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1.Introduction


Fluid dynamic is a phenomena which we face in our daily life, and today the numerical simulation in fluid dynamics is still a challenge for technical investigation. The flow is the result of many physical processes, in its numerical simulation requires high CPU power.


The basic equation which describes the flow of a fluid substance is the Naiver-Stokes equation. Usually this equation is not used alone, it is always accompanied with other equations. We study in this presentation only the fluid (like water) case, when the fluid substance is incompressible. Obvious that this is not the general case, but each particular information helps us to solve the problem faster, or with these conditions the problem is well posed.


In this document I would like to present you several approaches to this problem. In the first chapter we will introduce the basic equations and the physical meaning of each term and equations. 


This document is mainly based on [1], which paper emphasizes the connection between the velocity field and pressure field. This problem we will study in the second chapter. The result of this connection is called the “ pressure Poisson equation”, which has different forms.


In the fourth chapter we take a closer look at the boundary conditions, and we will analyze the problem which arise by integrating this condition in the system of equations.


The last chapter is the most practical one, which shows the discretization of the equation, and the matrix form of the system of equations. 

2.Analysis of the continuum equation

[image: image1.wmf](

)

u

grad

u

·

·


We write the Naiver-Stokes equation in this form (grad(P) could be multiplied with 1/density).  This form can be said is the most general form because it includes all the factors which contributes to the flow. The first flow represents the result of the other terms:

As we specified earlier we have also additional conditions also, and in our particular case we have incompressible fluid, so the continuity equations holds:
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If it would be incompressible (we can consider this as a general case) fluid than divergence of the velocity filed would be the time derivative of the density. In our case the density change is zero:

Now we will analyze each term of the Navier-Stokes equation. 
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As we said earlier the first term is the result of acceleration of an infinite mass point and this should be in balance with the following terms.
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This term is the convective term. The physical meaning of this term is that the velocity of an infinite small mass point is not only time dependent but also space dependent. That means if we have a non-homogen velocity field and if a particle is moving in this filed it changes its velocity.


[image: image2.wmf]gradP



The gradient of the pressure is by definition an acceleration. To be physically correct (so that the physical units matches), it should be multiplied with 1/density, this adds only a scaling factor, which in case of water is one.


On the other side of the equation we have the following terms:
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This component reflects the interior drag (or friction) of the fluid. We do not consider the friction between the fluid and the channel only the friction between the fluid layers. We take in consideration the simple case, the laminar flow.


There are two flow models ; laminar flow which is showed on the picture and turbulent flow, which is more complex. In turbulent flow it is impossible to distinguish the layers of flow. In turbulent flow there are many eddy s in the flow which consumes part of the cinematic energy of the fluid. The cinematic energy is transformed in heat.
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Picture 1. : Laminar flow


The friction is acting against the velocity gradient therefore appears the Laplace of the velocity. The whole term is scaled with a factor, which is one over the Reynold number.


In case of gas, this Reynold number is big, therefore the “viscosity” (friction) of the substance is not significant, and can be neglected.


The Reynold number has the following definition:
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It is noticeable that this factor contains not only the viscosity of the problem, as so called fluid parameters. But contains also the flow parameters, which describe the flow problem:

vs - mean fluid velocity, this is the estimated velocity in the critical point where the velocity is highest.

L - characteristic length, this is the “a distance” which describes the problem

μ - (absolute) dynamic fluid viscosity, 

ν - cinematic fluid viscosity: ν = μ / ρ, 

ρ - fluid density. 


The Reynold number is always an approximation, but this doesn't mean that it could be an arbitrary value. If the Reynold number is not correctly chosen then the simulation doesn't reproduce the real physical phenomena. Big Reynold number means laminar flow, small one means turbulence.


The last component represents the external acceleration, which usually in case of fluid is the gravity. In aerodynamic the gravity can be neglected.


Because we have incompressible fluid we have other additional conditions, specially on the boundary we can specify the following
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The integral of the velocity on the boundary must be zero, which means the inflow through the boundary must be equal with the outflow through the boundary.

[image: image20.png]vl Inertial forces

v

" Viscous forces



Figure 1: The vector components on the boundary


This figure shows the decomposition of the vector on the boundary. “w” is the normal component of the velocity on the boundary.

3.Pressure Poisson Equation


There is a relation between the velocity field and the pressure field. This relation is described with the Poisson equation. To define the absolute pressure we need at least the absolute value of the pressure at least in one point, so we can calculate the absulte pressure in other points also.


To get the continuum equation we start with the Naiver-Stokes equation, and apply the divergence operator, and we get: 
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We use several mathematical formulas to transform it to the following form: 
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This form is the most general form this equation.


We also get to the almost same equation, if we start to discretize te NS equation, and after it we try to calculate the velocity and the pressure.


First we start to dicretize the NS equation, and we discretize the time derivative term:
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In this form, u+ means the velocity in the next time step, and we suppose that we know all current velocities and pressure values. 


In the next step we can express from this equation u+. These values can be calculated, because all current values are know.


In the next step we place u+ in the following equation:
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It is easy to notice that this will lead also to a Poisson equation. In this stage we can calculate the pressure at the next time step, and after this the iteration can be restarted.

4.Boundary conditions


Also from the mathematical point of view we need boundary condition(s) (and also initial values), so that our problem will be well posed.


We have two choice, either we define the normal or the tangential component of the vector on the boundary. As it is stated in the paper[1] these two boundary conditions are equivalent


The Neumann boundary condition:
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The Dirichlet boundary condition:
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In the paper[1] it is shown that if we have such a pressure boundary condition than the problem is well posed. This fact can be demonstrated by transforming this problem to a problem with velocity boundary condition, this is done by using the NS equation and also some mathematical formulas (like the Green formula).

5.Discrete approximation to the continuum equation


In this chapter we will discus the discretization of the NS equation, and how we can build the system of equations. By this process it is crucial how we integrate our boundary condition in this system.


We can start with a “direct” approach: 
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The capital letters (except P) represents matrices, and small letters are vectors, so we have the following matrices:



M – mass matrix, (for equidistant discretization is the unit matrix)


A – advection matrix


G – gradient matrix


K – diffusion matrix


D – divergence matrix


All the matrices are operators to the vectors, by multiplying with these matrices we get the discretized quantity. For example by multiplying with D we obtain the discretized divergence of that vector.


g(t) and f(t) represents the boundary conditions, which in this general case are time dependent functions, and are Dirichlet boundary conditions. This boundary condition must also satisfy the continuum equation, and the sum of the normal components on the boundary must be zero.


We can use the following equalities:
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And we denote G with C, so we get the following system equations:
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Where the unknowns are P and u, pressure and velocity.


If we assume that the velocity field is already known and we want to calculate only the pressure, than we can express the pressure and obtain the discretized pressure Poisson equation:
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This equation is the discretized form of the equation from chapter 3.
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