Program Verification using Hoare Logic
- An Introduction -

Peter Heinig

Technical University of Munich

March 2007, JASS 2007

Proving Programs Correct

9000000000000 000O000O0O000O0O00000

function recursive(x,y)

Proving Programs Correct

9000000000000 000O000O0O000O0O00000

function recursive(x,y)
Exzzo
disp (y);

function recursive(x,y)

if x ==
disp (y);
else
recursive(x-1,y+1);
end

Proving Programs Correct The Hoare Rules Applications

0000000000000 0000O0O0O0O0000O00000

function recursive(x,y)

E x == 0
disp (y);
else

recursive(x-1,y+1);
end

Proving Programs Correct

00@0000000000000000O0O0000O00000

xeNg N ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end

If the program terminates, the value of x + y gets printed.

Proving Programs Correct

000@000000000000000O0O0000O00000

[x €ENg AN ye Z]
function recursive(x,y)
A 7 =
disp (y);
else
recursive(x-1,y+1);
end

[If the program terminates, the value of x + y gets printed.}

How can we prove this assertion?

Proving Programs Correct The Hoare Rules Applications

000@000000000000000O0O0000O00000

[x €ENg AN ye Z]
function recursive(x,y)
A 7 =
disp (y);
else
recursive(x-1,y+1);
end

[If the program terminates, the value of x + y gets printed.}

How can we prove this assertion? Easy.

Proving Programs Correct

0000@00000000000000O0O0000O00000

[x eNo AN ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end

[If the program terminates, the value of x + y gets printed.}

Proving Programs Correct The Hoare Rules Applications

0000@00000000000000O0O0000O00000

[x eNo AN ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end

[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)

Proving Programs Correct The Hoare Rules Applications

0000@00000000000000O0O0000O00000

[x eNo AN ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end

[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
If [x = 0], then
Vy €Z: [recursive x,y)

Function Definition
] = [

y = x + y gets printed].

Proving Programs Correct The Hoare Rules Applications

0000@00000000000000O0O0000O00000

[x eNo AN ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end

[If the program terminates, the value of x + y gets printed.}
Proof of Correctness: (Induction on the first argument)
If [x = 0], then

Vy €Z: [recursive x,y)
Now assume that for some 0 < x € Ny :

Function Definition
] = [

y = x + y gets printed].

Proving Programs Correct

0000@00000000000000O0O0000O00000

[x eNg A ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end
[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
If [x = 0], then
Vy €Z: [recursive x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [recursive (x,y)] = [x + y gets printed].

] Function:IQefinition [y —x+y gets printed]

Proving Programs Correct

0000@00000000000000O0O0000O00000

[x eENg AN ye€ Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);

end
[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
If [x = 0], then
Vy €Z: [recursive x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [recursive (x,y)] = [x + y gets printed].

Then [recursive (x+1 ,y)}

] Function:IQefinition [y —x+y gets printed]

Proving Programs Correct

0000@00000000000000O0O0000O00000

[x eNo AN ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end

[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
If [x = 0], then

Vy €Z: [recursive x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [recursive (x,y)] = [x + y gets printed].

Function Definition
=

Function Definition
] = [

y = x + y gets printed].

Then [recursive(x+1,y)} [recursive(x,y+1)}

Proving Programs Correct

0000@00000000000000O0O0000O00000

[x eNg A ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end
[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
If [x = 0], then

Vy €Z: [recursive x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [recursive (x,y)] = [x + y gets printed].

Function Definition
=

Function Definition
] = [

y = x + y gets printed].

Then [recursive(x+1,y)} [recursive(x,y+1)}

|nductiveé>ssumpti0" [x + (y + 1) gets printed],

Proving Programs Correct

0000@00000000000000O0O0000O00000

[x eNg A ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end
[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
If [x = 0], then
Vy €Z: [recursive x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [recursive (x,y)] = [x + y gets printed].

Function Definition
=

Function Definition
] = [

y = x + y gets printed].

Then [recursive(x+1,y)} [recursive(x,y+1)}

Inductive,:’-\>ssumption [X + (y + 1) gets printed],
and x+ (y+1)=(x+1)+y.

Proving Programs Correct

0000@00000000000000O0O0000O00000

[x eNg A ye Z}
function recursive(x,y)
if x ==
disp (y);
else
recursive(x-1,y+1);
end
[If the program terminates, the value of x + y gets printed.}

Proof of Correctness: (Induction on the first argument)
If [x = 0], then
Vy €Z: [recursive x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [recursive (x,y)] = [x + y gets printed].

Function Definition
=

Function Definition
] = [

y = x + y gets printed].

Then [recursive(x+1,y)} [recursive(x,y+1)}

Inductive,:’-\>ssumption [X + (y + 1) gets printed],
and x+ (y+1)=(x+1)+y.

Proving Programs Correct

00000@0000000000000O0O0000O00000

function iterative(x,y)
while x > 0O
X = x-1;
y = y+i;
end
disp (y);

Proving Programs Correct The Hoare Rules Applications

000000e@0000000000000O0000O00000

function iterative(x,y)
while x > O

x = x-1;
y = y+i
end

disp (y);

Proving Programs Correct The Hoare Rules Applications

0000000@00000000000O0O0000O00000

xeNyg A ye Z}
function iterative(x,y)
while x > 0

x = x-1;
y =yl
end
disp (y);

If the program terminates, the value of x + y gets printed.

Proving Programs Correct The Hoare Rules Applications

00000000@0000000000O0O0000O00000

[XGNO /\yEZ}
function iterative(x,y)
while x > O

x = x-1;
y = ¥+l
end
disp (y);

[If the program terminates, the value of x + y gets printed.}

How can we prove this assertion?

Proving Programs Correct The Hoare Rules Applications

00000000@0000000000O0O0000O00000

[XGNO /\yEZ}
function iterative(x,y)
while x > O

x = x-1;
y = ¥+l
end
disp (y);

[If the program terminates, the value of x + y gets printed.}

How can we prove this assertion? Easy?

Proving Programs Correct The Hoare Rules Applications

00000000@0000000000O0O0000O00000

[XGNO /\yEZ}
function iterative(x,y)
while x > O

x = x-1;
y = ¥+l
end
disp (y);

[If the program terminates, the value of x + y gets printed.}

How can we prove this assertion? Easy? Lets try it again.

Proving Programs Correct The Hoare Rules

000000000 e0000000000O0000O00000

Applications

function iterative(x,y)
while x > O

X = x-1;
y =yl
end

disp (y);

Proving Programs Correct
000000000e0000000000000000000

The Hoare Rules

Applications

function iterative(x,y)
while x > O

X = x-1;
y = y+i;
end
disp (y);

Proof of Correctness:

Proving Programs Correct Applications
000000000e0000000000000000000

The Hoare Rules

function iterative(x,y)
while x > O

X = x-1;
y = y+i;
end
disp (y);

Proof of Correctness: (Induction on the first argument

Proving Programs Correct Applications
000000000e0000000000000000000

The Hoare Rules

function iterative(x,y)
while x > O

X = x-1;
y = y+i;
end
disp (y);

Proof of Correctness: (Induction on the first argument 777)

Proving Programs Correct The Hoare Rules Applications

000000000 e0000000000O0000O00000

function iterative(x,y)
while x > O
X = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then

Vy € Z: [iterative (x,y)]

Function Definition
=

[y = x + y gets printed].

Proving Programs Correct The Hoare Rules Applications

000000000 e0000000000O0000O00000

function iterative(x,y)
while x > O
X = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then

Vy € Z: [iterative (x,y)]
Now assume that for some 0 < x € Ny :

Function Definition
=

[y = x + y gets printed].

The Hoare Rules Applications

Proving Programs Correct
000000000e0000000000000000000

function iterative(x,y)
while x > O
X = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then
Vy € Z: [iterative (x,y)]
Now assume that for some 0 < x € Ny :
Vy € Z: [iterative(x,y)] = [x + y gets printed].

Function Definition
=

[y = x + y gets printed].

Proving Programs Correct

000000000 e0000000000O0000O00000

function iterative(x,y)
while x > O
X = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then
Vy € Z: [iterative (x,y)]
Now assume that for some 0 < x € Ny :
Vy € Z: [iterative(x,y)] = [x + y gets printed].

Function Definition
=

[y = x + y gets printed].

Then [iterative (x+1 ,y)}

Proving Programs Correct The Hoare Applications

000000000 e0000000000O0000O00000

function iterative(x,y)
while x > O
X = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then
Vy € Z: [iterative (x,y)]
Now assume that for some 0 < x € Ny :
Vy € Z: [iterative(x,y)] = [x + y gets printed].

Function Definition
=

[y = x + y gets printed].

. . A ion Definiti
Then [1terat1ve(x+1,y)} unction gefinition

Proving Programs Correct

000000000 e0000000000O0000O00000

function iterative(x,y)
while x > O
X = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then
Vy € Z: [iterative (x,y)]
Now assume that for some 0 < x € Ny :
Vy € Z: [iterative(x,y)] = [x + y gets printed].

Fu nction:I?efinition [?}

Function Definition
=

[y = x + y gets printed].

Then [iterative (x+1 ,y)}

Proving Programs Correct

000000000 0e000000000O0000O00000

function iterative(x,y)
while x > 0
x = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then

Vy € Z: [iterative (x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [iterative(x,y)| = [x + y gets printed].

Function Definition [q
unctieneinen literative (x+1,y)]

Function Definition
] = [

y = x + y gets printed].

Then [iterative (x+1 ,y)}

Proving Programs Correct

000000000 0e000000000O0000O00000

function iterative(x,y)
while x > 0
x = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then

Vy € Z: [iterative (x,y)
Now assume that for some 0 < x € Ny :
Vy € Z: [iterative(x,y)| = [x + y gets printed].

Function Definition [q
unctieneinen literative (x+1,y)]

Function Definition
] = [

y = x + y gets printed].

Then [iterative (x+1 ,y)}
Useless.

Proving Programs Correct

000000000 0e000000000O0000O00000

function iterative(x,y)
while x > 0
x = x-1;
y = y+i;
end
disp (y);
Proof of Correctness: (Induction on the first argument 777)
If [x = 0], then

Vy € Z: [iterative (x,y)]
Now assume that for some 0 < x € Ny :
Vy € Z: [iterative(x,y)| = [x + y gets printed].

Function Definition [q
unctieneinen literative (x+1,y)]

Function Definition
=

[y = x + y gets printed].

Then [iterative(x+1,y)}
Useless.
We need new tools.

Proving Programs Correct
00000000000e00000000000000000

What is the problem?

Proving Programs Correct
00000000000e00000000000000000

What is the problem?

@ No expression replacement rule anymore.

Proving Programs Correct
00000000000e00000000000000000

What is the problem?

@ No expression replacement rule anymore.

@ Assignments.

Proving Programs Correct
00000000000e00000000000000000

What is the problem?

@ No expression replacement rule anymore.
@ Assignments.
o While loop.

Proving Programs Correct
00000000000e00000000000000000

What is the problem?

@ No expression replacement rule anymore.

@ Assignments.

o While loop.

o Variables exist in different states during execution.

Proving Programs Correct
000000000000e0000000000000000

Adapting to the new situation:

[x eNg A ye Z}
function iterative(x,y)
while x > 0

x = x-1;
y = yti;
end
disp (y);

[If the program terminates, the value of x + y gets printed.]

Proving Programs Correct
0000000000000e000000000000000

Taking care of states:

{A €Nyp A BEZ N iterative(A,B) is called.
function iterative(x,y)
{X:AGNQ A y:BeZ}
while x > 0

x = x-1;
y = yti;
end
disp (y);

If the program terminates, the value of A + B gets printed.}

Proving Programs Correct

0000000000000 0e00000000000000

[A €Ng A BEZ A iterative(A,B) is called.
function iterative(x,y)
P:AeNoAy:Bed
while x > 0

x = x-1;
y = y+i
end
disp (y);

[If the program terminates, the value of A + B gets printed.}

Proving Programs Correct
000000000000000e0000000000000

Clearly:

[A€No A BEZ A iterative(s,B) is called.
function iterative(x,y)
[X:AGNO A y:BGZ] =

{x+y:A+B /\XZO}
while x > 0

x = x-1;
y = v+l
end
disp (y);

[If the program terminates, the value of A + B gets printed.}

Proving Programs Correct

0000000000000 000e000000000000

[AGNO/\BEZAlteratlve(A B) is called.
function iterative(x,y)
[x AENO/\y—BEZ}é
[ery A+BAX>O}

while x > 0
{ery A+BAx>o}Ax>0}

= x-1;

y = y+1;
end

disp (y);

[If the program terminates, the value of A + B gets printed.}

Proving Programs Correct
00000000000000000e00000000000

We claim that this is a loop invariant

AceNy A BEZ A iterative(A,B) is called.
function iterative(x,y)
x=AeNy A y—BeZ}

while x > 0

|
[
[x-l—y A+ B /\x>0}
[x+y A+B A x>0 /\x>0]

x = x-1;
y = y+i;
{x+y:A+B A x20]
end
disp (y);

[If the program terminates, the value of A + B gets printed.}

Proving Programs Correct

0000000000000 00000eO000000000

AceNyg A BEZ N iterative(A,B) is called.
: function iterative(x,y)
x=AeNy A y:BeZ} =

x+y=A+B szo]
~ while x > 0
[x+y=A+B A x20] A x>0
) x = x-1;
x+(y+1)=A+B AXEO]
) y = y+1;
{x+y:A+B A xzo}
end
disp (y);

[If the program terminates, the value of A + B gets printed.}

Proving Programs Correct

0000000000000 00000O0e000000000

AeENg AN BeZ A iterative(A,B) is called.
: function iterative(x,y)
x=A€eNy /\y:BeZ}:>
Xx+y=A+B A xzo}
~ while x > 0
[x—l—y:A—i—B N XZO} /\X>O]
(x-1)+(y+1)=A+B A (xfl)EO}
) x = x-1;
{x+(y+1):A+B A xzo}

y = v+l
[x+y:A+B A xzo}
end
disp (y);

[If the program terminates, the value of A + B gets printed.}

Proving Programs Correct

0000000000000 000000Oe00000000

AeENg AN BeZ A iterative(A,B) is called.

: function iterative(x,y)

x:AeNo/\y:BeZ}#

x—|—y:A+B/\x20}

~ while x > 0

[+y:A+BAx20}Ax>0}

(x-1)+ (y+1):A+BA(x_1)zo]
x = x-1;

x+(y+1):A+BAx20]

) y = v+l

x+y:A+BAx20]

- end

disp (y);

[If the program terminates, the value of A + B gets printed.}

Proving Programs Correct

0000000000000 O00000000e0000000

AeENg AN BeZ A iterative(A,B) is called.
: function iterative(x,y)

x=A€eNy /\y:BeZ}:>
Xx+y=A+B A xzo}

~ while x > 0

[x+y:A+B A XEO} A x>0}:&
(x-1)+(y+1)=A+B A (xfl)EO}
) x = x-1;

x+(y+1)=A+B szo}

Y =yt

X+y=A+B A xzo}

- end

disp (y);

[If the program terminates, the value of A + B gets printed.}

Proving Programs Correct

0000000000000 O000000000e000000

AeENg AN BeZ A iterative(A,B) is called.
function iterative(x,y)
x=A€eNy /\y_BeZ}:>

while x > 0

|
[
[x-i—y A+ B /\x>0}
{ery A+ B /\x>0} Ax>0}¢
‘

(x—1)+(y+1) = A'BA(x71)>O}
x = x-1;
(y+1)_A+B/\x20]
§ y = y+l;
x+y:A+BAx20]
~ end
disp (y);

[If the program terminates, the value of A + B gets printed.}

Proving Programs Correct

0000000000000 O000O0000000e00000

AcENyg N BEZ A iterative(A,B) is called.
_ function iterative(x,y)
x=A€eNo Ay:Bez}:»
[x+y=A+8B szo]
~ while x > 0
[X+y:A+B /\XZO] /\X>0]:>
(x—1)+(+1)=A+B A (x_1)zo]
x = x-1;
{x+(y+1)=A+B A xzo]
y = y+i;
{x+y=A+B szo]
end
disp (y);

{If the program terminates, the value of A+ B gets printed.

Proving Programs Correct

0000000000000 O000O000O00000e0000

AeNyg N BeEZ N iterative(A,B) is called.

~ function iterative(x,y)

x:AGNo/\y:BGZ}é

'x+y:A+Bszo]

~ while x >0

[x+y=A+B A x20] A x>0| =

(x—1)+(y+1):A+B/\(x—1)20]
= x-1;

{x+(}/+1 A+B/\x20]
y+i;

{ery A+BAX>O]

I

{

x+y—A+B A x>0] A ﬁ[x>oﬂ
disp (y);
If the program terminates, the value of A + B gets printed.

Proving Programs Correct

0000000000000 O0000O00O0O00000e000

AeNyg N BeEZ N iterative(A,B) is called.

~ function iterative(x,y)

x:AGNo/\y:BGZ}é

'x+y:A+Bszo]

~ while x >0

[x+y=A+B A x20] A x>0| =

(x—1)+(y+1):A+B/\(x—1)20]
= x-1;

{x+(}/+1 A+B/\x20]
y+i;

{ery A+BAX>O]

I

{

x+y—A+B A x>0] A ﬁ[x>oﬂ =
disp (y);
If the program terminates, the value of A + B gets printed.

Proving Programs Correct

0000000000000 O000O000O0000000e00

[A€No A BEZ A iterative(s,B) is called.
_ function iterative(x,y)

x=A€cNy A y:BEZ} =
[x+y=A+B A xzo]

: while x > 0

[x—l—y:A—Q—B A XZO] A X>0]:>
(x—D)+(+1)=A+B A (xfl)ZO]

x = x-1;

x+(y+1)=A+B A xzo]
y =yt
x+y A+B A X>0]

X+y= A+BAX7@

{
|
{x+y*A+B A x20] A =[x >0]] =
|
disp (y);

|

If the program terminates, the value of A + B gets printed.

Proving Programs Correct

0000000000000 O000O000O0O0000000e0

[A€No A BEZ A iterative(s,B) is called.
_ function iterative(x,y)

x=A€cNy A y:BEZ} =
[x+y=A+B A xzo]

: while x > 0

[x—l—y:A—Q—B A XZO] A X>0]:>
(x—D)+(+1)=A+B A (xfl)ZO]

x = x-1;

x+(y+1)=A+B A xzo]
y =yt
x+y A+B A X>0]

xX+y= A+B/\xf0} {y:AJrB}

{
|
{x+y*A+B A x20] A =[x >0]] =
|
disp (y);

|

If the program terminates, the value of A + B gets printed.

Proving Programs Correct

0000000000000 O000O0O000O00000000e

[A€No A BEZ A iterative(s,B) is called.
_ function iterative(x,y)

x=A€cNy A y:BEZ} =
[x+y=A+B A xzo]

: while x > 0

[x—l—y:A—Q—B A XZO] A X>0]:>
&flyHy+U:A+BA(x—Uzq

x = x-1;

x+(y+1)=A+B A xzo]
y =yt
x+y A+B A X>0]

X+ty=A+B A xfo] [y:AJrB}

{
|
{x+y—A+B A x20] A =[x>0]] =
|
disp (y);

{

If the program terminates, the value of A + B gets printed. O

The Hoare Rules
®0000

What have we done? What will we do?

The Hoare Rules
®0000

What have we done? What will we do?

Proving Programs Correct The Hoare Rules
®0000

What have we done? What will we do?

@ What, exactly, did we proof, after all? And what not?

Proving Programs Correct The Hoare Rules
®0000

What have we done? What will we do?

@ What, exactly, did we proof, after all? And what not?

@ How can we codify what we have done and will have to do
next time?

Proving Programs Correct The Hoare Rules
®0000

What have we done? What will we do?

@ What, exactly, did we proof, after all? And what not?

@ How can we codify what we have done and will have to do
next time?

@ What are the underlying rules of reasoning?

The Hoare Rules
©0®000

What we did proof:

The Hoare Rules
©0®000

What we did proof:

@ Partial Semantic Correctness of the function iterative(x,y)
with respect to some specification.

The Hoare Rules
©0®000

What we did proof:

@ Partial Semantic Correctness of the function iterative(x,y)
with respect to some specification.

@ The specification was:
AcNg AN BeZ N iterative(A,B) is called.}

PROGRAM

[If the program terminates, the value of A+ B gets printed.}

The Hoare Rules
©0®000

What we did proof:

@ Partial Semantic Correctness of the function iterative(x,y)
with respect to some specification.
@ The specification was:
AcNg AN BeZ N iterative(A,B) is called.}

PROGRAM

[If the program terminates, the value of A+ B gets printed.}

@ Semantic denotes that we were concerned with the meaning of
the program. We are not concerned with the syntax of the
program.

Partial Correctness means:

There does not happen anything
contradicting the specification.

In particular, for partial correctness it is allowed that:

The Hoare Rules

oooe

In particular, for partial correctness it is allowed that:

@ The program never terminates.

In particular, for partial correctness it is allowed that:

@ The program never terminates.

@ The program does terminate, the specification is fulfilled,
and something not to be found in the specification happens
in addition to that.

In particular, for partial correctness it is allowed that:

@ The program never terminates.

@ The program does terminate, the specification is fulfilled,
and something not to be found in the specification happens
in addition to that.

Yet we will be content with partial correctness and
will go on to concern ourselves with only that.

In particular, for partial correctness it is allowed that:

@ The program never terminates.

@ The program does terminate, the specification is fulfilled,
and something not to be found in the specification happens
in addition to that.

Yet we will be content with partial correctness and
will go on to concern ourselves with only that.

@ Total correctness means:

The program terminates,
and there does not happen anything
contradicting the specification.

In particular, for partial correctness it is allowed that:

@ The program never terminates.

@ The program does terminate, the specification is fulfilled,
and something not to be found in the specification happens
in addition to that.

Yet we will be content with partial correctness and
will go on to concern ourselves with only that.

@ Total correctness means:

The program terminates,
and there does not happen anything
contradicting the specification.

@ Proving that a program terminates can be hard.

Proving Programs Correct The Hoare Rules
ooooe

Codification of what we did: The Hoare Rules

@ C. A. R. Hoare 1969:

The Hoare Rules
ooooe

Codification of what we did: The Hoare Rules

@ C. A. R. Hoare 1969:
An Axiomatic Basis for
Computer Programming

C. A. R. Hoagre
The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer

programs.

Proving Programs Correct The Hoare Rules
©00000000000000

Predicates

A predicate is a function from some set D
to the set {true, false }:

P:D — {true,false}

The Hoare Rules
0®0000000000000

Strong and Weak

Strong and Weak

e By Definition
Al =[8] = -[A]v[B]

Strong and Weak

e By Definition
Al = [B] = ~[A]lV[B]

o The predicate [false] is the strongest of all:
VB: false= [B] & falsev[B] <«
trueV [B] & true

Strong and Weak

e By Definition
Al = [B] = -[A]v[B]

o The predicate [false] is the strongest of all:
VB: false= [B] & falsev[B] <«
trueV [B] & true

o The predicate [true] is the weakest of all:

VB : true = [B] & true V [B} &
false v [B] & [B]

Strong and Weak

e By Definition
Al = [B] = -[A]v[B]

o The predicate [false] is the strongest of all:
VB: false= [B] & falsev[B] <«
trueV [B] & true

o The predicate [true] is the weakest of all:

VB : true = [B] & true V [B} &
false v [B] & [B]

o Thus:

false = = true

Strong and Weak

e By Definition
Al = [B] = -[A]v[B]

o The predicate [false] is the strongest of all:
VB: false= [B] & falsev[B] <«
trueV [B] & true

o The predicate [true] is the weakest of all:

VB : true = [B] & true V [B} &
false v [B] & [B]

o Thus:
false = = true
o We define:

[A} is stronger than [B} & [A} = [B]

Strong and Weak

e By Definition
Al = [B] = -[A]v[B]

o The predicate [false] is the strongest of all:
VB: false= [B] & falsev[B] <«
trueV [B] & true

o The predicate [true] is the weakest of all:

VB : true = [B] & true V [B} &
false v [B] & [B]

o Thus:
false = = true
o We define:

[A} is stronger than [B} & [A} = [B]

Proving Programs Correct The Hoare Rules
00®000000000000

The Mathematical Structure of the Hoare Rules

o Essential ingredient: Hoare Triple: [[P] S [QH

Proving Programs Correct The Hoare Rules
00®000000000000

The Mathematical Structure of the Hoare Rules

o Essential ingredient: Hoare Triple: [[P] S [QH

@ A Hoare Triple is itself a predicate
H : {true,false} x M x {true, false} — {true,false},

Proving Programs Correct The Hoare Rules
00®000000000000

The Mathematical Structure of the Hoare Rules

o Essential ingredient: Hoare Triple: [[P] S [QH
@ A Hoare Triple is itself a predicate
H : {true,false} x M x {true, false} — {true,false},

@ where the predicates [P] and [Q] provide the first and third
argument, and

Proving Programs Correct The Hoare Rules
00®000000000000

The Mathematical Structure of the Hoare Rules

o Essential ingredient: Hoare Triple: [[P] S [QH
@ A Hoare Triple is itself a predicate
H : {true,false} x M x {true, false} — {true,false},

@ where the predicates [P] and [Q] provide the first and third
argument, and

o the set M denotes the set of all syntactically correct programs
in some programming language,

The Hoare Rules
00®000000000000

The Mathematical Structure of the Hoare Rules

Essential ingredient: Hoare Triple: [[P} S [QH
A Hoare Triple is itself a predicate
H : {true,false} x M x {true, false} — {true,false},

where the predicates [P] and [Q] provide the first and third
argument, and

the set M denotes the set of all syntactically correct programs
in some programming language,

and the value of {[P] S [Q]} is defined as follows:

The Hoare Rules
000®00000000000

When is a Hoare Triple true, when is it false?

[[P] S [Q]} = true

If the predicate [P] is true immediately before execution of the
program S € M, then immediately after S has terminated, the
predicate [Q] is true.

The Hoare Rules
0000®0000000000

The rules often take the following form:

The Hoare Rules
0000®0000000000

The rules often take the following form:

A formula
involving predicates and Hoare Triples.
A Hoare Triple whose program fragment
comprises the fragments used in the Hoare Triples above.

Proving Programs Correct The Hoare Rules
0000®0000000000

The rules often take the following form:

)) A formula _
involving predicates and Hoare Triples.

A Hoare Triple whose program fragment
comprises the fragments used in the Hoare Triples above.

@ Example:

[[P/\B] S [PH
[[P] - [P“BH

Proving Programs Correct The Hoare Rules
00000®000000000

The rules often take the following form:

A formula
involving predicates and Hoare Triples.

A Hoare Triple whose program fragment
comprises the fragments used in the Hoare Triples above.

@ Example:
[pre) S [7]]

[[r] whileBdo O end [rn-a]]

-~

uses S and is therefore larger than it.

The Hoare Rules
000000e00000000

The Rules

The Hoare Rules

0000000e0000000

e
[[P} i melfpersiien [PH

Proving Programs Correct The Hoare Rules
00000000e000000

Rule 1: Axiom of Assignment

e
[Pewsssaor] x=55 [7]]

Proving Programs Correct The Hoare Rules
000000000e00000

Rule 1: Axiom of Assignment

Proving Programs Correct The Hoare Rules
0000000000800

Rule 1: Axiom of Assignment

Rule 2: Rule of Consequence

Rule 4: Rule of Iteration

[[PAB} S [pH

[[P} while Bdo O end [P/\ﬂBH

Rule 5: Rule of Conditional Branching

[[[MB] S [a]] A

[[P] if Bdo O else

1

vl T (]

Tt [q]

Q.

Applications

Applications

The Hoare Rul Applications

90000000000

<

I

>
|

The Hoare Rules App ons

O@000000000

<
I
5
|
=

Swapping without moving...

P:AAy:B}

P:BAy:A}

Applications

000@0000000

Applications
0000®000000

Annotating the Program with Assertions

_x:A/\y:B

X =Xx+ty;
A S 4
"X =X - ¥,

_x:B ANy=A

ms Correct The Hoare Rules Applications

X =x+ty;

ms Correct The Hoare Rules Applications

o]
]

X+y;

y=x-y;

Xafter = Xbefore — Ybefore 3

Xafter = B A Yafter = A

The Hoare Rules Applications

000000 00

Xafter — Xbefore — Ybefore > Yafter — Ybefore

Xafter = B A Yafter = A

The Hoare App ons

00000000e00

X =x +y;
Yy =x-y;
Xpefore — Ybefore = B A\ Ybefore = A}
Xafter — Xbefore — Ybefore > Yafter — Ybefore

Xafter = B A Yafter = A}

The Hoare Rules Applic: s

000000000 e0

b4
I
b
+
o

The Hoare Rules Applic: s

000000000 0e

b4
I
b
+
o

Applications

00000000000

Applications

00000000000

Applications

00000000000

The Hoare Rules Applications

00000000000

X =x+ty;
Xf(xfy):B/\xfy:A}
Y =x-¥
x—y:B/\y:A}

X=X -Y;

Applications

00000000000

(x+y)—((x+y)-y)=B A (x+y)—y=A

X=X+
X_(X—}’)ZBAX—y:A}
Y =X -y

X — :B/\y:A}

X =X - V;

:x:B /\y:A}

The Hoare Rules Applications

00000000000

X =x+ty;
X—(x—y):B/\X—y:A}
Y=x-¥
x—y:B/\y:A}

X=X -Y;

The Hoare Rules Applications

00000000000

X =x+ty;
X—(x—y):B/\X—y:A}
Y=x-¥
x—y:B/\y:A}

X=X -Y;

Applications

00000000000

(x+y)—((x+y)-y)=B A (x+y)—y=A

X=X+
X_(X—}’)ZBAX—y:A}
Y =X -y

X — :B/\y:A}

X =X - V;

:x:B /\y:A}

Applications
00000000000

Using the Hoare Rules

7X:A/_y:B:>

(x+y) = ((x+y) =) =B A (x+y)—y = A

X=X+y,

-(x-y)= B/\x—y:A}
:Y=X—y,

—y= BAy:A}
X=X -7Y;

:x:B /\y:A}

Applications
00000000000

Using the Hoare Rules

7X:A/_y:B:>

(x+y)=((x+y)—y)=B A (x+y)-y=A

7x=X+y;
X*(X*)/):B/\Xfy:A}
Y =X -y
x—y:B/\y:A}

X=X -7YV;

:x:B /\y:A}

Using the Hoare Rules

_X:A/\y:B =

4 = ((x+y) = y) =B A (x+y) -y =A

X =X +y;
x—(x—y)=B A x—y:A}
Yy =% -y
x—y=B A y:A} We appeal to Rule 2: Rule of Consequence
[71=[¢) ~ [/ [a] » [a]=[4]]
X=X -YV;

P:BAy:ﬂ

Using the Hoare Rules

_X:A/\y:B =

4 = ((x+y) = y) =B A (x+y) -y =A

X =x+7y;

x—(x—y)=B A x—y:A}
Yy =X -y
x—y=B A y:A} We analyze its constituent parts:
[[]=[¢] A []]D [a] » [o]=[a]]
X=X -7Y;

P:BAy:ﬂ

Using the Hoare Rules

_X:A/\y:B —

4 = ((x+y) = y) =B A (x+y) -y =A

x=xty;

x—(x=y)=B A x—y=A|

Yy =X -y

x—y=BANy= A} Here the rule is applicable:
A (GG /]S [e] » [o]~[2]]

(719 [al]

x=BAy=4

Using the Hoare Rules

_X:A/\y:B _—

4 = ((x+y) = y) =B A (x+y) -y =A

X =X +7;

x—(x—y)=B A x—y:A}
Y =xX-7;
x—y=B A y:A} We analyze its constituent parts:
[Fl=[7] » [#]O [a] » [o]=[a]]
X=X -7Y;

P:BAy:ﬂ

Using the Hoare Rules

_X:A/\y:B _—

4 = ((x+y) = y) =B A (x+y) -y =A

X =X +y;
x—(x—y)=B A x—y:A}
Yy =% -y
x—y=B ANy= A} We appeal to Rule 1: Axiom of Assignment
[Fl=[7] » [#]O [a] » [o]=[a]]
X=X -7YV;

(7] S [2]]

P:BAy:ﬂ

Using the Hoare Rules

_X:A/\y:B —

kX+ﬂ—«X+m—y%:BA(x+M—y:A}

X =X +ty;

X—(X—Y):BAX—)/:A}

Y =X -y

x—y=BANy= A} Here we have to see an implication.
ey =[] » [1O][] » [o]-[e]]

x=BAy=4

Using the Hoare Rules

_X:A/\y:B —

kX+ﬂ—«X+m—y%:BA(x+M—y:A}

X =X +ty;

X—(X—Y):BAX—)/:A}

Y=x-7;

x—y=BA y:A} And there actually is one; let Q = Q.
ey =[] » [1O][] » [o]~[e]]

x=BAy=4

Using the Hoare Rules

X:A/\y:B ——

(+9)— (x+1)=y) =B A (x+y)—y =4

X =x+y;

x—(x—y)=8B /\x—y:A}
AR S 4
x—y:B/\y:A} Thus ...

X=X -7Y;

P:BAy:ﬂ

Using the Hoare Rules

X:A/\y:B ——

(+9)— (x+1)=y) =B A (x+y)—y =4

X =x+y;

x—(x—y)=8B /\x—y:A}
AR S 4
x—y:B/\y:A} Thus ...

X=X -7Y;

P:BAy:ﬂ

Using the Hoare Rules

_X:A ANy=Bl =
(x+y) = (x+y)=y) =B A (x+y) =y =A

X=X +y;
x—(x—y)=B A x—y:A}
Y=z
x—y=B A y:A} And one step in the program is proved.
[[F]+[7] » []D [a] » [o]=[a]]
X=X -7Y;

[[7] S [2]]

P:BAy:ﬂ

Using the Hoare Rules

_X:A/\y:B =
kX+m—«X+m—y%:BA(x+M—y:A}

x=xty;

x—(x—y)=B A X—y:A}

Yy =X -y

x—y=BA y:A} We could go on like that ...
ee g (A= S ~ (o[

(1719 [a]]

x=BAy=4

Applications

Finding suitable invariants may be not that easy.

Applications

Symmetry helps.

Applications

Symmetry helps.

function result = f(x,y)

Applications

Symmetry helps.

function result = f(x,y)
while x <y || y < x

Applications

Symmetry helps.

function result = f(x,y)
while x <y || y < x
if x <y

Proving Programs Correct The Hoare Rules Applications

Symmetry helps.

function result = f(x,y)

while x <y || y < x
if x <y

y = V%

else

Proving Programs Correct The Hoare Rules Applications

Symmetry helps.

function result = f(x,y)
while x <y || y < x

if x <y
y = ¥%
else
X = X-Y;
end
end

result =

Proving Programs Correct The Hoare Rules Applications

Symmetry helps.

function result = f(x,y)

while x <y || y < x
if y < x
X = X-Y;
else
y = ¥-%
end
end

result =

Proving Programs Correct The Hoare Rules Applications

What shall be our result?

function result = f(x,y)
while x <y || y < x

if x <y
y = ¥%
else
X = X-Y;
end
end

result =

Proving Programs Correct The Hoare Rules Applications

What shall be our result?

function result = f(x,y)
while x <y || y < x

if x <y
y = ¥%
else
X = X-Y;
end
end

result =

Applications

Proof that x = y = gcd(A, B)

function result = f(x,y)

while x <y || y < x
if x <y
y = ¥y-%;
else
X = X-Y;
end

end

Applications

Proof that x = y = gcd(A, B)

[N2A>1] A [N2B>1] A [£(4,B) is called]]
function result = f(x,y)
while x <y || y < x
if x <y
y = ¥-%
s

else

X = X-Y;
end
end

If the program terminates, x = y = gcd(A, B)}

Applications

Proof that x = y = gcd(A, B)

[[N2A21) A [N3B21] A [£,B) is called]|
function result = f(x,y)

[x=A] A [y=8] A [Nox21] A [N3y2>1]]

while x <y || y < x
if x <y
y = ¥-%x
else
X = X-y;
end
end

[If the program terminates, x =y = gcd(A, B)}

Applications

Proof that x = y = gcd(A, B)

[N3A>1] A [N3B>1] A [£4,B) is called]|
function result = f(x,y)

[[X:A} Aly=B] A [Nax>1] A [NB_}/ZI}]:}
Ugcd(&y):gcd(A,B)] A[N3x>1] A [Nayzlﬂ

while x <y || y < x
if x <y
y = y-x5
else
X = X-y;
end
end

[If the program terminates, x =y = gecd(A, B)]

Applications

Proof that x = y = gcd(A, B)

[NoA>1] A [N3B>1] A [£A,B) is called]|
functlon result = f(x,y)

[[x= y=B] A [Nax21] A [Nay>1]] =
{gcd(xy —gchB)] AIN3x>1] A [NByZlH

while x <y || y < x
lgcd(x,) = gcd(A, B)] A [x#y] A [N3x>1] A [N3y>1]]
if x <y
o= Y=
else
X = X-y;
end

“gcd(x,) =gcd(A,B)] A [N3x>1] A [NayZlH
end

“gcd(x,y) = gcd(A,B)] A =[x#y] A [N3x>1] A [Noy> 1]]
[If the program terminates, x = y = gcd(A, B)]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A, B)

[N>A>1] A [N3B>1] A [£A,B) is called]|
functlon result = f(x,y)
[[x= y=B] A [Nax21] A [Nay>1]] =
[gcd(xy —gcd(A B)] A [Nax>1] A [NByZl”
while x <y || y < x
[[ecd(x,y) = gcd(A,B)] A [x #y] A [N3x>1] A [N3y>1]]
if x <y
y=7¥X
else
X = x-y;
end
[[gcd(x,y):gcd(A,B)] ANx>1] A [NByZl”
end

[[gcd(x,y) =gcd(A,B)] A =[x#y] A [Nox>1] A [N3y> 1”
[If the program terminates, x =y = gcd(A, B)]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A, B)

[N>A>1] A [N3B>1] A [£A,B) is called]|
functlon result = f(x,y)
[[x= y=B] A [Nax21] A [Nay>1]] =
[gcd(xy —gcd(A B)] A [Nax>1] A [NByZl”
while x <y || y < x
[[ecd(x,y) = gcd(A,B)] A [x #y] A [N3x>1] A [N3y>1]]
if x <y
y=7¥X
else
X = x-y;
end
[[gcd(x,y):gcd(A,B)] ANx>1] A [NByZl”
end

[[gcd(x,y) =gcd(A,B)] A =[x#y] A [Nox>1] A [N3y> 1”
[If the program terminates, x =y = gcd(A, B)]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A, B)

[N>A>1] A [N3B>1] A [£A,B) is called]|
functlon result = f(x,y)
[[x= y=B] A [Nax21] A [Nay>1]] =
[gcd(xy —gcd(A B)] A [Nax>1] A [NByZl”
while x <y || y < x
[[ecd(x,y) = gcd(A,B)] A [x #y] A [N3x>1] A [N3y>1]]
if x <y
y=7¥X
else
X = x-y;
end
[[gcd(x,y):gcd(A,B)] ANx>1] A [NByZl”
end

[[gcd(x,y) =gcd(A,B)] A =[x#y] A [Nox>1] A [N3y> 1”
[If the program terminates, x =y = gcd(A, B)]

Proving Programs Correct The Hoare Rules Applications

Proof that x = y = gcd(A, B)

[N>A>1] A [N3B>1] A [£A,B) is called]|
functlon result = f(x,y)
[[x= y=B] A [Nax21] A [Nay>1]] =
[gcd(xy —gcd(A B)] A [Nax>1] A [NByZl”
while x <y || y < x
[[ecd(x,y) =ged(A, B)] A [x#y] A [N3x>1] A [N3y>1]]
if x <y
y=7¥X
else
X = x-y;
end
[[gcd(x,y):gcd(A,B)] ANx>1] A [NByZl”
end

[[gcd(x,y) =gcd(A,B)] A =[x#y] A [Nox>1] A [N3y> 1”
[If the program terminates, x =y = gcd(A, B)]

Applications

Proof that x = y = gcd(A, B)

[N>A>1] A [N3B>1] A [£(A,B) is called]|
functlon result = £(x,y)
{]/\[NBXZI}/\[NSyZlHﬁ
{gcdxy)_gchB)] ANSx>1] A [N3y>1]]
while x <y || y < x

[ged(x, y) = ged(A, B)] A [x#y}/\[NBle]/\[NByZlH
if x <y
y =y-x
else
X = X-y;
end
“gcd(x,y):gcd(A,B)] AN3x>1] A [N9y>1”
end

[[scd(x, v) = ged(A, BY] A —[x#y] A [N3x21] A [N3y>1]]
{If the program terminates, x = y = gcd(A, B)]

Proof that x = y = gcd(A, B)

Applications

[N3A>1] A [N3B>1] A [£(4,B) is called]|

function result = £(x,y)

[x=A] A [y=B] A [Nox>1] A [N3y>1]] =

[[cd(x,y) = ged(A, B)] A [N3x>1] A [N3y>1]]
while x <y || y < x

“gcd(x,y):gcd(A,B)] Ax#y] A [N3x>1] A [Nayzq}

[

if x <y
Y = y-x;
else
X = X-y;
end
Q]
[ged(x,y) = ged(4,B)] A [N3x>1] A [N3y>1]]
end

[ged(x,y) = ged(A,B)] A =[x #y] A [N3x>1] A [Nayzl}]

If the program terminates, x = y = gcd(A, B)]

Proof that x = y

Proving Program

= gcd(A, B)

[N2A>1] A [N3B21] A [£04,B) is called]|

functlon result = £(x,y)

[[x= Bl A [N3x21] A [Nay>1]] =

{gcdxy)fgch B) A [Nax>1] A [N3y>1]]
while x <y || y < x

“gcd x,y) = ged(A, B)] A

Let [P] == [[ged(x,) = ged(A,

if x <y

y-%;

[x#y] A [N2x>1] A [NayZlH

B)] A

[x#y] A [Nox>1] A [N3y>1]]

n

else

X-Yy;

2. M

Let [Q] : Ugcd(x,y):gcd(A,B)J AN3x>1] A [Nsyzlj]
“gcd(x y) =gcd(A,B)] A [N2x>1] A [Nayzl}]
end

[lecd(x,y) = gcd(A, B)] A =[x #y] A [N3x>1] A [N3y>1]]

{If the program terminates, x = y = gcd(A, B)]

Applications

Proof that x = y

= gcd(A, B)

Applications

[N>A>1] A [N3B>1] A [£4,B) is called.]
functlon result = £(x,y)
=B A [N3x>1] A [N3y>1]] =
gcdxy)fgchB)] ANSx>1] A [N3y>1]]
whllex<y||y<x
y)=gcd(AB)] A [x#y] A [N3x21] A [N3y>1]]

B) A [x#y] A [N3x>1] A [N3y>1]]

I
b=
|
|
Let [P] “gcd x,y) = gcd(A,
if x <y

= y-
(<]

X3

=
n

e

X

Yi

2. M

en

Let [@] = [[ged(x,y) =gcd(A,B)] A [N3x>1] A [N3y>1]]

“gcd(x,y):gcd(A,B)} ANSx>1] A [Nayzl}]
end
“gcd(x,y):gcd(A,B)] A=[x#y] A[N3x>1] A [NByZl}]

{If the program terminates, x = y = gcd(A, B)]

Proof that x = y

Applications

= gcd(A, B)

[N2A>1] A [N3B21] A [£04,B) is called]|

functlon result = £(x,y)

[[x= Bl A [N3x21] A [Nay>1]] =

{gcdxy)fgchB)] ANSx>1] A [N3y>1]]
while x <y || y < x

“gcd x,y) = ged(A, B)] A

[

Pl = [[gcd(x y) = gcd(A, B)] A

[x#y] A [N2x>1] A [NayZlH
[x#y] A [N3x21] A [N3y>1]]

if x <y
y=yx%
else
X = X-Y;
end

Q] = [[gcd(x,y) =gcd(A,B)] A [N3x>1] A [N3y>1]]
[ged(x,¥) = ged(A,B)] A [N3x>1] A [N3y>1]]

end

[
|
[[gcd(x,y) = ged(4, B)] A —|[x7$y] ANSx>1] A [N3y>1]]
|

If the program terminates, x =y = ged(A, B)]

Proving Program Applications

The inner block

[P] = [[gcd(x,y):gcd(A,B)] A[x#y] A[Nox>1] A [Nayzl}]
if x <y

[Q] = [[gcd(x.y) = gcd(A. B)] A [N3x>1] A [N3y>1]]

Applications

The Rule of Conditional Branching demands:

[P] = [[gcd(x,y):gcd(A,B)] Ax#y] A[N3x>1] A [Nayzl}]
if x <y
Ugcd(x,y):gcd(A,B)} A[x#y] AN[Nox>1] A [Ny >1] A [x<y}]

y = ¥y-x
Ugcd(x,y):gcd(A,B)} ANax>1] A [Nayzl}]
else

[lecd(x,v) = ged(A,B)] A [x#y] A [N3x>1] A [N3y>1] A =[x<y]]

X = X-y;
Ugcd(x,y):gcd(A,B)} ANax>1] A [Nayzl}]

[Q] = [[gcd(x,y)zgcd(A,B)] AN3x>1] A [Nayzq]

Proving Programs Correct The Hoare Rules Applications

By the Axiom of Assignment:

[P] = [[gcd(x,y):gcd(A,B)] Ax#y] A[N3x>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] A[x#y] AN[Nox>1] A [Ny >1] A [x<y]]
7[gcd(x,yfx):gcd(A,B)} AN3x>1] A [Nayfleﬂ
i y = ¥y-x
“gcd(x,y):gcd(A,B)] ANSx>1] A [Nayzl}]
else
;[gcd(x,y):gcd(A,B)] A[x#y] AN[Nox>1] A [Ny >1] A ﬂ[x<y]]
7[gcd(xfy,y):gcd(A,B)] A[Nax—y>1] A [NSyEl]]

X = X-Y;

“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

(@] = [[gcd(x,y) =gcd(A,B)] A [No>x>1] A [Noy> 1}]

Applications

There are the implications:

[P] = [[gcd(x,y):gcd(A,B)] Ax#y] A[N3x>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] A[x#y] AN[Nox>1] A [Ny >1] A [x<y]] =
-[gcd(x,y—x):gcd(A,B)} AN3x>1] A [Nay—le]]
i y = ¥y-x
“gcd(x,y):gcd(A,B)] ANSx>1] A [Nayzl}]
else
;[gcd(x,y):gcd(A,B)] Alx#y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(xfy,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]

X = X-Y;

“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

(@] = [[gcd(x,y) =gcd(A,B)] A [No>x>1] A [Noy> 1}]

Applications

[(Pre] S [a] a [Pa-e] T [Q]H

We invoke the rule:

[[p] if B do @@Tm [Q]]

[P] = [[ecd(x,y) = gcd(A, B)] A [x#y] A [N3x21] A [N3y>1]]
if x <y

[[ecd(x,y) = ged(A,B)] A [x#y] A [Nox>1] A [N3y>1] A [x<y]| =
{ xy—x)—gcd(AB)}/\[NBXZI]/\[NB)/—XZI]]

y = ¥-%
{gcdxy)_gchB)]/\[NBXEI}/\[NByEIH

else
[[ecd(x,y) =gcd(A,B)] A [x#y] A [N2x>1] A [N3y>1] A =[x<y]| =
{ x—yy)*gcd(AB)]/\[NSx—yZl}/\[NSyZlH

X = X-y;
{gcdxy)_gchB)]/\[NBXEI}/\[NayEIH

end
[Q] = [[gcd(x,y) =gcd(A,B)] A [N>x>1] A [Noy> 1}]

Proving Programs Correct The Hoare Rules Applications

Where: if Bdo O else do T end Q]

[P] = “gcd(x.y):gcd(A,B)J A [x#y] ANax>1] A NSyEl”
i if x <y
_[gcd(x,y):gcd(A,B)] Af[x#y] AN[Nox>1] A [N3y>1] A [x<y]] =

:[gcd(x,y—x):gcd(A,B)} AN3x>1] A [NBy—le]]

y=y-x
“gcd(x,y):gcd(A,B)] AN2x>1] A [Nayzl}]
else

;[gcd(x,y):gcd(A,B)] Alx£y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(x—y,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]
X = x-y;
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

[Q] = [[ecd(x,y) = gcd(A,B)] A [N3x>1] A [N3y>1]]

Proving Programs Correct The Hoare Rules Applications

Where: [P] do S else do T end [Q}

[P] = [[gcd(x,y):gcd(A,B)] A[x#y] A[Nox>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] A[x#y] AN[Nox>1] A [N3y>1] A [x<y]] =

:[gcd(x,y—x):gcd(A,B)} AN3x>1] A [NBy—le]]

y=y-x
“gcd(x,y):gcd(A,B)] AN2x>1] A [Nayzl}]
else

;[gcd(x,y):gcd(A,B)] Alx£y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(x—y,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]
X = x-y;
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

[Q] = [[ecd(x,y) = gcd(A,B)] A [N3x>1] A [N3y>1]]

Proving Programs Correct The Hoare Rules Applications

Where: [P]

[P] = [[gcd(x,y):gcd(A,B)] A[x#y] A [Nox>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] Af[x#y] AN[Nox>1] A [N3y>1] A [x<y]] =

:[gcd(x,y—x):gcd(A,B)} AN3x>1] A [NBy—le]]

y=y-x
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
else

;[gcd(x,y):gcd(A,B)] Alx£y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(x—y,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]
X = x-y;
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

[Q] = [[gcd(x,y) = gcd(A,B)] A [N3x>1] A [N3y>1]]

Proving Programs Correct The Hoare Rules Applications

Where: [P] if B dod do T end [Q}

[P] = [[gcd(x,y):gcd(A,B)] A[x#y] A [Nox>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] Af[x#y] AN[Nox>1] A [N3y>1] A [x<y]] =

:[gcd(x,y—x):gcd(A,B)} AN3x>1] A [NBy—le]]

y=y-x
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
else

;[gcd(x,y):gcd(A,B)] Alx£y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(x—y,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]
X = x-y;
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

[Q] = [[gcd(x,y) = gcd(A,B)] A [N3x>1] A [N3y>1]]

Proving Programs Correct The Hoare Rules Applications

Where: [P]

[P] = [[gcd(x,y):gcd(A,B)] A[x#y] A[Nox>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] Af[x#y] AN[Nox>1] A [N3y>1] A [x<y]] =

:[gcd(x,y—x):gcd(A,B)} AN3x>1] A [NBy—le]]

y=y-x
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
else

;[gcd(x,y):gcd(A,B)] Alx£y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(x—y,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]
X = x-y;
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

Q] = [[gcd(x,y) = gcd(A,B)] A [N3x>1] A [N3y>1]]

Proving Programs Correct The Hoare Rules Applications

Where: [P]

[P] = [[gcd(x,y):gcd(A,B)] A[x#y] A [Nox>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] A[x#y] AN[Nox>1] A [N3y>1] A [x<y]] =

:[gcd(x,y—x):gcd(A,B)} AN3x>1] A [NBy—le]]

y=y-x
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
else

;[gcd(x,y):gcd(A,B)] Alx£y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(x—y,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]
X = X-y;
“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

(@] = {igcd(x,y) =gcd(A,B)] A [Nox>1] A [Noy> 1H

Applications

So the inner block is proved.

[P] = [[gcd(x,y):gcd(A,B)] Ax#y] A[N3x>1] A [Nayzl}]
i if x <y
_[gcd(x,y):gcd(A,B)] A[x#y] AN[Nox>1] A [Ny >1] A [x<y]] =
-[gcd(x,y—x):gcd(A,B)} AN3x>1] A [Nay—le]]
i y = ¥y-x
“gcd(x,y):gcd(A,B)] ANSx>1] A [Nayzl}]
else
;[gcd(x,y):gcd(A,B)] Alx#y] AN[Nox>1] A [N2y>1] A ﬂ[x<y}] =
_[gcd(xfy,y):gcd(A,B)] A[Nax—y>1] A [Nayzl}]

X = X-Y;

“gcd(x,y):gcd(A,B)] AN3x>1] A [Nayzl}]
end

(@] = [[gcd(x,y) =gcd(A,B)] A [No>x>1] A [Noy> 1}]

Applications

[N>A>1] A [N3B>1] A [£4,B) is called.]
functlon result = £(x,y)
Bl A [N3x>1] A [Noy>1]] =

{gcdxy)fgchB)] ANSx>1] A [N3y>1]]
while x <y || y < x

“gcdxy)_gchB)] [x;ﬁy}/\[NBxEl]/\[NSyZlH
[

Pl = [[gcd(x y) = gcd(A, B)] A
if x <y
y y-x
else
enz
Q] = [[gcd(x,y) =gcd(A,B)] A [N3x>1] A [N3y>1]]

[ged(x,¥) = ged(4,B)] A [N3x>1] A [N3y>1]]

[x#y] A [N3x21] A [N3y>1]]

X-Yy;

end

[
|
[[gcd(x,y) = ged(4, B)] A —|[x7$y] ANSx>1] A [N3y>1]]
|

If the program terminates, x = y = gcd(A, B)]

Proving Programs Correct The Hoare Rules Applications

Thus, in our main proof:

[N>A>1] A [N3B>1] A [£4,B) is called.]
functlon result = £(x,y)
Bl A [N3x>1] A [Noy>1]] =

{gcdxy)fgchB)] ANSx>1] A [N3y>1]]
while x <y || y < x

“gcdxy)_gchB)] [x#y}/\[NSle]/\[NSyZlH

[

P] = [[gcd(x,y) =gcd(A,B)] A [x#y] A [Nox>1] A [N3y>1]]
if x <y
y =y-x
else
X
end

Q] = {gcd x,y) = gcd(A,B)] A [N3x>1] A [NByEl”
[ged(x,¥) = ged(A,B)] A [N3x>1] A [N3y>1]]

X-Yy;

end

[
|
[[gcd(x,y) = ged(4, B)] A —|[x7$y] ANSx>1] A [N3y>1]]
|

If the program terminates, x =y = ged(A, B)]

There are three collisions left; trivially:

Applications

[N2A>1] A [N3B21] A [£04,B) is called]|
functlon result = £(x,y)
[[x= Bl A [N3x>1] A [Noy>1]] =
{gcdxy)fgchB)] ANSx>1] A [N3y>1]]
while x <y || y < x
[

[ged(x, y) = ged(A, B)] A [x;ﬁy}/\[Nszl]/\[NayZIH:
P] = [[ecd(x,y) = gcd(A,B)] A [x#y] A [N3x21] A [N3y>1]]

if x <y

y y-x
else

X

end

Q] = [[gcd(x,y) =gcd(A,B)] A [N3x>1] A [Noy>1]] =

[ged(x,¥) = ged(A,B)] A [N3x>1] A [N3y>1]]

X-Yy;

end

[
|
[[gcd(x,y) = ged(4, B)] A —|[x7$y] ANSx>1] A [N3y>1]]
|

If the program terminates, x =y = ged(A, B)]

And, clearly:

Applications

[N2A>1] A [N3B21] A [£04,B) is called]|
functlon result = £(x,y)
[[x= Bl A [N3x>1] A [Noy>1]] =
{gcdxy)fgchB)] ANSx>1] A [N3y>1]]
while x <y || y < x
[

[ged(x, y) = ged(A, B)] A [x;ﬁy}/\[Nszl]/\[NayZIH:
P] = [[ecd(x,y) = gcd(A,B)] A [x#y] A [N3x21] A [N3y>1]]

if x <y

y y-x
else

X

end

Q] = [[gcd(x,y) =gcd(A,B)] A [N3x>1] A [Noy>1]] =

[ged(x,¥) = ged(A,B)] A [N3x>1] A [N3y>1]]

X-Yy;

end

If the program terminates, x =y = ged(A, B)]

[
|
[[gcd(x,y) = ged(4, B)] A —|[x7$y] ANSx>1 A [Nay>1]] =
|

Proving Programs Correct The Hoare Rules Applications

What shall be our result?

function result = f(x,y)

while x <y || y < x
if x <y
y = ¥-%
else
X = X-Y;
end

Applications

What shall be our result?

function result = f(x,y)

while x <y || y < x
if x <y
y = ¥-%
else
X = X-Y;
end
end

result = (x+y)/2;

Applications

What we know:

N>A>1 AN=>B>1 A £(A,B) is called.

function result = f(x,y)
while x <y || y < x
if x <y
y = ¥-%;
else
X = X-Y;
end
end
result = (x+y)/2;
If the program terminates, result = gcd(A, B)

Proving Programs Correct The Hoare Rules Applications

Let us make it more symmetric.

function result = f(x,y)
while x <y || y < x
if x <y
y = V-%
S

end
result = (x+y)/2;

Proving Programs Correct The Hoare Rules Applications

Only one result is rather asymmetric...

function [fR, sR] = f(x,y)
while x <y || y < x
if x <y
y = ¥y-%;
s

end
result = (x+y)/2;

Proving Programs Correct The Hoare Rules Applications

Only one result is rather asymmetric...

function [fR, sR] = f(x,y)
while x <y || y < x
if x <y
y = ¥%
else

X = X-Y;
end

end

fR = (x+y)/2;

sR =7

Proving Programs Correct The Hoare Rules Applications

More results may need more variables. ..

function [fR, sR] = f(x,y)
u = x;
while x <y || y < x
if x <y
y = ¥y-%;
else

X = X-Y;
end

end

fR = (x+y)/2;

sR =7

Proving Programs Correct

Applications

More results may need more variables. ..

function [fR, sR] = f(x,y)
u = x;
v =y
while x <y || y < x
if x <y
y = ¥%
s

else

X = X-Y;
end

end

fR = (x+y)/2;

sR =7

Proving Programs Correct The Hoare Rules Applications

We had better balance this surplus of minuses...

function [fR, sR] = f(x,y)
u = x;
vV =y;
while x <y || y < x
if x <y
y = ¥y-%;
v = vtu;
s

else

X = X-Y;
end

end

fR (x+y)/2;

sR =7

Proving Programs Correct The Hoare Rules Applications

We had better balance this surplus of minuses...

function [fR, sR] = f(x,y)

u = x;
v =7;
while x <y || y < x
if x <y
y = ¥-%
v = vtu;
else
X = X-Y;
u = utv,
end
end

fR = (x+y)/2;
sR =7

Proving Programs Correct The Hoare Rules Applications

What shall our second result be?

function [fR, sR] = f(x,y)

u = x;
v =7;
while x <y || y < x
if x <y
y = ¥-%
v = vtu;
else
X = X-Y;
u = utv,
end
end

fR = (x+y)/2;
sR =7

Proving Programs Correct Applications

A symmetric one, of course...

function [fR, sR] = f(x,y)

u = x;
V=y;
while x <y || y < x
if x <y
y = ¥%
v = vtu;
else
X = X-Y;
u = utv;
end
end
fR = (x+y)/2;
sR = (utv)/2;

Applications

So, what is sR?

function [fR, sR] = f(x,y)

u = x;
vV =y;
while x <y || y < x
if x <y
y = ¥-%x5
vV = vtu;
else
X = x-y;
u = utv;
end
end
fR = (x+y)/2;

sR = (u+v)/2;

rograms Correct The Hoare Rule Applications

Well, what is the counterpart to gcd?

W9A21AN9321Afmjnmmw}
function [fR, sR] = f(x,y)

u = x;

v =y

while x <y || y < x

if x <y

= y-x;
= v+u;

n <<

= x-y;
utv;

e X
1]

end
end

fR = (x+y)/2;
sR = (utv)/2;

If the program terminates, sR = scm(A, B).

rograms Correct The Hoare Rule Applications

How could we find a good invariant?

{N9A21 AN3B>1A £(4,B) is caIIed.}
function [fR, sR] = f(x,y)

u = x;

v =y

while x <y || y < x

if x <y

= y-x;
= v+u;

n <<

= x-y;
utv;

e X
1]

end
end

fR = (x+y)/2;
sR = (utv)/2;

If the program terminates, sR = scm(A, B).

Applications

We use what we know...

{N3A21 ANDB>1 A £(4,B) is called.

function [fR, sR] = f(x,y)
u = Xj
v = y;
while x <y || y < x
if x <y
y=y-x
v = v+tu;
else
X = X-y;
u = utv;
end
end
fR = (x+y)/2;
sR (utv)/2;
{If the program terminates, sR = scm(A4, B).}

{If the program terminates, fR = gcd(A, B)}

Applications

..and try to invent a loop invariant.

{N3A21 ANDB>1 A £(A,B) iscalled.}

function [fR, sR] = f(x,y)
u = x; Well, suppose we are right in both assertions.
v =y,
while x <y || y < x
if x <y
y = ¥-%;
v = vtu;
else
X = X-y;
u = utv;
end
end
fR = (x+y)/2;
sR (utv)/2;
{If the program terminates, sR = scm(A, B).}

{If the program terminates, fR = gcd(A, B)}

Applications

..and try to invent a loop invariant.

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; Well, suppose we are right in both assertions.
v =1y Then, upon termination,
while x <y || y < x
if x <y
y=y-x
v = vtu;
else
X = X-Yy;
u = utv;
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}

Applications

..and try to invent a loop invariant.

{N9A21 ANDB>1 A £(A,B) iscalled.}

function [fR, sR] = f(x,y)
u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; gcd(A, B) -scm(A,B) = fR - sR
v = vtu;
else
X = X-y;
u = utv;
end
end
fR = (x+y)/2;
sR (utv)/2;
{If the program terminates, sR = scm(A, B).}

{If the program terminates, fR = gcd(A, B)}

Applications

..and try to invent a loop invariant.

{N9A21 ANDB>1 A £(A,B) iscalled.}

function [fR, sR] = f(x,y)
u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B)-scm(A,B) = fR - sR
v = vtu;
else
X = X-y;
u = utv;
end
end
fR = (x+y)/2;
sR (utv)/2;
{If the program terminates, sR = scm(A, B).}

{If the program terminates, fR = gcd(A, B)}

Applications

..and try to invent a loop invariant.

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B)-scm(A,B) = fR - sR
v = vtu; But:%~%:fR-sR
else
X = X-Yy;
u = utv;
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}

Applications

..and try to invent a loop invariant.

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B)-scm(A,B) = fR - sR
v = vtu; Upon termination: X2X . #£¥ — fR . sR
else
X = X-Yy;
u = utv;
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}

Applications

..and try to invent a loop invariant.

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B)-scm(A,B) = fR - sR
v = vtu; Upon termination: X4EX¥ — fR . sR
else
X = X-Yy;
u = utv;
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}

Applications

..and try to invent a loop invariant.

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = X-Yy;
u = utv;
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}

Applications

..and try to invent a loop invariant.

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; Well, suppose we are right in both assertions.
v =y; Then, upon termination,
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}

Applications

Might 2-A- B =y - u+ x- v also be true during execution?

{N9A21 AN3B>1 A £(A,B) iscalled.}
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end
fR = (x+y)/2;
= (utv)/2;

{If the program terminates, sR = scm(A, B).}

{If the program terminates, fR = gcd(A, B)}

Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}

Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end Upon initialization,
fR = (x+y)/2; x=u=Aandy=v=B8B
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}

Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end So,
fR = (x+y)/2; 2-A-B=y - u+x-v&2-A-B=2-A-B
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}

Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end In the one branch,
fR = (x+y)/2; 2-A-B=y-u+ x-vbecomes
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}

Applications

[N5A>1AN3B>1 A £,B) s called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
y = y-%; A-B =gcd(A,B)-scm(A,B) = fR - sR
v = v+u; Upon termination: %ﬂ" =fR-sR
else
X = x-y; Together: A- B = %’*’X"
u = utv; Or: 2-A-B=y-u+x-v
end
end In the one branch,
fR = (x+y)/2; 2-A-B=y-u+ x-vbecomes
sR = (u+v)/2; 2-A-B=(y—x)-u+x-(v+u)

{If the program terminates, sR = scm(A, B)}

{If the program terminates, fR = gcd(A, B)}

Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end In the other branch,
fR = (x+y)/2; 2-A-B=y-u+ x-vbecomes
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}

Applications

[N5A>1AN3B>1 A £,B) s called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
y = y-%; A-B =gcd(A,B)-scm(A,B) = fR - sR
v = v+u; Upon termination: %ﬂ" =fR-sR
else
X = x-y; Together: A- B = %’*’X"
u = utv; Or: 2-A-B=y-u+x-v
end
end In the other branch,
fR = (x+y)/2; 2-A-B=y-u+ x-vbecomes
sR = (u+v)/2; 2-A-B=y-(u+v)+(x—y) v

{If the program terminates, sR = scm(A, B)}

{If the program terminates, fR = gcd(A, B)}

Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end Thus, the equality is maintained.
fR = (x+y)/2;
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}

Applications

{N9A21 AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-%; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: % =1fR-sR
else
X = x-y; Together: A- B = y"*x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end Upon completion,
fR = (x+y)/2; x =y = gcd(A, B), thus
sR = (utv)/2;

{If the program terminates, sR = scm(A, B).}
{If the program terminates, fR = gcd(A, B)}

Applications

[N5A>1AN3B>1 A £,B) s called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
y = y-%; A-B =gcd(A,B)-scm(A,B) = fR - sR
v = v+u; Upon termination: %ﬂ" =fR-sR
else
X = x-y; Together: A- B = %’*’X"
u = utv; Or: 2-A-B=y-u+x-v
end
end Upon completion,
fR = (x+y)/2; x =y = gcd(A4, B), thus
sR = (u+v)/2; 2-A-B=y-u+x-v=gcd(AB) - (u+v)

{If the program terminates, sR = scm(A, B)}
{If the program terminates, fR = gcd(A, B)}

Applications

{NsAzl AN3B>1 A £(4,B) is called.
function [fR, sR] = £(x,y)

u = x; We conjecture that this is a loop invariant.
v =y;
while x <y || y < x
if x <y
¥y = y-x; A- B =gcd(A,B) -scm(A,B) = fR - sR
v = v+tu; Upon termination: %ﬂ" =fR-sR
else
X = x-y; Together: A- B = y"+x ‘
u = utv; Or: 2-A-B=y- u+xv
end
end
fR = (x+y)/2; Therefore
sR = (ut+v)/2; sR = % = % =scm(A, B) O

{If the program terminates, sR = scm(A, B)}
{If the program terminates, fR = gcd(A, B)]

	Proving Programs Correct
	A Toy Example

	The Hoare Rules
	Looking Back und looking forward.
	Logic

	Applications
	Handling Assignments
	Finding good Invariants

