcept.net

http://research.microsoft.com/users/blinn/
http://www.cs.unc.edu/~ibr/pubs/oliveira-sg2000/RTM.pdf

	How to get �“cinematic real-time”? �Progress in bisplacement shader development
	Bisplacent? Why not displacement?
	 �Something like this:
	Not like this: ��
	What wrong with parallax mapping?
	Seems, this problem was solved long ago…
	Hypercube?…
	As a research problem – No doubt. But!
	Technological demos shaders are not “in game” shaders!
	In a blue corner of a ring…
	IMPATIENCE?
	…and use Bisplacement!
	Bisplacement:
	Combined with Advanced Shaders to achieve cinematic realism
	If you need bricks with mortar – no need a 0…255 height field…
	Take a look, and imagine, how many polygons was used!
	Do you still pray “LOD”?
	Heights in pseudo-colors:
	 It is not a vertex displacement!
	Bisplacement on�non-planar surface? �Easy. �
	How about other 50%?
	How about grazing angles?�
	
	Stencil shadows (Carmack’s reverse + double stencil!)
	That is better in static:
	Same textures. Same shader.�Different materials.
	Lightning model:
	Future work
	Some comments:
	Appendix: Vertex Shader
	Appendix: Fragment Shader ps_2_0 or PS_2_b info.
	PS_3_0 info
	References

