
Proving Programs Correct The Hoare Rules Applications

Program Veri�cation using Hoare Logic

- An Introduction -

Peter Heinig

Technical University of Munich

March 2007, JASS 2007

Proving Programs Correct The Hoare Rules Applications

function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end

Proving Programs Correct The Hoare Rules Applications

function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end

Proving Programs Correct The Hoare Rules Applications

function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end

Proving Programs Correct The Hoare Rules Applications

function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]
How can we prove this assertion?

Easy.

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]
How can we prove this assertion? Easy.

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]

Proof of Correctness: (Induction on the �rst argument)
If

[
x = 0

]
, then

∀y ∈ Z :
[
recursive(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
recursive(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
recursive(x+1,y)

] Function De�nition⇒
[
recursive(x,y+1)

]
Inductive Assumption⇒

[
x + (y + 1) gets printed

]
,

and x + (y + 1) = (x + 1) + y . �

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]
Proof of Correctness: (Induction on the �rst argument)

If
[
x = 0

]
, then

∀y ∈ Z :
[
recursive(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
recursive(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
recursive(x+1,y)

] Function De�nition⇒
[
recursive(x,y+1)

]
Inductive Assumption⇒

[
x + (y + 1) gets printed

]
,

and x + (y + 1) = (x + 1) + y . �

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]
Proof of Correctness: (Induction on the �rst argument)
If

[
x = 0

]
, then

∀y ∈ Z :
[
recursive(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
recursive(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
recursive(x+1,y)

] Function De�nition⇒
[
recursive(x,y+1)

]
Inductive Assumption⇒

[
x + (y + 1) gets printed

]
,

and x + (y + 1) = (x + 1) + y . �

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]
Proof of Correctness: (Induction on the �rst argument)
If

[
x = 0

]
, then

∀y ∈ Z :
[
recursive(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :

∀y ∈ Z :
[
recursive(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
recursive(x+1,y)

] Function De�nition⇒
[
recursive(x,y+1)

]
Inductive Assumption⇒

[
x + (y + 1) gets printed

]
,

and x + (y + 1) = (x + 1) + y . �

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]
Proof of Correctness: (Induction on the �rst argument)
If

[
x = 0

]
, then

∀y ∈ Z :
[
recursive(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
recursive(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
recursive(x+1,y)

] Function De�nition⇒
[
recursive(x,y+1)

]
Inductive Assumption⇒

[
x + (y + 1) gets printed

]
,

and x + (y + 1) = (x + 1) + y . �

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]
Proof of Correctness: (Induction on the �rst argument)
If

[
x = 0

]
, then

∀y ∈ Z :
[
recursive(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
recursive(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
recursive(x+1,y)

]

Function De�nition⇒
[
recursive(x,y+1)

]
Inductive Assumption⇒

[
x + (y + 1) gets printed

]
,

and x + (y + 1) = (x + 1) + y . �

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]
Proof of Correctness: (Induction on the �rst argument)
If

[
x = 0

]
, then

∀y ∈ Z :
[
recursive(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
recursive(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
recursive(x+1,y)

] Function De�nition⇒
[
recursive(x,y+1)

]

Inductive Assumption⇒
[
x + (y + 1) gets printed

]
,

and x + (y + 1) = (x + 1) + y . �

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]
Proof of Correctness: (Induction on the �rst argument)
If

[
x = 0

]
, then

∀y ∈ Z :
[
recursive(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
recursive(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
recursive(x+1,y)

] Function De�nition⇒
[
recursive(x,y+1)

]
Inductive Assumption⇒

[
x + (y + 1) gets printed

]
,

and x + (y + 1) = (x + 1) + y . �

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]
Proof of Correctness: (Induction on the �rst argument)
If

[
x = 0

]
, then

∀y ∈ Z :
[
recursive(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
recursive(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
recursive(x+1,y)

] Function De�nition⇒
[
recursive(x,y+1)

]
Inductive Assumption⇒

[
x + (y + 1) gets printed

]
,

and x + (y + 1) = (x + 1) + y .

�

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]
Proof of Correctness: (Induction on the �rst argument)
If

[
x = 0

]
, then

∀y ∈ Z :
[
recursive(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
recursive(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
recursive(x+1,y)

] Function De�nition⇒
[
recursive(x,y+1)

]
Inductive Assumption⇒

[
x + (y + 1) gets printed

]
,

and x + (y + 1) = (x + 1) + y . �

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);[
If the program terminates, the value of x + y gets printed.

]

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);[
If the program terminates, the value of x + y gets printed.

]
How can we prove this assertion?

Easy? Lets try it again.

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);[
If the program terminates, the value of x + y gets printed.

]
How can we prove this assertion? Easy?

Lets try it again.

Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);[
If the program terminates, the value of x + y gets printed.

]
How can we prove this assertion? Easy? Lets try it again.

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proof of Correctness: (Induction on the �rst argument ???)
If

[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

] Function De�nition⇒
[?]

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proof of Correctness:

(Induction on the �rst argument ???)
If

[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

] Function De�nition⇒
[?]

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proof of Correctness: (Induction on the �rst argument

???)
If

[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

] Function De�nition⇒
[?]

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proof of Correctness: (Induction on the �rst argument ???)

If
[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

] Function De�nition⇒
[?]

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proof of Correctness: (Induction on the �rst argument ???)
If

[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

] Function De�nition⇒
[?]

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proof of Correctness: (Induction on the �rst argument ???)
If

[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :

∀y ∈ Z :
[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

] Function De�nition⇒
[?]

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proof of Correctness: (Induction on the �rst argument ???)
If

[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

] Function De�nition⇒
[?]

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proof of Correctness: (Induction on the �rst argument ???)
If

[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

]

Function De�nition⇒
[?]

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proof of Correctness: (Induction on the �rst argument ???)
If

[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

] Function De�nition⇒

[?]

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proof of Correctness: (Induction on the �rst argument ???)
If

[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

] Function De�nition⇒
[?]

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proof of Correctness: (Induction on the �rst argument ???)
If

[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 < x ∈ N0 :
∀y ∈ Z :

[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

] Function De�nition⇒
[
iterative(x+1,y)

]

Useless.
We need new tools.

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proof of Correctness: (Induction on the �rst argument ???)
If

[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 < x ∈ N0 :
∀y ∈ Z :

[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

] Function De�nition⇒
[
iterative(x+1,y)

]
Useless.

We need new tools.

Proving Programs Correct The Hoare Rules Applications

function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);

Proof of Correctness: (Induction on the �rst argument ???)
If

[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 < x ∈ N0 :
∀y ∈ Z :

[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

] Function De�nition⇒
[
iterative(x+1,y)

]
Useless.
We need new tools.

Proving Programs Correct The Hoare Rules Applications

What is the problem?

No expression replacement rule anymore.

Assignments.

While loop.

Variables exist in di�erent states during execution.

Proving Programs Correct The Hoare Rules Applications

What is the problem?

No expression replacement rule anymore.

Assignments.

While loop.

Variables exist in di�erent states during execution.

Proving Programs Correct The Hoare Rules Applications

What is the problem?

No expression replacement rule anymore.

Assignments.

While loop.

Variables exist in di�erent states during execution.

Proving Programs Correct The Hoare Rules Applications

What is the problem?

No expression replacement rule anymore.

Assignments.

While loop.

Variables exist in di�erent states during execution.

Proving Programs Correct The Hoare Rules Applications

What is the problem?

No expression replacement rule anymore.

Assignments.

While loop.

Variables exist in di�erent states during execution.

Proving Programs Correct The Hoare Rules Applications

Adapting to the new situation:

[
x ∈ N0 ∧ y ∈ Z

]
function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);[
If the program terminates, the value of x + y gets printed.

]

Proving Programs Correct The Hoare Rules Applications

Taking care of states:

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]

while x > 0

x = x-1;

y = y+1;

end

disp (y);[
If the program terminates, the value of A + B gets printed.

]

Proving Programs Correct The Hoare Rules Applications

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]

while x > 0

x = x-1;

y = y+1;

end

disp (y);[
If the program terminates, the value of A + B gets printed.

]

Proving Programs Correct The Hoare Rules Applications

Clearly:

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0

x = x-1;

y = y+1;

end

disp (y);[
If the program terminates, the value of A + B gets printed.

]

Proving Programs Correct The Hoare Rules Applications

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
x = x-1;

y = y+1;

end

disp (y);[
If the program terminates, the value of A + B gets printed.

]

Proving Programs Correct The Hoare Rules Applications

We claim that this is a loop invariant

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
x = x-1;

y = y+1;[
x + y = A + B ∧ x ≥ 0

]
end

disp (y);[
If the program terminates, the value of A + B gets printed.

]

Proving Programs Correct The Hoare Rules Applications

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
x = x-1;[

x + (y + 1) = A + B ∧ x ≥ 0
]

y = y+1;[
x + y = A + B ∧ x ≥ 0

]
end

disp (y);[
If the program terminates, the value of A + B gets printed.

]

Proving Programs Correct The Hoare Rules Applications

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
[
(x − 1) + (y + 1) = A + B ∧ (x − 1) ≥ 0

]
x = x-1;[

x + (y + 1) = A + B ∧ x ≥ 0
]

y = y+1;[
x + y = A + B ∧ x ≥ 0

]
end

disp (y);[
If the program terminates, the value of A + B gets printed.

]

Proving Programs Correct The Hoare Rules Applications

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
[
(x − 1) + (y + 1) = A + B ∧ (x − 1) ≥ 0

]
x = x-1;[

x + (y + 1) = A + B ∧ x ≥ 0
]

y = y+1;[
x + y = A + B ∧ x ≥ 0

]
end

disp (y);[
If the program terminates, the value of A + B gets printed.

]

Proving Programs Correct The Hoare Rules Applications

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
⇒[

(x − 1) + (y + 1) = A + B ∧ (x − 1) ≥ 0
]

x = x-1;[
x + (y + 1) = A + B ∧ x ≥ 0

]
y = y+1;[

x + y = A + B ∧ x ≥ 0
]

end

disp (y);[
If the program terminates, the value of A + B gets printed.

]

Proving Programs Correct The Hoare Rules Applications

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
⇒[

(x − 1) + (y + 1) = A + B ∧ (x − 1) ≥ 0
]

x = x-1;[
x + (y + 1) = A + B ∧ x ≥ 0

]
y = y+1;[

x + y = A + B ∧ x ≥ 0
]

end

disp (y);[
If the program terminates, the value of A + B gets printed.

]

Proving Programs Correct The Hoare Rules Applications

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
⇒[

(x − 1) + (y + 1) = A + B ∧ (x − 1) ≥ 0
]

x = x-1;[
x + (y + 1) = A + B ∧ x ≥ 0

]
y = y+1;[

x + y = A + B ∧ x ≥ 0
]

end

disp (y);[
If the program terminates, the value of A + B gets printed.

]

Proving Programs Correct The Hoare Rules Applications

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
⇒[

(x − 1) + (y + 1) = A + B ∧ (x − 1) ≥ 0
]

x = x-1;[
x + (y + 1) = A + B ∧ x ≥ 0

]
y = y+1;[

x + y = A + B ∧ x ≥ 0
]

end[[
x + y = A + B ∧ x ≥ 0

]
∧ ¬

[
x > 0

]]
disp (y);[

If the program terminates, the value of A + B gets printed.
]

Proving Programs Correct The Hoare Rules Applications

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
⇒[

(x − 1) + (y + 1) = A + B ∧ (x − 1) ≥ 0
]

x = x-1;[
x + (y + 1) = A + B ∧ x ≥ 0

]
y = y+1;[

x + y = A + B ∧ x ≥ 0
]

end[[
x + y = A + B ∧ x ≥ 0

]
∧ ¬

[
x > 0

]]
⇒

disp (y);[
If the program terminates, the value of A + B gets printed.

]

Proving Programs Correct The Hoare Rules Applications

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
⇒[

(x − 1) + (y + 1) = A + B ∧ (x − 1) ≥ 0
]

x = x-1;[
x + (y + 1) = A + B ∧ x ≥ 0

]
y = y+1;[

x + y = A + B ∧ x ≥ 0
]

end[[
x + y = A + B ∧ x ≥ 0

]
∧ ¬

[
x > 0

]]
⇒[

x + y = A + B ∧ x = 0
]
⇒

disp (y);[
If the program terminates, the value of A + B gets printed.

]

Proving Programs Correct The Hoare Rules Applications

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
⇒[

(x − 1) + (y + 1) = A + B ∧ (x − 1) ≥ 0
]

x = x-1;[
x + (y + 1) = A + B ∧ x ≥ 0

]
y = y+1;[

x + y = A + B ∧ x ≥ 0
]

end[[
x + y = A + B ∧ x ≥ 0

]
∧ ¬

[
x > 0

]]
⇒[

x + y = A + B ∧ x = 0
]
⇒

[
y = A + B

]
disp (y);[

If the program terminates, the value of A + B gets printed.
]

Proving Programs Correct The Hoare Rules Applications

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
⇒[

(x − 1) + (y + 1) = A + B ∧ (x − 1) ≥ 0
]

x = x-1;[
x + (y + 1) = A + B ∧ x ≥ 0

]
y = y+1;[

x + y = A + B ∧ x ≥ 0
]

end[[
x + y = A + B ∧ x ≥ 0

]
∧ ¬

[
x > 0

]]
⇒[

x + y = A + B ∧ x = 0
]
⇒

[
y = A + B

]
disp (y);[

If the program terminates, the value of A + B gets printed.
]

�

Proving Programs Correct The Hoare Rules Applications

What have we done? What will we do?

What, exactly, did we proof, after all? And what not?

How can we codify what we have done and will have to do
next time?

What are the underlying rules of reasoning?

Proving Programs Correct The Hoare Rules Applications

What have we done? What will we do?

What, exactly, did we proof, after all? And what not?

How can we codify what we have done and will have to do
next time?

What are the underlying rules of reasoning?

Proving Programs Correct The Hoare Rules Applications

What have we done? What will we do?

What, exactly, did we proof, after all? And what not?

How can we codify what we have done and will have to do
next time?

What are the underlying rules of reasoning?

Proving Programs Correct The Hoare Rules Applications

What have we done? What will we do?

What, exactly, did we proof, after all? And what not?

How can we codify what we have done and will have to do
next time?

What are the underlying rules of reasoning?

Proving Programs Correct The Hoare Rules Applications

What have we done? What will we do?

What, exactly, did we proof, after all? And what not?

How can we codify what we have done and will have to do
next time?

What are the underlying rules of reasoning?

Proving Programs Correct The Hoare Rules Applications

What we did proof:

Partial Semantic Correctness of the function iterative(x,y)

with respect to some speci�cation.

The speci�cation was:[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
PROGRAM[
If the program terminates, the value of A+ B gets printed.

]
Semantic denotes that we were concerned with the meaning of
the program. We are not concerned with the syntax of the
program.

Proving Programs Correct The Hoare Rules Applications

What we did proof:

Partial Semantic Correctness of the function iterative(x,y)

with respect to some speci�cation.

The speci�cation was:[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
PROGRAM[
If the program terminates, the value of A+ B gets printed.

]
Semantic denotes that we were concerned with the meaning of
the program. We are not concerned with the syntax of the
program.

Proving Programs Correct The Hoare Rules Applications

What we did proof:

Partial Semantic Correctness of the function iterative(x,y)

with respect to some speci�cation.

The speci�cation was:[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
PROGRAM[
If the program terminates, the value of A+ B gets printed.

]

Semantic denotes that we were concerned with the meaning of
the program. We are not concerned with the syntax of the
program.

Proving Programs Correct The Hoare Rules Applications

What we did proof:

Partial Semantic Correctness of the function iterative(x,y)

with respect to some speci�cation.

The speci�cation was:[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
PROGRAM[
If the program terminates, the value of A+ B gets printed.

]
Semantic denotes that we were concerned with the meaning of
the program. We are not concerned with the syntax of the
program.

Proving Programs Correct The Hoare Rules Applications

Partial Correctness means:

There does not happen anything
contradicting the speci�cation.

Proving Programs Correct The Hoare Rules Applications

In particular, for partial correctness it is allowed that:

The program never terminates.

The program does terminate, the speci�cation is ful�lled,
and something not to be found in the speci�cation happens
in addition to that.

Yet we will be content with partial correctness and

will go on to concern ourselves with only that.

Total correctness means:

The program terminates,
and there does not happen anything
contradicting the speci�cation.
Proving that a program terminates can be hard.

Proving Programs Correct The Hoare Rules Applications

In particular, for partial correctness it is allowed that:

The program never terminates.

The program does terminate, the speci�cation is ful�lled,
and something not to be found in the speci�cation happens
in addition to that.

Yet we will be content with partial correctness and

will go on to concern ourselves with only that.

Total correctness means:

The program terminates,
and there does not happen anything
contradicting the speci�cation.
Proving that a program terminates can be hard.

Proving Programs Correct The Hoare Rules Applications

In particular, for partial correctness it is allowed that:

The program never terminates.

The program does terminate, the speci�cation is ful�lled,
and something not to be found in the speci�cation happens
in addition to that.

Yet we will be content with partial correctness and

will go on to concern ourselves with only that.

Total correctness means:

The program terminates,
and there does not happen anything
contradicting the speci�cation.
Proving that a program terminates can be hard.

Proving Programs Correct The Hoare Rules Applications

In particular, for partial correctness it is allowed that:

The program never terminates.

The program does terminate, the speci�cation is ful�lled,
and something not to be found in the speci�cation happens
in addition to that.

Yet we will be content with partial correctness and

will go on to concern ourselves with only that.

Total correctness means:

The program terminates,
and there does not happen anything
contradicting the speci�cation.
Proving that a program terminates can be hard.

Proving Programs Correct The Hoare Rules Applications

In particular, for partial correctness it is allowed that:

The program never terminates.

The program does terminate, the speci�cation is ful�lled,
and something not to be found in the speci�cation happens
in addition to that.

Yet we will be content with partial correctness and

will go on to concern ourselves with only that.

Total correctness means:

The program terminates,
and there does not happen anything
contradicting the speci�cation.

Proving that a program terminates can be hard.

Proving Programs Correct The Hoare Rules Applications

In particular, for partial correctness it is allowed that:

The program never terminates.

The program does terminate, the speci�cation is ful�lled,
and something not to be found in the speci�cation happens
in addition to that.

Yet we will be content with partial correctness and

will go on to concern ourselves with only that.

Total correctness means:

The program terminates,
and there does not happen anything
contradicting the speci�cation.
Proving that a program terminates can be hard.

Proving Programs Correct The Hoare Rules Applications

Codi�cation of what we did: The Hoare Rules

C. A. R. Hoare 1969:

Proving Programs Correct The Hoare Rules Applications

Codi�cation of what we did: The Hoare Rules

C. A. R. Hoare 1969:

Proving Programs Correct The Hoare Rules Applications

Predicates

A predicate is a function from some set D
to the set {true, false }:

P : D → {true,false}

Proving Programs Correct The Hoare Rules Applications

Strong and Weak

By De�nition[
A
]
⇒

[
B

]
:⇔ ¬

[
A
]
∨

[
B

]
The predicate

[
false

]
is the strongest of all:

∀B : false⇒
[
B

]
⇔ ¬false ∨

[
B

]
⇔

true ∨
[
B

]
⇔ true

The predicate
[
true

]
is the weakest of all:

∀B : true⇒
[
B

]
⇔ ¬true ∨

[
B

]
⇔

false ∨
[
B

]
⇔

[
B

]
Thus:
false ⇒ · · · ⇒ true

We de�ne:[
A
]

is stronger than
[
B

]
:⇔

[
A
]
⇒

[
B

]

Proving Programs Correct The Hoare Rules Applications

Strong and Weak

By De�nition[
A
]
⇒

[
B

]
:⇔ ¬

[
A
]
∨

[
B

]

The predicate
[
false

]
is the strongest of all:

∀B : false⇒
[
B

]
⇔ ¬false ∨

[
B

]
⇔

true ∨
[
B

]
⇔ true

The predicate
[
true

]
is the weakest of all:

∀B : true⇒
[
B

]
⇔ ¬true ∨

[
B

]
⇔

false ∨
[
B

]
⇔

[
B

]
Thus:
false ⇒ · · · ⇒ true

We de�ne:[
A
]

is stronger than
[
B

]
:⇔

[
A
]
⇒

[
B

]

Proving Programs Correct The Hoare Rules Applications

Strong and Weak

By De�nition[
A
]
⇒

[
B

]
:⇔ ¬

[
A
]
∨

[
B

]
The predicate

[
false

]
is the strongest of all:

∀B : false⇒
[
B

]
⇔ ¬false ∨

[
B

]
⇔

true ∨
[
B

]
⇔ true

The predicate
[
true

]
is the weakest of all:

∀B : true⇒
[
B

]
⇔ ¬true ∨

[
B

]
⇔

false ∨
[
B

]
⇔

[
B

]
Thus:
false ⇒ · · · ⇒ true

We de�ne:[
A
]

is stronger than
[
B

]
:⇔

[
A
]
⇒

[
B

]

Proving Programs Correct The Hoare Rules Applications

Strong and Weak

By De�nition[
A
]
⇒

[
B

]
:⇔ ¬

[
A
]
∨

[
B

]
The predicate

[
false

]
is the strongest of all:

∀B : false⇒
[
B

]
⇔ ¬false ∨

[
B

]
⇔

true ∨
[
B

]
⇔ true

The predicate
[
true

]
is the weakest of all:

∀B : true⇒
[
B

]
⇔ ¬true ∨

[
B

]
⇔

false ∨
[
B

]
⇔

[
B

]

Thus:
false ⇒ · · · ⇒ true

We de�ne:[
A
]

is stronger than
[
B

]
:⇔

[
A
]
⇒

[
B

]

Proving Programs Correct The Hoare Rules Applications

Strong and Weak

By De�nition[
A
]
⇒

[
B

]
:⇔ ¬

[
A
]
∨

[
B

]
The predicate

[
false

]
is the strongest of all:

∀B : false⇒
[
B

]
⇔ ¬false ∨

[
B

]
⇔

true ∨
[
B

]
⇔ true

The predicate
[
true

]
is the weakest of all:

∀B : true⇒
[
B

]
⇔ ¬true ∨

[
B

]
⇔

false ∨
[
B

]
⇔

[
B

]
Thus:
false ⇒ · · · ⇒ true

We de�ne:[
A
]

is stronger than
[
B

]
:⇔

[
A
]
⇒

[
B

]

Proving Programs Correct The Hoare Rules Applications

Strong and Weak

By De�nition[
A
]
⇒

[
B

]
:⇔ ¬

[
A
]
∨

[
B

]
The predicate

[
false

]
is the strongest of all:

∀B : false⇒
[
B

]
⇔ ¬false ∨

[
B

]
⇔

true ∨
[
B

]
⇔ true

The predicate
[
true

]
is the weakest of all:

∀B : true⇒
[
B

]
⇔ ¬true ∨

[
B

]
⇔

false ∨
[
B

]
⇔

[
B

]
Thus:
false ⇒ · · · ⇒ true

We de�ne:[
A
]

is stronger than
[
B

]
:⇔

[
A
]
⇒

[
B

]

Proving Programs Correct The Hoare Rules Applications

Strong and Weak

By De�nition[
A
]
⇒

[
B

]
:⇔ ¬

[
A
]
∨

[
B

]
The predicate

[
false

]
is the strongest of all:

∀B : false⇒
[
B

]
⇔ ¬false ∨

[
B

]
⇔

true ∨
[
B

]
⇔ true

The predicate
[
true

]
is the weakest of all:

∀B : true⇒
[
B

]
⇔ ¬true ∨

[
B

]
⇔

false ∨
[
B

]
⇔

[
B

]
Thus:
false ⇒ · · · ⇒ true

We de�ne:[
A
]

is stronger than
[
B

]
:⇔

[
A
]
⇒

[
B

]

Proving Programs Correct The Hoare Rules Applications

The Mathematical Structure of the Hoare Rules

Essential ingredient: Hoare Triple:
[[
P

]S [
Q

]]

A Hoare Triple is itself a predicate
H : {true, false} ×M× {true, false} −→ {true, false},
where the predicates

[
P

]
and

[
Q

]
provide the �rst and third

argument, and

the set M denotes the set of all syntactically correct programs
in some programming language,

and the value of
[
[P]S [Q]

]
is de�ned as follows:

Proving Programs Correct The Hoare Rules Applications

The Mathematical Structure of the Hoare Rules

Essential ingredient: Hoare Triple:
[[
P

]S [
Q

]]
A Hoare Triple is itself a predicate
H : {true, false} ×M× {true, false} −→ {true, false},

where the predicates
[
P

]
and

[
Q

]
provide the �rst and third

argument, and

the set M denotes the set of all syntactically correct programs
in some programming language,

and the value of
[
[P]S [Q]

]
is de�ned as follows:

Proving Programs Correct The Hoare Rules Applications

The Mathematical Structure of the Hoare Rules

Essential ingredient: Hoare Triple:
[[
P

]S [
Q

]]
A Hoare Triple is itself a predicate
H : {true, false} ×M× {true, false} −→ {true, false},
where the predicates

[
P

]
and

[
Q

]
provide the �rst and third

argument, and

the set M denotes the set of all syntactically correct programs
in some programming language,

and the value of
[
[P]S [Q]

]
is de�ned as follows:

Proving Programs Correct The Hoare Rules Applications

The Mathematical Structure of the Hoare Rules

Essential ingredient: Hoare Triple:
[[
P

]S [
Q

]]
A Hoare Triple is itself a predicate
H : {true, false} ×M× {true, false} −→ {true, false},
where the predicates

[
P

]
and

[
Q

]
provide the �rst and third

argument, and

the set M denotes the set of all syntactically correct programs
in some programming language,

and the value of
[
[P]S [Q]

]
is de�ned as follows:

Proving Programs Correct The Hoare Rules Applications

The Mathematical Structure of the Hoare Rules

Essential ingredient: Hoare Triple:
[[
P

]S [
Q

]]
A Hoare Triple is itself a predicate
H : {true, false} ×M× {true, false} −→ {true, false},
where the predicates

[
P

]
and

[
Q

]
provide the �rst and third

argument, and

the set M denotes the set of all syntactically correct programs
in some programming language,

and the value of
[
[P]S [Q]

]
is de�ned as follows:

Proving Programs Correct The Hoare Rules Applications

When is a Hoare Triple true, when is it false?

[
[P]S [Q]

]
= true

:⇐⇒
If the predicate [P] is true immediately before execution of the
program S ∈ M, then immediately after S has terminated, the
predicate [Q] is true.

Proving Programs Correct The Hoare Rules Applications

The rules often take the following form:

A formula
involving predicates and Hoare Triples.

A Hoare Triple whose program fragment
comprises the fragments used in the Hoare Triples above.

Example:[[
P ∧ B

] S [
P
]][[

P
]

while B do S end
[
P ∧ ¬B

]]

Proving Programs Correct The Hoare Rules Applications

The rules often take the following form:

A formula
involving predicates and Hoare Triples.

A Hoare Triple whose program fragment
comprises the fragments used in the Hoare Triples above.

Example:[[
P ∧ B

] S [
P
]][[

P
]

while B do S end
[
P ∧ ¬B

]]

Proving Programs Correct The Hoare Rules Applications

The rules often take the following form:

A formula
involving predicates and Hoare Triples.

A Hoare Triple whose program fragment
comprises the fragments used in the Hoare Triples above.

Example:[[
P ∧ B

] S [
P
]][[

P
]

while B do S end
[
P ∧ ¬B

]]

Proving Programs Correct The Hoare Rules Applications

The rules often take the following form:

A formula
involving predicates and Hoare Triples.

A Hoare Triple whose program fragment
comprises the fragments used in the Hoare Triples above.

Example: [[
P ∧ B

] S [
P
]][[

P
]

while B do S end︸ ︷︷ ︸[P ∧ ¬B]]
uses S and is therefore larger than it.

Proving Programs Correct The Hoare Rules Applications

The Rules

Proving Programs Correct The Hoare Rules Applications

Rule 0:

[
true

][[
P

]
% noOperation

[
P

]]

Proving Programs Correct The Hoare Rules Applications

Rule 1: Axiom of Assignment

[
true

][[
PE instead of x

]
x = E;

[
P

]]

Proving Programs Correct The Hoare Rules Applications

Rule 1: Axiom of Assignment

[
true

][[
PE/x

]
x = E;

[
P

]]

Proving Programs Correct The Hoare Rules Applications

Rule 1: Axiom of Assignment

[
true

][[
PE/x

]
x = E;

[
P

]]

Proving Programs Correct The Hoare Rules Applications

Rule 2: Rule of Consequence

[[[
P̃
]
⇒

[
P
]]

∧
[[

P
]
S

[
Q
]]

∧
[[

Q
]
⇒

[
Q̃
]]]

[[
P̃
]
S

[
Q̃
]]

Proving Programs Correct The Hoare Rules Applications

Rule 3: Rule of Composition

[[[
P

]
S

[
Q

]]
∧

[[
Q

]
T

[
R

]]]
[[

P

]
S;T

[
R

]]

Proving Programs Correct The Hoare Rules Applications

Rule 4: Rule of Iteration

[[
P ∧ B

]
S

[
P

]][[
P

]
while B do S end

[
P ∧ ¬B

]]

Proving Programs Correct The Hoare Rules Applications

Rule 5: Rule of Conditional Branching

[[[
P ∧ B

]
S

[
Q

]] ∧ [[
P ∧ ¬B

]
T

[
Q

]]]
[[

P

]
if B do S else do T end

[
Q

]]

Proving Programs Correct The Hoare Rules Applications

Applications

Proving Programs Correct The Hoare Rules Applications

x = x + y;

y = x - y;

x = x - y;

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
x = x + y;

y = x - y;

x = x - y;

Proving Programs Correct The Hoare Rules Applications

Swapping without moving...[
x = A ∧ y = B

]
x = x + y;

y = x - y;

x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
x = x + y;

y = x - y;

x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Annotating the Program with Assertions

[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[]
xafter = xbefore − ybefore;[
xafter = B ∧ yafter = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[]
xafter = xbefore − ybefore; yafter = ybefore;[
xafter = B ∧ yafter = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[
xbefore − ybefore = B ∧ ybefore = A

]
xafter = xbefore − ybefore; yafter = ybefore;[
xafter = B ∧ yafter = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
[]
x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
[]
x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
[]
x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
[
(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A

]
x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
[
(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A

]
x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
[
(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A

]
x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
We appeal to Rule 2: Rule of Consequence

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
We analyze its constituent parts:

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
Here the rule is applicable:

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
We analyze its constituent parts:

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
We appeal to Rule 1: Axiom of Assignment

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
Here we have to see an implication.

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
And there actually is one; let Q̃ = Q.

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q
]][[

P̃
]S [

Q
]]

[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
Thus ...

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
Thus ...

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
And one step in the program is proved.

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
We could go on like that ...

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]

Proving Programs Correct The Hoare Rules Applications

Finding suitable invariants may be not that easy.

Proving Programs Correct The Hoare Rules Applications

Symmetry helps.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =

Proving Programs Correct The Hoare Rules Applications

Symmetry helps.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =

Proving Programs Correct The Hoare Rules Applications

Symmetry helps.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =

Proving Programs Correct The Hoare Rules Applications

Symmetry helps.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =

Proving Programs Correct The Hoare Rules Applications

Symmetry helps.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =

Proving Programs Correct The Hoare Rules Applications

Symmetry helps.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =

Proving Programs Correct The Hoare Rules Applications

Symmetry helps.

function result = f(x,y)

while x < y || y < x

if y < x

x = x-y;

else

y = y-x;

end

end

result =

Proving Programs Correct The Hoare Rules Applications

What shall be our result?

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =

Proving Programs Correct The Hoare Rules Applications

What shall be our result?

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =
Skip proof that x=y=gcd(A,B)

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

[
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end[
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end[
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end[
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
P

]
if x < y

y = y-x;

else

x = x-y;

end[
Q

][[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
Let

[
P

]
:=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end

Let
[
Q

]
:=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
Let

[
P

]
:=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end

Let
[
Q

]
:=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[
Q

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

The inner block

[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

[[
gcd(x , y − x) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]

y = y-x;

else

[[
gcd(x − y , y) = gcd(A,B)

]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]

x = x-y;

end[
Q

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]

Proving Programs Correct The Hoare Rules Applications

The Rule of Conditional Branching demands:

[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]

[[
gcd(x , y − x) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]

y = y-x;[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]

[[
gcd(x − y , y) = gcd(A,B)

]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]

x = x-y;[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]

Proving Programs Correct The Hoare Rules Applications

By the Axiom of Assignment:

[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]][[
gcd(x , y − x) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]][[
gcd(x − y , y) = gcd(A,B)

]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]

Proving Programs Correct The Hoare Rules Applications

There are the implications:

[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[

gcd(x , y − x) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]
⇒[[

gcd(x − y , y) = gcd(A,B)
]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]

Proving Programs Correct The Hoare Rules Applications

We invoke the rule:

[[[
P ∧ B

] S [
Q

]] ∧ [[
P ∧ ¬B

] T [
Q

]]]
[[
P

]
if B do S else do T end

[
Q

]]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[

gcd(x , y − x) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]
⇒[[

gcd(x − y , y) = gcd(A,B)
]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]

Proving Programs Correct The Hoare Rules Applications

Where:
[
P

]
if B do S else do T end

[
Q

]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[

gcd(x , y − x) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]
⇒[[

gcd(x − y , y) = gcd(A,B)
]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]

Proving Programs Correct The Hoare Rules Applications

Where:
[
P

]
if B do S else do T end

[
Q

]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[

gcd(x , y − x) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]
⇒[[

gcd(x − y , y) = gcd(A,B)
]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]

Proving Programs Correct The Hoare Rules Applications

Where:
[
P

]
if B do S else do T end

[
Q

]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[

gcd(x , y − x) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]
⇒[[

gcd(x − y , y) = gcd(A,B)
]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]

Proving Programs Correct The Hoare Rules Applications

Where:
[
P

]
if B doS else do T end

[
Q

]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[

gcd(x , y − x) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]
⇒[[

gcd(x − y , y) = gcd(A,B)
]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]

Proving Programs Correct The Hoare Rules Applications

Where:
[
P

]
if B doS else do T end

[
Q

]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[

gcd(x , y − x) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]
⇒[[

gcd(x − y , y) = gcd(A,B)
]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]

Proving Programs Correct The Hoare Rules Applications

Where:
[
P

]
if B doS else do T end

[
Q

]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[

gcd(x , y − x) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]
⇒[[

gcd(x − y , y) = gcd(A,B)
]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]

Proving Programs Correct The Hoare Rules Applications

So the inner block is proved.

[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[

gcd(x , y − x) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]
⇒[[

gcd(x − y , y) = gcd(A,B)
]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]

Proving Programs Correct The Hoare Rules Applications

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[
Q

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Thus, in our main proof:

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[
Q

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

There are three collisions left; trivially:

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[

P
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[
Q

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

And, clearly:

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[

P
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[
Q

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[

If the program terminates, x = y = gcd(A,B)
]

�

Proving Programs Correct The Hoare Rules Applications

What shall be our result?

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result = (x+y)/2;

Proving Programs Correct The Hoare Rules Applications

What shall be our result?

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result = (x+y)/2;

Proving Programs Correct The Hoare Rules Applications

What we know:

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result = (x+y)/2;[
If the program terminates, result = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Let us make it more symmetric.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result = (x+y)/2;

Proving Programs Correct The Hoare Rules Applications

Only one result is rather asymmetric...

function [fR, sR] = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result = (x+y)/2;

Proving Programs Correct The Hoare Rules Applications

Only one result is rather asymmetric...

function [fR, sR] = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

fR = (x+y)/2;

sR = ?

Proving Programs Correct The Hoare Rules Applications

More results may need more variables...

function [fR, sR] = f(x,y)

u = x;

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

fR = (x+y)/2;

sR = ?

Proving Programs Correct The Hoare Rules Applications

More results may need more variables...

function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

fR = (x+y)/2;

sR = ?

Proving Programs Correct The Hoare Rules Applications

We had better balance this surplus of minuses...

function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

end

end

fR = (x+y)/2;

sR = ?

Proving Programs Correct The Hoare Rules Applications

We had better balance this surplus of minuses...

function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = ?

Proving Programs Correct The Hoare Rules Applications

What shall our second result be?

function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = ?

Proving Programs Correct The Hoare Rules Applications

A symmetric one, of course...

function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;

Proving Programs Correct The Hoare Rules Applications

So, what is sR?

function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;

Proving Programs Correct The Hoare Rules Applications

Well, what is the counterpart to gcd?

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]

Proving Programs Correct The Hoare Rules Applications

How could we �nd a good invariant?

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]

Proving Programs Correct The Hoare Rules Applications

We use what we know...

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; gcd(A,B) · scm(A,B) = fR · sR
v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; But: x+y

2
· u+v

2
= fR · sR

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: x+x

2
· u+v

2
= fR · sR

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: x·u+x·v

2
= fR · sR

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Might 2 · A · B = y · u + x · v also be true during execution?

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end Upon initialization,

fR = (x+y)/2; x = u = A and y = v = B

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end So,

fR = (x+y)/2; 2 · A · B = y · u + x · v ⇔ 2 · A · B = 2 · A · B
sR = (u+v)/2;[

If the program terminates, sR = scm(A,B).
]

[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end In the one branch,

fR = (x+y)/2; 2 · A · B = y · u + x · v becomes

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end In the one branch,

fR = (x+y)/2; 2 · A · B = y · u + x · v becomes

sR = (u+v)/2; 2 · A · B = (y − x) · u + x · (v + u)[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end In the other branch,

fR = (x+y)/2; 2 · A · B = y · u + x · v becomes

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end In the other branch,

fR = (x+y)/2; 2 · A · B = y · u + x · v becomes

sR = (u+v)/2; 2 · A · B = y · (u + v) + (x − y) · v[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end Thus, the equality is maintained.

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end Upon completion,

fR = (x+y)/2; x = y = gcd(A,B), thus
sR = (u+v)/2;[

If the program terminates, sR = scm(A,B).
]

[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end Upon completion,

fR = (x+y)/2; x = y = gcd(A,B), thus
sR = (u+v)/2; 2 · A · B = y · u + x · v = gcd(A,B) · (u + v)[

If the program terminates, sR = scm(A,B).
]

[
If the program terminates, fR = gcd(A,B)

]

Proving Programs Correct The Hoare Rules Applications

Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end

fR = (x+y)/2; Therefore

sR = (u+v)/2; sR = u+v
2

= A·B
gcd(A,B)

= scm(A,B) �[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B).

]

	Proving Programs Correct
	A Toy Example

	The Hoare Rules
	Looking Back und looking forward.
	Logic

	Applications
	Handling Assignments
	Finding good Invariants

