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A Parallelisation Approach for Multi-Resolution 
Grids Based Upon the Peano Space-Filling Curve 

  
 

Usually in solving real life problems (e.g. Fluid Flow Simulation) we have the 
following stages: 

- modelling physical problem (e.g. Fluid Flow) 
- discretise the domain (e.g. the container in which the fluid flows) 
- solve the discretised problem. 

 
For study purpose we will take a very simple example (squared domain) but in real 

life problems we have more complicated domains (containing obstacles etc.). By discretising 
the domain we obtain a grid and for each node we have to compute data (e.g. pressure, 
velocity) depending on the data contained in the current node as well as on the data contained 
in the neighbouring nodes.  

If we have a big domain that is discretised and we obtain many nodes we have a lot of 
computations to do. As in our days processors are not getting faster multicore processors and 
supercomputers are the solution for decreasing the computing time.  

But having to compute values for every node that depend on the neighbouring nodes 
means that we have to take into consideration the data that has to be communicated and to 
find strategies to divide our domain in order to be parallelised. In this paper we will try to 
give a solution for parallelising the domain using the Peano Space-Filling Curve. 

 
1. Domain discretisation 

 
Def:  Domain partitioning is the process of dividing a domain into two or more regions. 
 
 We have more that one opportunity to split a domain. Let’s take the example of 
splitting the domain into rectangular or in squared regions. 
 

hh/4

h/2

 
 
 Which of the two partitioning is better? One way of measuring the quality of a 
partition is to take the ratio between the communicated data and the local data. The lower this 
ratio is the better partitioning we obtain, because we want for each processor to have more 
data computing and less data communication.  
 This ratio is translated in 2D as the ratio between the length of the element divided by 
its area and in 3D as the surface over the volume.  
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 For our 2D small case we obtain for the rectangular partitioning a ratio of 10/h and for 
the squared one 8/h. As expected, the partitioning using rectangular areas is worse than the 
one using squares. 
 A normal question arises now: Which would be the lower limit? How good can our 
partitioning become? We have to find the geometrical figure with the smallest length and the 
biggest area. This is of course the circle. 
 In this talk, we want to restrict ourselves to two types of grids: 
 

                              
regular grids [4]                               adaptive grids [4] 

 
Comparison Table 

 Regular Grid Adaptive Grid 

Generation Easy Difficult 

Storage Scheme Easy Complicated 
Algorithm 

Implementation Easy Difficult 

Precision Great memory and 
computational  effort Good 

 
 As we can observe from the table we would choose adaptive grids because of their 
property of helping in getting precise results with less amount of computational effort and 
also reduced memory usage. But we need to find a way to efficiently store in memory and 
also to develop methods to work with the data structure. 
 

2. Computer representation – Trees 
 
Often adaptive grids are constructed in a recursive manner, we need to find a data 

structure that suits it. We have different data structures for modelling this recursivity e.g. 
trees. In this paper we choose the tree structure as data structure. 
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In literature we encounter different names for the tree data structure: 

- for domain bipartition 

o 2D quadtrees        

o 3D octrees    
 

- space trees 
- refinement trees 

Now that we have the data structure, we need to know how to read from that structure. 
For the tree data structure we have basically the two traversal algorithms BFS (Breadth First 
Search) and DFS (Depth First Search).  

BFS is a graph traversal algorithm that has the following strategy: starts at a given 
vertex, which is at level 0. In the first stage, we visit all vertices at level 1. In the second 
stage, we visit all vertices at second level. These new vertices, which are adjacent to level 1 
vertices, and so on. The BFS traversal terminates when every vertex has been visited. 

DFS is a graph traversal algorithm that has the following strategy: first visit the first 
child, then visit the first child of it and so on. When we reach a leaf (node without children) 
we go one step back and visit the next child of the node and so on [backtracking]. 

 

 
BFS                                              DFS 
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Our desire would be to have a deterministic algorithm i.e. at each moment in time the 

algorithm knows what is the next step to take. Just using a DFS traversal is not enough: 
 

 
 
We need an order for our tree. 
 
3. Traversal – Space-Filling Curves 
 
An N-dimensional space-filling curve is a continuous, surjective (onto) function from 

the unit interval [0,1] to the N-dimensional unit hypercube [0,1]N.  In particular, a 2-
dimensional space-filling curve is a continuous curve that passes through every point of the 
unit square [0,1]2. [5] 

In this paper we choose the Peano Space-Filling Curve for tripartitioned adaptive 
grids to define the order of the children. 

 

 
 

Peano Space Filling Curve for our grid. 
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We have chosen the Peano Space Filling Curve because of it’s 3D projection 
propriety i.e. every projection on to the normal subplanes is a Peano Space Filling Curve 
again [2]: 

2

1

x

xx3

 
 
For our tree we obtain a traversal given by the Peano Space-Filling Curve as follows: 
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4. Parallelisation 
 
Having chosen our types of grids (adaptive grids), an efficient storage scheme (tees), 

traversal algorithm (DFS) and last but not least an unique order for the children (Peano 
Space-Filling Curve) we can say that we obtained all the prerequisites for the parallelisation 
of our algorithm. 

 
Def Parallel computing is the division of one task into a set of subtasks assigned to multiple 
processors in order to obtain results faster or to reduce memory requirements per processor. 
 
Simple example:  input: a={2,3,4}, b={5,6,1} 
   result: c=a+b={7,9,5} 
 
                      Serial                                  Parallel (3 processors) 
 

                                            
  

Remember our two different structured grids: regular and adaptive. We will try now 
to divide the work between four processors using our square partitioning: 

 

                                              
  

Example of domain partitioning of a regular grid (up) and adaptive grid(down) for 
parallelising for four processors (numbered 1,2,3,4, right) 

 
Well, it is a partition, but we can say just by looking at it that it works better for 

regular grids. For adaptive grids we have an unbalanced workload. Processor 1 has to do four 
times more work than the other three thus increasing the total computing time because the 
other processors have to wait for the first one to finish. 

 
Def: Load balancing is a technique to spread work between processors in order to get a good 
resource utilisation and, thus, decreasing computing time.  
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This parallelisation strategy of dividing the grid into squared domains is not a very 
efficient one as we have seen so, we need another strategy. One strategy is introduced by 
Mitchell in [1]. Instead of splitting the grid we split the tree attached to the grid. If we have p 
processors and n nodes in our tree we obtain a good approximate load of [n/p] for each 
processor. The strategy is to take from our tree the first [n/p] nodes and to allocate them to 
the first processor the next [n/p] nodes allocate to the second processor and so on and for the 
last processor we allocate the last [n/p] nodes.  

This strategy has it’s drawbacks also. Let’s think in the case that we have more 
processors than nodes then the splitting will not be very efficient because we have a lot of 
communication between processors and less computation per processor. Then the condition 
for this strategy to work is to have n considerably  bigger than p.  

 
 
 
Example: 

 
 
A natural question comes now to our mind: How good is the partitioning introduced 

by Mitchell in the partitioning strategies that we have seen until now? We had: 
rectangle < square < circle 

The papers in this field, including [2] where we also have a proof, say to us that 
actually domain partitions using Peano Space-Filling Curves besides a constant is as good as 
the circle partitioning.  

Thus we obtain: 
rectangle < square < Peano SFC < circle 

As a conclusion, having domain partitioning, trees as data structure, Peano Space-
Filling Curves for unique ordering adding also a splitting strategy we obtain a good recipe for 
an good parallelisation. 
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