
Proving Programs Correct The Hoare Rules Applications

Program Veri�cation using Hoare Logic

- An Introduction -

Peter Heinig

Technical University of Munich

March 2007, JASS 2007



Proving Programs Correct The Hoare Rules Applications

function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end



Proving Programs Correct The Hoare Rules Applications

function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end



Proving Programs Correct The Hoare Rules Applications

function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end



Proving Programs Correct The Hoare Rules Applications

function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end



Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]



Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]
How can we prove this assertion?

Easy.



Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]
How can we prove this assertion? Easy.



Proving Programs Correct The Hoare Rules Applications

[
x ∈ N0 ∧ y ∈ Z

]
function recursive(x,y)

if x == 0

disp (y);

else

recursive(x-1,y+1);

end[
If the program terminates, the value of x + y gets printed.

]

Proof of Correctness: (Induction on the �rst argument)
If

[
x = 0

]
, then

∀y ∈ Z :
[
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] Function De�nition⇒
[
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function iterative(x,y)

while x > 0

x = x-1;

y = y+1;
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disp (y);

Proof of Correctness: (Induction on the �rst argument ???)
If

[
x = 0

]
, then

∀y ∈ Z :
[
iterative(x,y)

] Function De�nition⇒
[
y = x + y gets printed

]
.

Now assume that for some 0 ≤ x ∈ N0 :
∀y ∈ Z :

[
iterative(x,y)

]
⇒

[
x + y gets printed

]
.

Then
[
iterative(x+1,y)

] Function De�nition⇒
[?]
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No expression replacement rule anymore.

Assignments.

While loop.

Variables exist in di�erent states during execution.
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Adapting to the new situation:

[
x ∈ N0 ∧ y ∈ Z

]
function iterative(x,y)

while x > 0

x = x-1;

y = y+1;

end

disp (y);[
If the program terminates, the value of x + y gets printed.

]
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Taking care of states:

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
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x = A ∈ N0 ∧ y = B ∈ Z
]

while x > 0

x = x-1;

y = y+1;

end
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If the program terminates, the value of A + B gets printed.
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Clearly:

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0

x = x-1;

y = y+1;

end

disp (y);[
If the program terminates, the value of A + B gets printed.

]
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We claim that this is a loop invariant

[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
function iterative(x,y)[

x = A ∈ N0 ∧ y = B ∈ Z
]
⇒[

x + y = A + B ∧ x ≥ 0
]

while x > 0[[
x + y = A + B ∧ x ≥ 0

]
∧ x > 0

]
x = x-1;

y = y+1;[
x + y = A + B ∧ x ≥ 0

]
end

disp (y);[
If the program terminates, the value of A + B gets printed.

]
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What we did proof:

Partial Semantic Correctness of the function iterative(x,y)

with respect to some speci�cation.

The speci�cation was:[
A ∈ N0 ∧ B ∈ Z ∧ iterative(A,B) is called.

]
PROGRAM[
If the program terminates, the value of A+ B gets printed.

]
Semantic denotes that we were concerned with the meaning of
the program. We are not concerned with the syntax of the
program.
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Partial Correctness means:

There does not happen anything
contradicting the speci�cation.
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and there does not happen anything
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Proving that a program terminates can be hard.



Proving Programs Correct The Hoare Rules Applications

In particular, for partial correctness it is allowed that:

The program never terminates.

The program does terminate, the speci�cation is ful�lled,
and something not to be found in the speci�cation happens
in addition to that.

Yet we will be content with partial correctness and

will go on to concern ourselves with only that.

Total correctness means:

The program terminates,
and there does not happen anything
contradicting the speci�cation.
Proving that a program terminates can be hard.



Proving Programs Correct The Hoare Rules Applications

In particular, for partial correctness it is allowed that:

The program never terminates.

The program does terminate, the speci�cation is ful�lled,
and something not to be found in the speci�cation happens
in addition to that.

Yet we will be content with partial correctness and

will go on to concern ourselves with only that.

Total correctness means:

The program terminates,
and there does not happen anything
contradicting the speci�cation.
Proving that a program terminates can be hard.



Proving Programs Correct The Hoare Rules Applications

In particular, for partial correctness it is allowed that:

The program never terminates.

The program does terminate, the speci�cation is ful�lled,
and something not to be found in the speci�cation happens
in addition to that.

Yet we will be content with partial correctness and

will go on to concern ourselves with only that.

Total correctness means:

The program terminates,
and there does not happen anything
contradicting the speci�cation.
Proving that a program terminates can be hard.



Proving Programs Correct The Hoare Rules Applications

In particular, for partial correctness it is allowed that:

The program never terminates.

The program does terminate, the speci�cation is ful�lled,
and something not to be found in the speci�cation happens
in addition to that.

Yet we will be content with partial correctness and

will go on to concern ourselves with only that.

Total correctness means:

The program terminates,
and there does not happen anything
contradicting the speci�cation.

Proving that a program terminates can be hard.



Proving Programs Correct The Hoare Rules Applications

In particular, for partial correctness it is allowed that:

The program never terminates.

The program does terminate, the speci�cation is ful�lled,
and something not to be found in the speci�cation happens
in addition to that.

Yet we will be content with partial correctness and

will go on to concern ourselves with only that.

Total correctness means:

The program terminates,
and there does not happen anything
contradicting the speci�cation.
Proving that a program terminates can be hard.



Proving Programs Correct The Hoare Rules Applications

Codi�cation of what we did: The Hoare Rules

C. A. R. Hoare 1969:



Proving Programs Correct The Hoare Rules Applications

Codi�cation of what we did: The Hoare Rules

C. A. R. Hoare 1969:



Proving Programs Correct The Hoare Rules Applications

Predicates

A predicate is a function from some set D
to the set {true, false }:

P : D → {true,false}
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Strong and Weak

By De�nition[
A
]
⇒

[
B

]
:⇔ ¬

[
A
]
∨

[
B

]
The predicate

[
false

]
is the strongest of all:

∀B : false⇒
[
B

]
⇔ ¬false ∨

[
B

]
⇔

true ∨
[
B

]
⇔ true

The predicate
[
true

]
is the weakest of all:

∀B : true⇒
[
B

]
⇔ ¬true ∨

[
B

]
⇔

false ∨
[
B

]
⇔

[
B

]
Thus:
false ⇒ · · · ⇒ true

We de�ne:[
A
]

is stronger than
[
B

]
:⇔

[
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]
⇒

[
B

]
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The Mathematical Structure of the Hoare Rules

Essential ingredient: Hoare Triple:
[[
P

]S [
Q

]]

A Hoare Triple is itself a predicate
H : {true, false} ×M× {true, false} −→ {true, false},
where the predicates

[
P

]
and

[
Q

]
provide the �rst and third

argument, and

the set M denotes the set of all syntactically correct programs
in some programming language,

and the value of
[
[P]S [Q]

]
is de�ned as follows:
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When is a Hoare Triple true, when is it false?

[
[P]S [Q]

]
= true

:⇐⇒
If the predicate [P] is true immediately before execution of the
program S ∈ M, then immediately after S has terminated, the
predicate [Q] is true.



Proving Programs Correct The Hoare Rules Applications

The rules often take the following form:

A formula
involving predicates and Hoare Triples.

A Hoare Triple whose program fragment
comprises the fragments used in the Hoare Triples above.

Example:[[
P ∧ B

] S [
P
]][[

P
]

while B do S end
[
P ∧ ¬B

]]
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The rules often take the following form:

A formula
involving predicates and Hoare Triples.

A Hoare Triple whose program fragment
comprises the fragments used in the Hoare Triples above.

Example: [[
P ∧ B

] S [
P
]][[

P
]

while B do S end︸ ︷︷ ︸[P ∧ ¬B]]
uses S and is therefore larger than it.
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The Rules
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Rule 0:

[
true

][[
P

]
% noOperation

[
P

]]
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Rule 1: Axiom of Assignment

[
true

][[
PE instead of x

]
x = E;

[
P

]]
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Rule 1: Axiom of Assignment

[
true

][[
PE/x

]
x = E;

[
P

]]
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Rule 1: Axiom of Assignment

[
true

][[
PE/x

]
x = E;

[
P

]]
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Rule 2: Rule of Consequence

[[[
P̃
]
⇒

[
P
]]

∧
[[

P
]
S

[
Q
]]

∧
[[

Q
]
⇒

[
Q̃
]]]

[[
P̃
]
S

[
Q̃
]]
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Rule 3: Rule of Composition

[[[
P

]
S

[
Q

]]
∧

[[
Q

]
T

[
R

]]]
[[

P

]
S;T

[
R

]]
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Rule 4: Rule of Iteration

[[
P ∧ B

]
S

[
P

]][[
P

]
while B do S end

[
P ∧ ¬B

]]
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Rule 5: Rule of Conditional Branching

[[[
P ∧ B

]
S

[
Q

]] ∧ [[
P ∧ ¬B

]
T

[
Q

]]]
[[

P

]
if B do S else do T end

[
Q

]]
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Applications
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x = x + y;

y = x - y;

x = x - y;
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[
x = A ∧ y = B

]
x = x + y;

y = x - y;

x = x - y;
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Swapping without moving...[
x = A ∧ y = B

]
x = x + y;

y = x - y;

x = x - y;[
x = B ∧ y = A

]
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[
x = A ∧ y = B

]
x = x + y;

y = x - y;

x = x - y;[
x = B ∧ y = A

]
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Annotating the Program with Assertions

[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[]
x = x - y;[
x = B ∧ y = A

]
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[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[]
x = x - y;[
x = B ∧ y = A

]
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[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[]
xafter = xbefore − ybefore;[
xafter = B ∧ yafter = A

]
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[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[]
xafter = xbefore − ybefore; yafter = ybefore;[
xafter = B ∧ yafter = A

]
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[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[
xbefore − ybefore = B ∧ ybefore = A

]
xafter = xbefore − ybefore; yafter = ybefore;[
xafter = B ∧ yafter = A

]
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[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]
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[
x = A ∧ y = B

]
[]
x = x + y;[]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]
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[
x = A ∧ y = B

]
[]
x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]
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[
x = A ∧ y = B

]
[]
x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]
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[
x = A ∧ y = B

]
[]
x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]
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[
x = A ∧ y = B

]
[
(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A

]
x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]
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[
x = A ∧ y = B

]
[
(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A

]
x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]
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[
x = A ∧ y = B

]
[
(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A

]
x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]
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[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]
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[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]
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Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]
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Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
x = x - y;[
x = B ∧ y = A

]
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Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
We appeal to Rule 2: Rule of Consequence

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]
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Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
We analyze its constituent parts:

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]
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Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
Here the rule is applicable:

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]
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Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
We analyze its constituent parts:

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]
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Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
We appeal to Rule 1: Axiom of Assignment

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]
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Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
Here we have to see an implication.

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]
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Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
And there actually is one; let Q̃ = Q.

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q
]][[

P̃
]S [

Q
]]

[
x = B ∧ y = A

]
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Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
Thus ...

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]
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Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
Thus ...

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]
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Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
And one step in the program is proved.

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]
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Using the Hoare Rules

[
x = A ∧ y = B

]
=⇒[

(x + y)− ((x + y)− y) = B ∧ (x + y)− y = A
]

x = x + y;[
x − (x − y) = B ∧ x − y = A

]
y = x - y;[
x − y = B ∧ y = A

]
We could go on like that ...

x = x - y;

[[
P̃
]
⇒

[
P
]
∧

[
P
]S [

Q
]
∧

[
Q
]
⇒

[
Q̃
]][[

P̃
]S [

Q̃
]]

[
x = B ∧ y = A

]
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Finding suitable invariants may be not that easy.
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Symmetry helps.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =
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Symmetry helps.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =
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Symmetry helps.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =
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Symmetry helps.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =
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Symmetry helps.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =
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Symmetry helps.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =
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Symmetry helps.

function result = f(x,y)

while x < y || y < x

if y < x

x = x-y;

else

y = y-x;

end

end

result =
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What shall be our result?

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =
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What shall be our result?

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result =
Skip proof that x=y=gcd(A,B)
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Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

[
If the program terminates, x = y = gcd(A,B)

]
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Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end[
If the program terminates, x = y = gcd(A,B)

]
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Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end[
If the program terminates, x = y = gcd(A,B)

]
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Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end[
If the program terminates, x = y = gcd(A,B)

]
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Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]
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Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]
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Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]
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Proof that x = y = gcd(A,B)

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1
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∧
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∧
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∧
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∧
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∧
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The inner block

[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

[[
gcd(x , y − x) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]

y = y-x;

else

[[
gcd(x − y , y) = gcd(A,B)

]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]

x = x-y;

end[
Q

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
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The Rule of Conditional Branching demands:

[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]

[[
gcd(x , y − x) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]

y = y-x;[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]

[[
gcd(x − y , y) = gcd(A,B)

]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]

x = x-y;[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
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By the Axiom of Assignment:

[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]][[
gcd(x , y − x) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]][[
gcd(x − y , y) = gcd(A,B)

]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
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There are the implications:

[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[

gcd(x , y − x) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
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]
∧

[
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]
∧

[
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]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]
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]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1
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gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
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We invoke the rule:

[[[
P ∧ B

] S [
Q

]] ∧ [[
P ∧ ¬B

] T [
Q

]]]
[[
P

]
if B do S else do T end

[
Q

]]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[
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]
∧

[
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]
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[
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∧
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∧

[
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∧
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∧
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∧
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∧
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end[

Q
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=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1
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Where:
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Where:
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[
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]
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∧
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∧
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∧
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∧
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⇒[[

gcd(x − y , y) = gcd(A,B)
]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]



Proving Programs Correct The Hoare Rules Applications

Where:
[
P

]
if B doS else do T end

[
Q

]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[

gcd(x , y − x) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]
⇒[[

gcd(x − y , y) = gcd(A,B)
]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
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Where:
[
P

]
if B doS else do T end

[
Q

]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[

gcd(x , y − x) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]
⇒[[

gcd(x − y , y) = gcd(A,B)
]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
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So the inner block is proved.

[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧

[
x < y

]]
⇒[[

gcd(x , y − x) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y − x ≥ 1

]]
y = y-x;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
else[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]
∧ ¬

[
x < y

]]
⇒[[

gcd(x − y , y) = gcd(A,B)
]
∧

[
N 3 x − y ≥ 1

]
∧

[
N 3 y ≥ 1

]]
x = x-y;[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[

Q
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
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[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[
Q

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]
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Thus, in our main proof:

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
[
P

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[
Q

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]
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There are three collisions left; trivially:

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[

P
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[
Q

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]][
If the program terminates, x = y = gcd(A,B)

]
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And, clearly:

[[
N 3 A ≥ 1

]
∧

[
N 3 B ≥ 1

]
∧

[
f(A,B) is called.

]]
function result = f(x,y)[[
x = A

]
∧

[
y = B

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
while x < y || y < x[[

gcd(x , y) = gcd(A,B)
]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[

P
]

=
[[
gcd(x , y) = gcd(A,B)

]
∧

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
if x < y

y = y-x;

else

x = x-y;

end[
Q

]
=

[[
gcd(x , y) = gcd(A,B)

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[[

gcd(x , y) = gcd(A,B)
]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
end[[

gcd(x , y) = gcd(A,B)
]
∧ ¬

[
x 6= y

]
∧

[
N 3 x ≥ 1

]
∧

[
N 3 y ≥ 1

]]
⇒[

If the program terminates, x = y = gcd(A,B)
]

�
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What shall be our result?

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result = (x+y)/2;
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What shall be our result?

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result = (x+y)/2;
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What we know:

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result = (x+y)/2;[
If the program terminates, result = gcd(A,B)

]
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Let us make it more symmetric.

function result = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result = (x+y)/2;
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Only one result is rather asymmetric...

function [fR, sR] = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

result = (x+y)/2;
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Only one result is rather asymmetric...

function [fR, sR] = f(x,y)

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

fR = (x+y)/2;

sR = ?
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More results may need more variables...

function [fR, sR] = f(x,y)

u = x;

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

fR = (x+y)/2;

sR = ?
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More results may need more variables...

function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

else

x = x-y;

end

end

fR = (x+y)/2;

sR = ?
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We had better balance this surplus of minuses...

function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

end

end

fR = (x+y)/2;

sR = ?
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We had better balance this surplus of minuses...

function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = ?
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What shall our second result be?

function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = ?
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A symmetric one, of course...

function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;
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So, what is sR?

function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;
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Well, what is the counterpart to gcd?

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
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How could we �nd a good invariant?

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
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We use what we know...

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x;

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y;

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x;

v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; gcd(A,B) · scm(A,B) = fR · sR
v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u;

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; But: x+y

2
· u+v

2
= fR · sR

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: x+x

2
· u+v

2
= fR · sR

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: x·u+x·v

2
= fR · sR

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y;

u = u+v;

end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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...and try to invent a loop invariant.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; Well, suppose we are right in both assertions.

v = y; Then, upon termination,

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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Might 2 · A · B = y · u + x · v also be true during execution?

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end Upon initialization,

fR = (x+y)/2; x = u = A and y = v = B

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end So,

fR = (x+y)/2; 2 · A · B = y · u + x · v ⇔ 2 · A · B = 2 · A · B
sR = (u+v)/2;[

If the program terminates, sR = scm(A,B).
]

[
If the program terminates, fR = gcd(A,B)

]



Proving Programs Correct The Hoare Rules Applications

Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end In the one branch,

fR = (x+y)/2; 2 · A · B = y · u + x · v becomes

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end In the one branch,

fR = (x+y)/2; 2 · A · B = y · u + x · v becomes

sR = (u+v)/2; 2 · A · B = (y − x) · u + x · (v + u)[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end In the other branch,

fR = (x+y)/2; 2 · A · B = y · u + x · v becomes

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]



Proving Programs Correct The Hoare Rules Applications

Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end In the other branch,

fR = (x+y)/2; 2 · A · B = y · u + x · v becomes

sR = (u+v)/2; 2 · A · B = y · (u + v) + (x − y) · v[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end Thus, the equality is maintained.

fR = (x+y)/2;

sR = (u+v)/2;[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B)

]
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Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end Upon completion,

fR = (x+y)/2; x = y = gcd(A,B), thus
sR = (u+v)/2;[

If the program terminates, sR = scm(A,B).
]

[
If the program terminates, fR = gcd(A,B)

]
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Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end Upon completion,

fR = (x+y)/2; x = y = gcd(A,B), thus
sR = (u+v)/2; 2 · A · B = y · u + x · v = gcd(A,B) · (u + v)[

If the program terminates, sR = scm(A,B).
]

[
If the program terminates, fR = gcd(A,B)

]
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Yes.

[
N 3 A ≥ 1 ∧ N 3 B ≥ 1 ∧ f(A,B) is called.

]
function [fR, sR] = f(x,y)

u = x; We conjecture that this is a loop invariant.
v = y;

while x < y || y < x

if x < y

y = y-x; A · B = gcd(A,B) · scm(A,B) = fR · sR
v = v+u; Upon termination: y·u+x·v

2
= fR · sR

else

x = x-y; Together: A · B = y·u+x·v
2

u = u+v; Or: 2 · A · B = y · u + x · v
end

end

fR = (x+y)/2; Therefore

sR = (u+v)/2; sR = u+v
2

= A·B
gcd(A,B)

= scm(A,B) �[
If the program terminates, sR = scm(A,B).

]
[
If the program terminates, fR = gcd(A,B).

]
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