Program Verification using Hoare Logic
- An Introduction -

Peter Heinig

Technical University of Munich

March 2007, JASS 2007



Proving Programs Correct

9000000000000 000O000O0O000O0O00000

function recursive(x,y)




Proving Programs Correct

9000000000000 000O000O0O000O0O00000

function recursive(x,y)
Exzzo
disp (y);




function recursive(x,y)

if x ==
disp (y);
else
recursive(x-1,y+1);
end
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function recursive(x,y)

E x == 0
disp (y);
else

recursive(x-1,y+1);
end
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xeNg N ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end

If the program terminates, the value of x + y gets printed.
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[x €ENg AN ye Z]
function recursive(x,y)
A 7 =
disp (y);
else
recursive(x-1,y+1);
end

[If the program terminates, the value of x + y gets printed.}

How can we prove this assertion?
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[x €ENg AN ye Z]
function recursive(x,y)
A 7 =
disp (y);
else
recursive(x-1,y+1);
end

[If the program terminates, the value of x + y gets printed.}

How can we prove this assertion? Easy.
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[x eNo AN ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end

[If the program terminates, the value of x + y gets printed.}
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[x eNo AN ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end

[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
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[x eNo AN ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end

[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
If [x = 0], then
Vy €Z: [recursive x,y)

Function Definition
] = [

y = x + y gets printed].
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[x eNo AN ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end

[If the program terminates, the value of x + y gets printed.}
Proof of Correctness: (Induction on the first argument)
If [x = 0], then

Vy €Z: [recursive x,y)
Now assume that for some 0 < x € Ny :

Function Definition
] = [

y = x + y gets printed].
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[x eNg A ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end
[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
If [x = 0], then
Vy €Z: [recursive x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [recursive (x,y)] = [x + y gets printed].

] Function:IQefinition [y —x+y gets printed]



Proving Programs Correct

0000@00000000000000O0O0000O00000

[x eENg AN ye€ Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);

end
[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
If [x = 0], then
Vy €Z: [recursive x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [recursive (x,y)] = [x + y gets printed].

Then [recursive (x+1 ,y)}

] Function:IQefinition [y —x+y gets printed]
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[x eNg A ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end
[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
If [x = 0], then

Vy €Z: [recursive x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [recursive (x,y)] = [x + y gets printed].

Function Definition
=

Function Definition
] = [

y = x + y gets printed].

Then [recursive(x+1,y)} [recursive(x,y+1)}

|nductiveé>ssumpti0" [x + (y + 1) gets printed],



Proving Programs Correct

0000@00000000000000O0O0000O00000

[x eNg A ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end
[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
If [x = 0], then
Vy €Z: [recursive x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [recursive (x,y)] = [x + y gets printed].

Function Definition
=

Function Definition
] = [

y = x + y gets printed].

Then [recursive(x+1,y)} [recursive(x,y+1)}

Inductive,:’-\>ssumption [X + (y + 1) gets printed],
and x+ (y+1)=(x+1)+y.
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[x eNg A ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end
[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
If [x = 0], then
Vy €Z: [recursive x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [recursive (x,y)] = [x + y gets printed].

Function Definition
=

Function Definition
] = [

y = x + y gets printed].

Then [recursive(x+1,y)} [recursive(x,y+1)}

Inductive,:’-\>ssumption [X + (y + 1) gets printed],
and x+ (y+1)=(x+1)+y.



Proving Programs Correct

00000@0000000000000O0O0000O00000

function iterative(x,y)
while x > 0O
X = x-1;
y = y+i;
end
disp (y);
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function iterative(x,y)
while x > O

x = x-1;
y = y+i
end

disp (y);
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function iterative(x,y)
while x > 0

x = x-1;
y =yl
end
disp (y);

If the program terminates, the value of x + y gets printed.
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[XGNO /\yEZ}
function iterative(x,y)
while x > O

x = x-1;
y = ¥+l
end
disp (y);

[If the program terminates, the value of x + y gets printed.}

How can we prove this assertion?
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[XGNO /\yEZ}
function iterative(x,y)
while x > O

x = x-1;
y = ¥+l
end
disp (y);

[If the program terminates, the value of x + y gets printed.}

How can we prove this assertion? Easy?
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00000000@0000000000O0O0000O00000

[XGNO /\yEZ}
function iterative(x,y)
while x > O

x = x-1;
y = ¥+l
end
disp (y);

[If the program terminates, the value of x + y gets printed.}

How can we prove this assertion? Easy? Lets try it again.



Proving Programs Correct The Hoare Rules

000000000 e0000000000O0000O00000

Applications

function iterative(x,y)
while x > O

X = x-1;
y =yl
end

disp (y);
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The Hoare Rules

Applications

function iterative(x,y)
while x > O

X = x-1;
y = y+i;
end
disp (y);

Proof of Correctness:
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function iterative(x,y)
while x > O

X = x-1;
y = y+i;
end
disp (y);

Proof of Correctness: (Induction on the first argument
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The Hoare Rules

function iterative(x,y)
while x > O

X = x-1;
y = y+i;
end
disp (y);

Proof of Correctness: (Induction on the first argument 777)
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function iterative(x,y)
while x > O
X = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then

Vy € Z: [iterative (x,y)]

Function Definition
=

[y = x + y gets printed].
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function iterative(x,y)
while x > O
X = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then

Vy € Z: [iterative (x,y)]
Now assume that for some 0 < x € Ny :

Function Definition
=

[y = x + y gets printed].
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function iterative(x,y)
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Vy € Z: [iterative(x,y)] = [x + y gets printed].

Function Definition
=

[y = x + y gets printed].
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function iterative(x,y)
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end
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If [x = 0], then
Vy € Z: [iterative (x,y)]
Now assume that for some 0 < x € Ny :
Vy € Z: [iterative(x,y)] = [x + y gets printed].

Function Definition
=

[y = x + y gets printed].

Then [iterative (x+1 ,y)}
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function iterative(x,y)
while x > O
X = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then
Vy € Z: [iterative (x,y)]
Now assume that for some 0 < x € Ny :
Vy € Z: [iterative(x,y)] = [x + y gets printed].

Function Definition
=

[y = x + y gets printed].

. . A ion Definiti
Then [1terat1ve(x+1,y)} unction gefinition
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function iterative(x,y)
while x > O
X = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then
Vy € Z: [iterative (x,y)]
Now assume that for some 0 < x € Ny :
Vy € Z: [iterative(x,y)] = [x + y gets printed].

Fu nction:I?efinition [?}

Function Definition
=

[y = x + y gets printed].

Then [iterative (x+1 ,y)}
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function iterative(x,y)
while x > 0
x = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then

Vy € Z: [iterative (x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [iterative(x,y)| = [x + y gets printed].

Function Definition [ q
unctieneinen literative (x+1,y)]

Function Definition
] = [

y = x + y gets printed].

Then [iterative (x+1 ,y)}
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function iterative(x,y)
while x > 0
x = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then

Vy € Z: [iterative (x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [iterative(x,y)| = [x + y gets printed].

Function Definition [ q
unctieneinen literative (x+1,y)]

Function Definition
] = [

y = x + y gets printed].

Then [iterative (x+1 ,y)}
Useless.
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function iterative(x,y)
while x > 0
x = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then

Vy € Z: [iterative (x,y)]
Now assume that for some 0 < x € Ny :
Vy € Z: [iterative(x,y)| = [x + y gets printed].

Function Definition [ q
unctieneinen literative (x+1,y)]

Function Definition
=

[y = x + y gets printed].

Then [iterative(x+1,y)}
Useless.
We need new tools.
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What is the problem?

@ No expression replacement rule anymore.

@ Assignments.

o While loop.

o Variables exist in different states during execution.
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Adapting to the new situation:

[x eNg A ye Z}
function iterative(x,y)
while x > 0

x = x-1;
y = yti;
end
disp (y);

[If the program terminates, the value of x + y gets printed.]
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Taking care of states:

{A €Nyp A BEZ N iterative(A,B) is called.
function iterative(x,y)
{X:AGNQ A y:BeZ}
while x > 0

x = x-1;
y = yti;
end
disp (y);

If the program terminates, the value of A + B gets printed.}
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[A €Ng A BEZ A iterative(A,B) is called.
function iterative(x,y)
P:AeNoAy:Bed
while x > 0

x = x-1;
y = y+i
end
disp (y);

[If the program terminates, the value of A + B gets printed.}
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Clearly:

[A€No A BEZ A iterative(s,B) is called.
function iterative(x,y)
[X:AGNO A y:BGZ] =

{x+y:A+B /\XZO}
while x > 0

x = x-1;
y = v+l
end
disp (y);

[If the program terminates, the value of A + B gets printed.}
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[AGNO/\BEZAlteratlve(A B) is called.
function iterative(x,y)
[x AENO/\y—BEZ}é
[ery A+BAX>O}

while x > 0
{ery A+BAx>o}Ax>0}

= x-1;

y = y+1;
end

disp (y);

[If the program terminates, the value of A + B gets printed.}
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We claim that this is a loop invariant

AceNy A BEZ A iterative(A,B) is called.
function iterative(x,y)
x=AeNy A y—BeZ}

while x > 0

|
[
[x-l—y A+ B /\x>0}
[x+y A+B A x>0 /\x>0]

x = x-1;
y = y+i;
{x+y:A+B A x20]
end
disp (y);

[If the program terminates, the value of A + B gets printed.}
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AceNyg A BEZ N iterative(A,B) is called.
: function iterative(x,y)
x=AeNy A y:BeZ} =

x+y=A+B szo]
~ while x > 0
[x+y=A+B A x20] A x>0
) x = x-1;
x+(y+1)=A+B AXEO]
) y = y+1;
{x+y:A+B A xzo}
end
disp (y);

[If the program terminates, the value of A + B gets printed.}
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AeENg AN BeZ A iterative(A,B) is called.
: function iterative(x,y)
x=A€eNy /\y:BeZ}:>
Xx+y=A+B A xzo}
~ while x > 0
[x—l—y:A—i—B N XZO} /\X>O]
(x-1)+(y+1)=A+B A (xfl)EO}
) x = x-1;
{x+(y+1):A+B A xzo}

y = v+l
[x+y:A+B A xzo}
end
disp (y);

[If the program terminates, the value of A + B gets printed.}
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AeENg AN BeZ A iterative(A,B) is called.

: function iterative(x,y)

x:AeNo/\y:BeZ}#

x—|—y:A+B/\x20}

~ while x > 0

[+y:A+BAx20}Ax>0}

(x-1)+ (y+1):A+BA(x_1)zo]
x = x-1;

x+(y+1):A+BAx20]

) y = v+l

x+y:A+BAx20]

- end

disp (y);

[If the program terminates, the value of A + B gets printed.}



Proving Programs Correct

0000000000000 O00000000e0000000

AeENg AN BeZ A iterative(A,B) is called.
: function iterative(x,y)

x=A€eNy /\y:BeZ}:>
Xx+y=A+B A xzo}

~ while x > 0

[x+y:A+B A XEO} A x>0}:&
(x-1)+(y+1)=A+B A (xfl)EO}
) x = x-1;

x+(y+1)=A+B szo}

Y =yt

X+y=A+B A xzo}

- end

disp (y);

[If the program terminates, the value of A + B gets printed.}
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AeENg AN BeZ A iterative(A,B) is called.
function iterative(x,y)
x=A€eNy /\y_BeZ}:>

while x > 0

|
[
[x-i—y A+ B /\x>0}
{ery A+ B /\x>0} Ax>0}¢
‘

(x—1)+(y+1) = A'BA(x71)>O}
x = x-1;
(y+1)_A+B/\x20]
§ y = y+l;
x+y:A+BAx20]
~ end
disp (y);

[If the program terminates, the value of A + B gets printed.}
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AcENyg N BEZ A iterative(A,B) is called.
_ function iterative(x,y)
x=A€eNo Ay:Bez}:»
[x+y=A+8B szo]
~ while x > 0
[X+y:A+B /\XZO] /\X>0]:>
(x—1)+(+1)=A+B A (x_1)zo]
x = x-1;
{x+(y+1)=A+B A xzo]
y = y+i;
{x+y=A+B szo]
end
disp (y);

{If the program terminates, the value of A+ B gets printed.
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AeNyg N BeEZ N iterative(A,B) is called.

~ function iterative(x,y)

x:AGNo/\y:BGZ}é

'x+y:A+Bszo]

~ while x >0

[x+y=A+B A x20] A x>0| =

(x—1)+(y+1):A+B/\(x—1)20]
= x-1;

{x+(}/+1 A+B/\x20]
y+i;

{ery A+BAX>O]

I

{

x+y—A+B A x>0] A ﬁ[x>oﬂ
disp (y);
If the program terminates, the value of A + B gets printed.
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AeNyg N BeEZ N iterative(A,B) is called.

~ function iterative(x,y)

x:AGNo/\y:BGZ}é

'x+y:A+Bszo]

~ while x >0

[x+y=A+B A x20] A x>0| =

(x—1)+(y+1):A+B/\(x—1)20]
= x-1;

{x+(}/+1 A+B/\x20]
y+i;

{ery A+BAX>O]

I

{

x+y—A+B A x>0] A ﬁ[x>oﬂ =
disp (y);
If the program terminates, the value of A + B gets printed.
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[A€No A BEZ A iterative(s,B) is called.
_ function iterative(x,y)

x=A€cNy A y:BEZ} =
[x+y=A+B A xzo]

: while x > 0

[x—l—y:A—Q—B A XZO] A X>0]:>
(x—D)+(+1)=A+B A (xfl)ZO]

x = x-1;

x+(y+1)=A+B A xzo]
y =yt
x+y A+B A X>0]

X+y= A+BAX7@

{
|
{x+y*A+B A x20] A =[x >0]] =
|
disp (y);

|

If the program terminates, the value of A + B gets printed.
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[A€No A BEZ A iterative(s,B) is called.
_ function iterative(x,y)

x=A€cNy A y:BEZ} =
[x+y=A+B A xzo]

: while x > 0

[x—l—y:A—Q—B A XZO] A X>0]:>
(x—D)+(+1)=A+B A (xfl)ZO]

x = x-1;

x+(y+1)=A+B A xzo]
y =yt
x+y A+B A X>0]

xX+y= A+B/\xf0} {y:AJrB}

{
|
{x+y*A+B A x20] A =[x >0]] =
|
disp (y);

|

If the program terminates, the value of A + B gets printed.
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[A€No A BEZ A iterative(s,B) is called.
_ function iterative(x,y)

x=A€cNy A y:BEZ} =
[x+y=A+B A xzo]

: while x > 0

[x—l—y:A—Q—B A XZO] A X>0]:>
&flyHy+U:A+BA(x—Uzq

x = x-1;

x+(y+1)=A+B A xzo]
y =yt
x+y A+B A X>0]

X+ty=A+B A xfo] [y:AJrB}

{
|
{x+y—A+B A x20] A =[x>0]] =
|
disp (y);

{

If the program terminates, the value of A + B gets printed. O
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Proving Programs Correct The Hoare Rules
®0000

What have we done? What will we do?

@ What, exactly, did we proof, after all? And what not?

@ How can we codify what we have done and will have to do
next time?

@ What are the underlying rules of reasoning?
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@ The specification was:
AcNg AN BeZ N iterative(A,B) is called.}

PROGRAM

[If the program terminates, the value of A+ B gets printed.}
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What we did proof:

@ Partial Semantic Correctness of the function iterative(x,y)
with respect to some specification.
@ The specification was:
AcNg AN BeZ N iterative(A,B) is called.}

PROGRAM

[If the program terminates, the value of A+ B gets printed.}

@ Semantic denotes that we were concerned with the meaning of
the program. We are not concerned with the syntax of the
program.



Partial Correctness means:

There does not happen anything
contradicting the specification.



In particular, for partial correctness it is allowed that:
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In particular, for partial correctness it is allowed that:

@ The program never terminates.

@ The program does terminate, the specification is fulfilled,
and something not to be found in the specification happens
in addition to that.

Yet we will be content with partial correctness and
will go on to concern ourselves with only that.

@ Total correctness means:

The program terminates,
and there does not happen anything
contradicting the specification.

@ Proving that a program terminates can be hard.
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Codification of what we did: The Hoare Rules

@ C. A. R. Hoare 1969:
An Axiomatic Basis for
Computer Programming

C. A. R. Hoagre
The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer

programs.
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Predicates

A predicate is a function from some set D
to the set {true, false }:

P:D — {true,false}
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The Mathematical Structure of the Hoare Rules

Essential ingredient: Hoare Triple: [[P} S [QH
A Hoare Triple is itself a predicate
H : {true,false} x M x {true, false} — {true,false},

where the predicates [P] and [Q] provide the first and third
argument, and

the set M denotes the set of all syntactically correct programs
in some programming language,

and the value of {[P] S [Q]} is defined as follows:
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When is a Hoare Triple true, when is it false?

[[P] S [Q]} = true

If the predicate [P] is true immediately before execution of the
program S € M, then immediately after S has terminated, the
predicate [Q] is true.
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The rules often take the following form:

) ) A formula _
involving predicates and Hoare Triples.

A Hoare Triple whose program fragment
comprises the fragments used in the Hoare Triples above.

@ Example:

[[P/\B] S [PH
[[P] - [P“BH
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The rules often take the following form:

A formula
involving predicates and Hoare Triples.

A Hoare Triple whose program fragment
comprises the fragments used in the Hoare Triples above.

@ Example:
[pre) S [7]]

[[r] whileBdo O end [rn-a]]

-~

uses S and is therefore larger than it.
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The Rules




The Hoare Rules
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e
[[P} i melfpersiien [PH
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Rule 1: Axiom of Assignment

e
[Pewsssaor ] x=55 [7]]
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Rule 1: Axiom of Assignment
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Rule 1: Axiom of Assignment




Rule 2: Rule of Consequence







Rule 4: Rule of Iteration

[[PAB} S [pH

[[P} while Bdo O end [P/\ﬂBH




Rule 5: Rule of Conditional Branching

[[[MB] S [a]] A

[[P] if Bdo O else

1

vl T (]

Tt [q]

Q.
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Swapping without moving...

P:AAy:B}

P:BAy:A}



Applications
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Annotating the Program with Assertions

_x:A/\y:B

X =Xx+ty;
A S 4
"X =X - ¥,

_x:B ANy=A
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o]
]

X+y;

y=x-y;

Xafter = Xbefore — Ybefore 3

Xafter = B A Yafter = A
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Xafter — Xbefore — Ybefore > Yafter — Ybefore

Xafter = B A Yafter = A
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X =x +y;
Yy =x-y;
Xpefore — Ybefore = B A\ Ybefore = A}
Xafter — Xbefore — Ybefore > Yafter — Ybefore

Xafter = B A Yafter = A}
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X =x+ty;
Xf(xfy):B/\xfy:A}
Y =x-¥
x—y:B/\y:A}

X=X -Y;
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Using the Hoare Rules

7X:A/\_y:B:>

(x+y) = ((x+y) =) =B A (x+y)—y = A

X=X+y,

-(x-y)= B/\x—y:A}
:Y=X—y,

—y= BAy:A}
X=X -7Y;

:x:B /\y:A}
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Using the Hoare Rules

7X:A/\_y:B:>

(x+y)=((x+y)—y)=B A (x+y)-y=A

7x=X+y;
X*(X*)/):B/\Xfy:A}
Y =X -y
x—y:B/\y:A}

X=X -7YV;

:x:B /\y:A}
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_X:A/\y:B —

4 = ((x+y) = y) =B A (x+y) -y =A

x=xty;

x—(x=y)=B A x—y=A|

Yy =X -y

x—y=BANy= A} Here the rule is applicable:
A (GG /]S [e] » [o]~[2]]

(719 [al]

x=BAy=4
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X =X +y;
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X =X +ty;
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Y =X -y

x—y=BANy= A} Here we have to see an implication.
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_X:A/\y:B —

kX+ﬂ—«X+m—y%:BA(x+M—y:A}

X =X +ty;

X—(X—Y):BAX—)/:A}

Y=x-7;

x—y=BA y:A} And there actually is one; let Q = Q.
ey =[] » [1O ][] » [o]~[e]]

x=BAy=4
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(+9)— (x+1)=y) =B A (x+y)—y =4

X =x+y;

x—(x—y)=8B /\x—y:A}
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_X:A ANy=Bl =
(x+y) = (x+y)=y) =B A (x+y) =y =A

X=X +y;
x—(x—y)=B A x—y:A}
Y=z
x—y=B A y:A} And one step in the program is proved.
[[F]+[7] » []D [a] » [o]=[a]]
X=X -7Y;

[[7] S [2]]

P:BAy:ﬂ
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_X:A/\y:B =
kX+m—«X+m—y%:BA(x+M—y:A}

x=xty;

x—(x—y)=B A X—y:A}

Yy =X -y

x—y=BA y:A} We could go on like that ...
ee g (A= S ~ (o[

(1719 [a]]

x=BAy=4
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Finding suitable invariants may be not that easy.
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while x <y || y < x
lgcd(x,) = gcd(A, B)] A [x#y] A [N3x>1] A [N3y>1]]
if x <y
o= Y=
else
X = X-y;
end

“gcd(x, ) =gcd(A,B)] A [N3x>1] A [NayZlH
end

“gcd(x,y) = gcd(A,B)] A =[x#y] A [N3x>1] A [Noy> 1]]
[If the program terminates, x = y = gcd(A, B)]
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Proof that x = y = gcd(A, B)
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y=7¥X
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Proof that x = y = gcd(A, B)

[N>A>1] A [N3B>1] A [£(A,B) is called ]|
functlon result = £(x,y)
{ ]/\[NBXZI}/\[NSyZlHﬁ
{gcdxy)_gchB)] ANSx>1] A [N3y>1]]
while x <y || y < x

[ged(x, y) = ged(A, B)] A [x#y}/\[NBle]/\[NByZlH
if x <y
y =y-x
else
X = X-y;
end
“gcd(x,y):gcd(A,B)] AN3x>1] A [N9y>1”
end

[[scd(x, v) = ged(A, BY] A —[x#y] A [N3x21] A [N3y>1]]
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Applications

[N3A>1] A [N3B>1] A [£(4,B) is called ]|

function result = £(x,y)

[x=A] A [y=B] A [Nox>1] A [N3y>1]] =

[[cd(x,y) = ged(A, B)] A [N3x>1] A [N3y>1]]
while x <y || y < x

“gcd(x,y):gcd(A,B)] Ax#y] A [N3x>1] A [Nayzq}

[

if x <y
Y = y-x;
else
X = X-y;
end
Q]
[ged(x,y) = ged(4,B)] A [N3x>1] A [N3y>1]]
end

[ged(x,y) = ged(A,B)] A =[x #y] A [N3x>1] A [Nayzl}]

If the program terminates, x = y = gcd(A, B)]
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Proving Program

= gcd(A, B)

[N2A>1] A [N3B21] A [£04,B) is called ]|

functlon result = £(x,y)

[[x= Bl A [N3x21] A [Nay>1]] =

{gcdxy)fgch B) A [Nax>1] A [N3y>1]]
while x <y || y < x

“gcd x,y) = ged(A, B)] A

Let [P] == [[ged(x, ) = ged(A,

if x <y

y-%;

[x#y] A [N2x>1] A [NayZlH

B)] A

[x#y] A [Nox>1] A [N3y>1]]

n

else

X-Yy;

2. M

Let [Q] : Ugcd(x,y):gcd(A,B)J AN3x>1] A [Nsyzlj]
“gcd(x y) =gcd(A,B)] A [N2x>1] A [Nayzl}]
end

[lecd(x,y) = gcd(A, B)] A =[x #y] A [N3x>1] A [N3y>1]]

{If the program terminates, x = y = gcd(A, B)]

Applications




Proof that x = y

= gcd(A, B)

Applications

[N>A>1] A [N3B>1] A [£4,B) is called.]
functlon result = £(x,y)
=B A [N3x>1] A [N3y>1]] =
gcdxy)fgchB)] ANSx>1] A [N3y>1]]
whllex<y||y<x
y)=gcd(AB)] A [x#y] A [N3x21] A [N3y>1]]

B) A [x#y] A [N3x>1] A [N3y>1]]

I
b=
|
|
Let [P ] “gcd x,y) = gcd(A,
if x <y

= y-
(<]

X3

=
n

e

X

Yi

2. M

en

Let [@] = [[ged(x,y) =gcd(A,B)] A [N3x>1] A [N3y>1]]

“gcd(x,y):gcd(A,B)} ANSx>1] A [Nayzl}]
end
“gcd(x,y):gcd(A,B)] A=[x#y] A[N3x>1] A [NByZl}]

{If the program terminates, x = y = gcd(A, B)]



Proof that x = y

Applications

= gcd(A, B)

[N2A>1] A [N3B21] A [£04,B) is called ]|

functlon result = £(x,y)

[[x= Bl A [N3x21] A [Nay>1]] =

{gcdxy)fgchB)] ANSx>1] A [N3y>1]]
while x <y || y < x

“gcd x,y) = ged(A, B)] A

[

Pl = [[gcd(x y) = gcd(A, B)] A

[x#y] A [N2x>1] A [NayZlH
[x#y] A [N3x21] A [N3y>1]]

if x <y
y=yx%
else
X = X-Y;
end

Q] = [[gcd(x,y) =gcd(A,B)] A [N3x>1] A [N3y>1]]
[ged(x,¥) = ged(A,B)] A [N3x>1] A [N3y>1]]

end

[
|
[[gcd(x,y) = ged(4, B)] A —|[x7$y] ANSx>1] A [N3y>1]]
|

If the program terminates, x =y = ged(A, B)]



Proving Program Applications

The inner block

[P] = [[gcd(x,y):gcd(A,B)] A[x#y] A[Nox>1] A [Nayzl}]
if x <y

[Q] = [[gcd(x.y) = gcd(A. B)] A [N3x>1] A [N3y>1]]



Applications

The Rule of Conditional Branching demands:

[P] = [[gcd(x,y):gcd(A,B)] Ax#y] A[N3x>1] A [Nayzl}]
if x <y
Ugcd(x,y):gcd(A,B)} A[x#y] AN[Nox>1] A [Ny >1] A [x<y}]

y = ¥y-x
Ugcd(x,y):gcd(A,B)} ANax>1] A [Nayzl}]
else

[lecd(x,v) = ged(A,B)] A [x#y] A [N3x>1] A [N3y>1] A =[x<y]]

X = X-y;
Ugcd(x,y):gcd(A,B)} ANax>1] A [Nayzl}]

[Q] = [[gcd(x,y)zgcd(A,B)] AN3x>1] A [Nayzq]



Proving Programs Correct The Hoare Rules Applications

By the Axiom of Assignment:

[P] = [[gcd(x,y):gcd(A,B)] Ax#y] A[N3x>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] A[x#y] AN[Nox>1] A [Ny >1] A [x<y]]
7[gcd(x,yfx):gcd(A,B)} AN3x>1] A [Nayfleﬂ
i y = ¥y-x
“gcd(x,y):gcd(A,B)] ANSx>1] A [Nayzl}]
else
;[gcd(x,y):gcd(A,B)] A[x#y] AN[Nox>1] A [Ny >1] A ﬂ[x<y]]
7[gcd(xfy,y):gcd(A,B)] A[Nax—y>1] A [NSyEl]]

X = X-Y;

“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

(@] = [[gcd(x,y) =gcd(A,B)] A [No>x>1] A [Noy> 1}]



Applications

There are the implications:

[P] = [[gcd(x,y):gcd(A,B)] Ax#y] A[N3x>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] A[x#y] AN[Nox>1] A [Ny >1] A [x<y]] =
-[gcd(x,y—x):gcd(A,B)} AN3x>1] A [Nay—le]]
i y = ¥y-x
“gcd(x,y):gcd(A,B)] ANSx>1] A [Nayzl}]
else
;[gcd(x,y):gcd(A,B)] Alx#y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(xfy,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]

X = X-Y;

“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

(@] = [[gcd(x,y) =gcd(A,B)] A [No>x>1] A [Noy> 1}]



Applications

[(Pre] S [a] a [Pa-e] T [Q]H

We invoke the rule:

[[p] if B do @@Tm [Q]]

[P] = [[ecd(x,y) = gcd(A, B)] A [x#y] A [N3x21] A [N3y>1]]
if x <y

[[ecd(x,y) = ged(A,B)] A [x#y] A [Nox>1] A [N3y>1] A [x<y]| =
{ xy—x)—gcd(AB)}/\[NBXZI]/\[NB)/—XZI]]

y = ¥-%
{gcdxy)_gchB)]/\[NBXEI}/\[NByEIH

else
[[ecd(x,y) =gcd(A,B)] A [x#y] A [N2x>1] A [N3y>1] A =[x<y]| =
{ x—yy)*gcd(AB)]/\[NSx—yZl}/\[NSyZlH

X = X-y;
{gcdxy)_gchB)]/\[NBXEI}/\[NayEIH

end
[Q] = [[gcd(x,y) =gcd(A,B)] A [N>x>1] A [Noy> 1}]



Proving Programs Correct The Hoare Rules Applications

Where: if Bdo O else do T end Q]

[P] = “gcd(x.y):gcd(A,B)J A [x#y] ANax>1] A NSyEl”
i if x <y
_[gcd(x,y):gcd(A,B)] Af[x#y] AN[Nox>1] A [N3y>1] A [x<y]] =

:[gcd(x,y—x):gcd(A,B)} AN3x>1] A [NBy—le]]

y=y-x
“gcd(x,y):gcd(A,B)] AN2x>1] A [Nayzl}]
else

;[gcd(x,y):gcd(A,B)] Alx£y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(x—y,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]
X = x-y;
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

[Q] = [[ecd(x,y) = gcd(A,B)] A [N3x>1] A [N3y>1]]




Proving Programs Correct The Hoare Rules Applications

Where: [P] do S else do T end [Q}

[P] = [[gcd(x,y):gcd(A,B)] A[x#y] A[Nox>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] A[x#y] AN[Nox>1] A [N3y>1] A [x<y]] =

:[gcd(x,y—x):gcd(A,B)} AN3x>1] A [NBy—le]]

y=y-x
“gcd(x,y):gcd(A,B)] AN2x>1] A [Nayzl}]
else

;[gcd(x,y):gcd(A,B)] Alx£y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(x—y,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]
X = x-y;
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

[Q] = [[ecd(x,y) = gcd(A,B)] A [N3x>1] A [N3y>1]]




Proving Programs Correct The Hoare Rules Applications

Where: [P]

[P] = [[gcd(x,y):gcd(A,B)] A[x#y] A [Nox>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] Af[x#y] AN[Nox>1] A [N3y>1] A [x<y]] =

:[gcd(x,y—x):gcd(A,B)} AN3x>1] A [NBy—le]]

y=y-x
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
else

;[gcd(x,y):gcd(A,B)] Alx£y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(x—y,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]
X = x-y;
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

[Q] = [[gcd(x,y) = gcd(A,B)] A [N3x>1] A [N3y>1]]




Proving Programs Correct The Hoare Rules Applications

Where: [P] if B dod do T end [Q}

[P] = [[gcd(x,y):gcd(A,B)] A[x#y] A [Nox>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] Af[x#y] AN[Nox>1] A [N3y>1] A [x<y]] =

:[gcd(x,y—x):gcd(A,B)} AN3x>1] A [NBy—le]]

y=y-x
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
else

;[gcd(x,y):gcd(A,B)] Alx£y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(x—y,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]
X = x-y;
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

[Q] = [[gcd(x,y) = gcd(A,B)] A [N3x>1] A [N3y>1]]




Proving Programs Correct The Hoare Rules Applications

Where: [P]

[P] = [[gcd(x,y):gcd(A,B)] A[x#y] A[Nox>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] Af[x#y] AN[Nox>1] A [N3y>1] A [x<y]] =

:[gcd(x,y—x):gcd(A,B)} AN3x>1] A [NBy—le]]

y=y-x
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
else

;[gcd(x,y):gcd(A,B)] Alx£y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(x—y,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]
X = x-y;
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

Q] = [[gcd(x,y) = gcd(A,B)] A [N3x>1] A [N3y>1]]




Proving Programs Correct The Hoare Rules Applications

Where: [P]

[P] = [[gcd(x,y):gcd(A,B)] A[x#y] A [Nox>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] A[x#y] AN[Nox>1] A [N3y>1] A [x<y]] =

:[gcd(x,y—x):gcd(A,B)} AN3x>1] A [NBy—le]]

y=y-x
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
else

;[gcd(x,y):gcd(A,B)] Alx£y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(x—y,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]
X = X-y;
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

(@] = {igcd(x,y) =gcd(A,B)] A [Nox>1] A [Noy> 1H




Applications

So the inner block is proved.

[P] = [[gcd(x,y):gcd(A,B)] Ax#y] A[N3x>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] A[x#y] AN[Nox>1] A [Ny >1] A [x<y]] =
-[gcd(x,y—x):gcd(A,B)} AN3x>1] A [Nay—le]]
i y = ¥y-x
“gcd(x,y):gcd(A,B)] ANSx>1] A [Nayzl}]
else
;[gcd(x,y):gcd(A,B)] Alx#y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(xfy,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]

X = X-Y;

“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

(@] = [[gcd(x,y) =gcd(A,B)] A [No>x>1] A [Noy> 1}]



Applications

[N>A>1] A [N3B>1] A [£4,B) is called.]
functlon result = £(x,y)
Bl A [N3x>1] A [Noy>1]] =

{gcdxy)fgchB)] ANSx>1] A [N3y>1]]
while x <y || y < x

“gcdxy)_gchB)] [x;ﬁy}/\[NBxEl]/\[NSyZlH
[

Pl = [[gcd(x y) = gcd(A, B)] A
if x <y
y y-x
else
enz
Q] = [[gcd(x,y) =gcd(A,B)] A [N3x>1] A [N3y>1]]

[ged(x,¥) = ged(4,B)] A [N3x>1] A [N3y>1]]

[x#y] A [N3x21] A [N3y>1]]

X-Yy;

end

[
|
[[gcd(x,y) = ged(4, B)] A —|[x7$y] ANSx>1] A [N3y>1]]
|

If the program terminates, x = y = gcd(A, B)]



Proving Programs Correct The Hoare Rules Applications

Thus, in our main proof:

[N>A>1] A [N3B>1] A [£4,B) is called.]
functlon result = £(x,y)
Bl A [N3x>1] A [Noy>1]] =

{gcdxy)fgchB)] ANSx>1] A [N3y>1]]
while x <y || y < x

“gcdxy)_gchB)] [x#y}/\[NSle]/\[NSyZlH

[

P] = [[gcd(x,y) =gcd(A,B)] A [x#y] A [Nox>1] A [N3y>1]]
if x <y
y =y-x
else
X
end

Q] = {gcd x,y) = gcd(A,B)] A [N3x>1] A [NByEl”
[ged(x,¥) = ged(A,B)] A [N3x>1] A [N3y>1]]

X-Yy;

end

[
|
[[gcd(x,y) = ged(4, B)] A —|[x7$y] ANSx>1] A [N3y>1]]
|

If the program terminates, x =y = ged(A, B)]



There are three collisions left; trivially:

Applications

[N2A>1] A [N3B21] A [£04,B) is called ]|
functlon result = £(x,y)
[[x= Bl A [N3x>1] A [Noy>1]] =
{gcdxy)fgchB)] ANSx>1] A [N3y>1]]
while x <y || y < x
[

[ged(x, y) = ged(A, B)] A [x;ﬁy}/\[Nszl]/\[NayZIH:
P] = [[ecd(x,y) = gcd(A,B)] A [x#y] A [N3x21] A [N3y>1]]

if x <y

y y-x
else

X

end

Q] = [[gcd(x,y) =gcd(A,B)] A [N3x>1] A [Noy>1]] =

[ged(x,¥) = ged(A,B)] A [N3x>1] A [N3y>1]]

X-Yy;

end

[
|
[[gcd(x,y) = ged(4, B)] A —|[x7$y] ANSx>1] A [N3y>1]]
|

If the program terminates, x =y = ged(A, B)]



And, clearly:

Applications

[N2A>1] A [N3B21] A [£04,B) is called ]|
functlon result = £(x,y)
[[x= Bl A [N3x>1] A [Noy>1]] =
{gcdxy)fgchB)] ANSx>1] A [N3y>1]]
while x <y || y < x
[

[ged(x, y) = ged(A, B)] A [x;ﬁy}/\[Nszl]/\[NayZIH:
P] = [[ecd(x,y) = gcd(A,B)] A [x#y] A [N3x21] A [N3y>1]]

if x <y

y y-x
else

X

end

Q] = [[gcd(x,y) =gcd(A,B)] A [N3x>1] A [Noy>1]] =

[ged(x,¥) = ged(A,B)] A [N3x>1] A [N3y>1]]

X-Yy;

end

If the program terminates, x =y = ged(A, B)]

[
|
[[gcd(x,y) = ged(4, B)] A —|[x7$y] ANSx>1 A [Nay>1]] =
|



Proving Programs Correct The Hoare Rules Applications

What shall be our result?

function result = f(x,y)

while x <y || y < x
if x <y
y = ¥-%
else
X = X-Y;
end



Applications

What shall be our result?

function result = f(x,y)

while x <y || y < x
if x <y
y = ¥-%
else
X = X-Y;
end
end

result = (x+y)/2;



Applications

What we know:

N>A>1 AN=>B>1 A £(A,B) is called.

function result = f(x,y)
while x <y || y < x
if x <y
y = ¥-%;
else
X = X-Y;
end
end
result = (x+y)/2;
If the program terminates, result = gcd(A, B)




Proving Programs Correct The Hoare Rules Applications

Let us make it more symmetric.

function result = f(x,y)
while x <y || y < x
if x <y
y = V-%
S

end
result = (x+y)/2;



Proving Programs Correct The Hoare Rules Applications

Only one result is rather asymmetric...

function [fR, sR] = f(x,y)
while x <y || y < x
if x <y
y = ¥y-%;
s

end
result = (x+y)/2;



Proving Programs Correct The Hoare Rules Applications

Only one result is rather asymmetric...

function [fR, sR] = f(x,y)
while x <y || y < x
if x <y
y = ¥%
else

X = X-Y;
end

end

fR = (x+y)/2;

sR =7



Proving Programs Correct The Hoare Rules Applications

More results may need more variables. ..

function [fR, sR] = f(x,y)
u = x;
while x <y || y < x
if x <y
y = ¥y-%;
else

X = X-Y;
end

end

fR = (x+y)/2;

sR =7



Proving Programs Correct

Applications

More results may need more variables. ..

function [fR, sR] = f(x,y)
u = x;
v =y
while x <y || y < x
if x <y
y = ¥%
s

else

X = X-Y;
end

end

fR = (x+y)/2;

sR =7



Proving Programs Correct The Hoare Rules Applications

We had better balance this surplus of minuses...

function [fR, sR] = f(x,y)
u = x;
vV =y;
while x <y || y < x
if x <y
y = ¥y-%;
v = vtu;
s

else

X = X-Y;
end

end

fR (x+y)/2;

sR =7



Proving Programs Correct The Hoare Rules Applications

We had better balance this surplus of minuses...

function [fR, sR] = f(x,y)

u = x;
v =7;
while x <y || y < x
if x <y
y = ¥-%
v = vtu;
else
X = X-Y;
u = utv,
end
end

fR = (x+y)/2;
sR =7



Proving Programs Correct The Hoare Rules Applications

What shall our second result be?

function [fR, sR] = f(x,y)

u = x;
v =7;
while x <y || y < x
if x <y
y = ¥-%
v = vtu;
else
X = X-Y;
u = utv,
end
end

fR = (x+y)/2;
sR =7



Proving Programs Correct Applications

A symmetric one, of course...

function [fR, sR] = f(x,y)

u = x;
V=y;
while x <y || y < x
if x <y
y = ¥%
v = vtu;
else
X = X-Y;
u = utv;
end
end
fR = (x+y)/2;
sR = (utv)/2;



Applications

So, what is sR?

function [fR, sR] = f(x,y)

u = x;
vV =y;
while x <y || y < x
if x <y
y = ¥-%x5
vV = vtu;
else
X = x-y;
u = utv;
end
end
fR = (x+y)/2;

sR = (u+v)/2;



rograms Correct The Hoare Rule Applications

Well, what is the counterpart to gcd?

W9A21AN9321Afmjnmmw}
function [fR, sR] = f(x,y)

u = x;

v =y

while x <y || y < x

if x <y

= y-x;
= v+u;

n <<

= x-y;
utv;

e X
1]

end
end

fR = (x+y)/2;
sR = (utv)/2;

If the program terminates, sR = scm(A, B).



rograms Correct The Hoare Rule Applications

How could we find a good invariant?

{N9A21 AN3B>1A £(4,B) is caIIed.}
function [fR, sR] = f(x,y)

u = x;

v =y

while x <y || y < x

if x <y

= y-x;
= v+u;

n <<

= x-y;
utv;

e X
1]

end
end

fR = (x+y)/2;
sR = (utv)/2;

If the program terminates, sR = scm(A, B).



Applications

We use what we know...

{N3A21 ANDB>1 A £(4,B) is called.

function [fR, sR] = f(x,y)
u = Xj
v = y;
while x <y || y < x
if x <y
y=y-x
v = v+tu;
else
X = X-y;
u = utv;
end
end
fR = (x+y)/2;
sR (utv)/2;
{If the program terminates, sR = scm(A4, B).}

{If the program terminates, fR = gcd(A, B)}



Applications

..and try to invent a loop invariant.

{N3A21 ANDB>1 A £(A,B) iscalled.}

function [fR, sR] = f(x,y)
u = x; Well, suppose we are right in both assertions.
v =y,
while x <y || y < x
if x <y
y = ¥-%;
v = vtu;
else
X = X-y;
u = utv;
end
end
fR = (x+y)/2;
sR (utv)/2;
{If the program terminates, sR = scm(A, B).}

{If the program terminates, fR = gcd(A, B)}



Applications

..and try to invent a loop invariant.

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; Well, suppose we are right in both assertions.
v =1y Then, upon termination,
while x <y || y < x
if x <y
y=y-x
v = vtu;
else
X = X-Yy;
u = utv;
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}



Applications

..and try to invent a loop invariant.

{N9A21 ANDB>1 A £(A,B) iscalled.}

function [fR, sR] = f(x,y)
u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; gcd(A, B) -scm(A,B) = fR - sR
v = vtu;
else
X = X-y;
u = utv;
end
end
fR = (x+y)/2;
sR (utv)/2;
{If the program terminates, sR = scm(A, B).}

{If the program terminates, fR = gcd(A, B)}



Applications

..and try to invent a loop invariant.

{N9A21 ANDB>1 A £(A,B) iscalled.}

function [fR, sR] = f(x,y)
u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B)-scm(A,B) = fR - sR
v = vtu;
else
X = X-y;
u = utv;
end
end
fR = (x+y)/2;
sR (utv)/2;
{If the program terminates, sR = scm(A, B).}

{If the program terminates, fR = gcd(A, B)}



Applications

..and try to invent a loop invariant.

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B)-scm(A,B) = fR - sR
v = vtu; But:%~%:fR-sR
else
X = X-Yy;
u = utv;
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}



Applications

..and try to invent a loop invariant.

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B)-scm(A,B) = fR - sR
v = vtu; Upon termination: X2X . #£¥ — fR . sR
else
X = X-Yy;
u = utv;
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}



Applications

..and try to invent a loop invariant.

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B)-scm(A,B) = fR - sR
v = vtu; Upon termination: X4EX¥ — fR . sR
else
X = X-Yy;
u = utv;
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}



Applications

..and try to invent a loop invariant.

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = X-Yy;
u = utv;
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}



Applications

..and try to invent a loop invariant.

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}



Applications

Might 2-A- B =y - u+ x- v also be true during execution?

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end
fR = (x+y)/2;
= (utv)/2;

{If the program terminates, sR = scm(A, B).}

{If the program terminates, fR = gcd(A, B)}



Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}



Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end Upon initialization,
fR = (x+y)/2; x=u=Aandy=v=B8B
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}



Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end So,
fR = (x+y)/2; 2-A-B=y - u+x-v&2-A-B=2-A-B
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}



Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end In the one branch,
fR = (x+y)/2; 2-A-B=y-u+ x-vbecomes
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}



Applications

[N5A>1AN3B>1 A £,B) s called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
y = y-%; A-B =gcd(A,B)-scm(A,B) = fR - sR
v = v+u; Upon termination: %ﬂ" =fR-sR
else
X = x-y; Together: A- B = %’*’X"
u = utv; Or: 2-A-B=y-u+x-v
end
end In the one branch,
fR = (x+y)/2; 2-A-B=y-u+ x-vbecomes
sR = (u+v)/2; 2-A-B=(y—x)-u+x-(v+u)

{If the program terminates, sR = scm(A, B)}

{If the program terminates, fR = gcd(A, B)}



Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end In the other branch,
fR = (x+y)/2; 2-A-B=y-u+ x-vbecomes
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}



Applications

[N5A>1AN3B>1 A £,B) s called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
y = y-%; A-B =gcd(A,B)-scm(A,B) = fR - sR
v = v+u; Upon termination: %ﬂ" =fR-sR
else
X = x-y; Together: A- B = %’*’X"
u = utv; Or: 2-A-B=y-u+x-v
end
end In the other branch,
fR = (x+y)/2; 2-A-B=y-u+ x-vbecomes
sR = (u+v)/2; 2-A-B=y-(u+v)+(x—y) v

{If the program terminates, sR = scm(A, B)}

{If the program terminates, fR = gcd(A, B)}



Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end Thus, the equality is maintained.
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}



Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end Upon completion,
fR = (x+y)/2; x =y = gcd(A, B), thus
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}



Applications

[N5A>1AN3B>1 A £,B) s called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
y = y-%; A-B =gcd(A,B)-scm(A,B) = fR - sR
v = v+u; Upon termination: %ﬂ" =fR-sR
else
X = x-y; Together: A- B = %’*’X"
u = utv; Or: 2-A-B=y-u+x-v
end
end Upon completion,
fR = (x+y)/2; x =y = gcd(A4, B), thus
sR = (u+v)/2; 2-A-B=y-u+x-v=gcd(AB) - (u+v)

{If the program terminates, sR = scm(A, B)}
{If the program terminates, fR = gcd(A, B)}



Applications

{NsAzl AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-x; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: %ﬂ" =fR-sR
else
X = x-y; Together: A- B = y"+x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end
fR = (x+y)/2; Therefore
sR = (ut+v)/2; sR = % = % =scm(A, B) O

{If the program terminates, sR = scm(A, B)}
{If the program terminates, fR = gcd(A, B)]
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