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Example 1: A Simple Robot Arm

(x,y)

(0,0)

Positions: (x,y,u,v) € R? satisfying

X +y?—4=0,
(x—uw)?+(y—v)2—1=0.
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Introduction

Example 2: Graph 3-Colouring

3-Colouring: (&1,...,&4) € C* satisfying

X3 —1=0, for all vertices 1,
Xiz + XiXj5 + X]-2 =0, for all edges (1,j).
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Algebraic Geometry Ideals

Standard Setting

N natural numbers 0,1,2, ...
R,S commutative rings with unity
K,L fields
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Algebraic Geometry Ideals

|deals

A subset I C R is called an ideal of R, written I < R, if
Q0cl,
Q@ at+belforall a,bel, and
@ r-aclforallreRandacel
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Algebraic Geometry Ideals

Generation of Ideals

Proposition
Let M be a nonempty set of ideals in R. Then

ﬂ I s an ideal in R.
Ie M

Definition
Let A C R a subset. Then

I<IR, ACI

is called the ideal generated by A.
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Algebraic Geometry Ideals

Finitely Generated Ideals

Definition

An ideal T < R is called finitely generated if there exist aq,...,as € R such
that

[={aj,...,as).

Proposition

Let aj,...,as € R. Then

(a1,...,as) ={> ;miailm,...,7s € R}
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Algebraic Geometry Ideals

Basic Operations on ldeals

Let I,] < R be ideals.
© The sum of I and J is defined by

I—l—]:{a—i—blaelandbel}ﬁR.
@ The product of T and J is defined by
1-12{21821 Clib1'_| a; €1, bieland S€N>0} < R.

Proposition
Let I =(aj,...,as) <R and] = (by,...,bt) IR be ideals. Then

I—i—]:<Cl1,...,as,b1,...,bt> and
[-]=(aibj| T <i<sand1<j<t).
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Algebraic Geometry Ideals

Noetherian Rings

A ring R is called Noetherian if it satisfies the ascending chain condition
(ACC):
Let 14,15, 13,... < R be ideals with

5 E B CIgE

then there exits an N € N, such that

In=Inpi =Inp2=....
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Algebraic Geometry Ideals

Characterization of Noetherian Rings

Proposition

Let R be a ring. Then the following are equivalent:
@ R is Noetherian.
@ Every ideal 1 < R is finitely generated.

© Every nonempty set M of ideals in R has a maximal element.
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Algebraic Geometry Ideals

The Hilbert Basis Theorem

Theorem (Hilbert)
Let R be a Noetherian ring. Then

R[X] is Noetherian.

Corollary

Every ideal
[ < K[Xq,..., X4l

is finitely generated.

Johannes Mittmann Grébner Bases JASS 2007 12



Algebraic Geometry  Affine Varieties

Affine Varieties

Definition
Let I C K[Xq,...,Xn] be a subset. Then the set

Var(I) = {(&1,...,&n) € KM f(&1,...,&n) =0 for all f € T}

is called the affine variety defined by I.

Let f1,...,fs € K[Xq,...,Xul. Then

Var(fy, ..., fs) = Var((fy,...,fs)).
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Algebraic Geometry  Affine Varieties

Varieties in R3

Var(X? + Y2427 —1)  Var(Z—-X?—Y?)

Grébner Base 14




Algebraic Geometry  Affine Varieties

Vanishing Ideals

Let V C K™ be a subset. Then the set

(V) = {f € KX, ..., Xl | f(&1,...,&n) = O for all (&;,...,&n) € V}

is called the (vanishing) ideal of V.

Proposition
Let V C K™ be a subset. Then

Id(V) < K[Xy,..., Xl
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Algebraic Geometry  Affine Varieties

The Zariski Topology

O Let K be a field. Then

@ =Var(K[Xj,...,Xn])  and K™ =Var((0)).
Q Let], ] <KI[Xjy,...,Xnl be ideals. Then
Var(I) U Var(J) = Var(I-J) = Var(IN7J).
© Let M be a nonempty set of ideals in K[X1,...,Xn]. Then

() Var(1) = Var (U, D).

IeM

In particular, affine varieties form the closed sets of a topology, which is
called the Zariski topology on K™,
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Algebraic Geometry  Affine Varieties

The Zariski Closure

Let V C K™ be a subset. Then the Zariski closure of V is given by

V = Var(1d(V)).
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Algebraic Geometry Hilbert's Nullstellensatz

The Fundamental Theorem of Algebra

Every nonconstant polynomial f € C[X] has a root & € C:

f(&) =0.

Let K be a field and let L/K be a field extension which is finitely generated
as a K-algebra.

Then L is algebraic over K.
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Algebraic Geometry Hilbert's Nullstellensatz

The Maximal Ideal Theorem

Let K be algebraically closed. Then an ideal m < K[Xq,...,Xy] is maximal
if and only if there exist &7, ...,&n € K such that

m=(X;—&1,...,Xn—E&n).

Proof ().
@ The mapping

@ KXq,..., Xnl = K| fif(&r,...,&n)

is a ring epimorphism with ker ¢ = m.

@ By the First Isomorphism Theorem,

KIXi,..., Xnl/m =K.
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Algebraic Geometry Hilbert's Nullstellensatz

Proof (=).
o L:=K[Xy,...,Xnl/m is a field generated by

Xi4+m,..., Xp+m

as a K-algebra, hence L is algebraic over K.
@ Since K is algebraically closed, there is a K-isomorphism ¢ : L — K.
@ Define &;:= @(X{+m) € K.
o Let f € (X7 —E&1,...,Xn—&n), then

0="(&1,...,&n) =T(@Xi+m),...,0(Xi+m)) = @(f +m).

@ Therefore
X1 —=&1,..., Xn—E&n) Cm. L]
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Algebraic Geometry Hilbert's Nullstellensatz

The Weak Nullstellensatz

Theorem (Hilbert)

Let K be algebraically closed and let 1 <1 K[Xj,...Xn] be a proper ideal.
Then

Var(I) # @.

@ The set
M= {] <KXy,..., Xn] | IC T} # @

contains a maximal ideal m = (X7 — &;,...,X;y — &) with I C m.
o Let f €1 Then f € mand so f(&1,...,&n) = 0. Therefore

(&1,...,&n) € Var(I). m
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Algebraic Geometry Hilbert's Nullstellensatz

Radical Ideals

Let I < R be an ideal.
© The radical of 1 is defined by

\/i:{aeRlaeelforsomee€N>o}§1R.

Q [ is a radical ideal if
1=+1

Example
Let I = (Xz) < R[X]. Then
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Algebraic Geometry Hilbert's Nullstellensatz

The Strong Nullstellensatz

Theorem (Hilbert)

Let K be algebraically closed and let 1 < K[Xy,...X]. Then
Id(Var(I)) = VL

Proof (C).
o Let 0% f € Id(Var(I)).

@ By the Hilbert Basis Theorem there are fy,...,fs € K[X1,...,Xnl
such that

[=(fy,...,fs).
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Algebraic Geometry Hilbert's Nullstellensatz

The Rabinovich Trick

Proof (C, continued).

@ Define
]:: <f],...,fs, Xn_|_‘|f— 1> Sl K[X‘l, ,Xn+1]-

o Then Var(]) = @, otherwise 3(&1, ..., Eng1) € KM with
fi(é1,...,&n) =0 andso &n.q-f(&1,...,&n)—1=—1#£0.
e By the Weak Nullstellensatz 3q7,...,qs,q € K[X1, ..., Xnq1] s t.
T=aqif1 4+ 4 qsfs + q(Xnpa f = 1).
o Applying K[X1, ..., Xnp1] = K(Xq,..., Xnt1), Xnp1 — 1, yields
1=q1(X1,..., Xn, D1+ +as(Xq, ..., Xn, Dfs. O
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Algebraic Geometry  Algebra—_Geometry Dictionary

The Ideal-Variety Correspondence

Theorem
Let K be algebraically closed. The map

Var : {radical ideals 1 < K[Xy,...,Xn]} — {varieties V C K™}

is a bijection and
Id = Var ',

Both maps are inclusion-reversing.
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Algebraic Geometry  Algebra—_Geometry Dictionary

Irreducible Varieties

Definition
Let V C K™ be an affine variety. V is called irreducible if

V=ViUuV, — V=ViorV=V,

for all varieties V7, V, € K™

Proposition
Let V C K™ be an affine variety. Then

V irreducible <= 1d(V) is a prime ideal.
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Algebraic Geometry  Algebra—_Geometry Dictionary

The Algebra—Geometry Dictionary

ALGEBRA GEOMETRY
KX1,..., Xul K™

radical ideals affine varieties
prime ideals irreducible varieties
maximal ideals points

ascending chain condition descending chain condition
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Grébner Bases

Algorithmic Questions

Ideal membership problem: f €17

Consistency problem: 1 €17
o Radical membership problem: f € /I ?

Solving systems of polynomial equations

Intersection of ideals
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Grébner Bases

The ldeal Membership Problem in K[X]

Let I = (fy,...,fs) < K[X] an ideal and f € K[X] a polynomial.

o K[X] is an Euclidean domain:

I=(f1,...,fs) =(9),

where g = ged(fq,...,fs).

@ Division with remainder: ¢, € K[X] s.t.
f=qg+r, deg(r) < deg(g).

@ Then
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Grdbner Bases Division Algorithm

The Division Algorithm in K[X]

Let f =2X2+X+1eR[X] and g =2X + 1 € R[X].

2X +1
2X2 £ X+ 1 X
—(2X%2+X)
1

Therefore,

X2+ X4+1=X-(2X+1)+1 and deg(1) <deg(2X+1).
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Grdbner Bases Division Algorithm

Multivariate Polynomials

Identify
x=(ot1,...,0n) €N —  X¥=X{"--- X3 € K[Xq,..., Xl
Definition

Let f =) Lonn @aX® € K[Xq,..., Xql.

Q@ X% is called monomial for all @« € N™,

@ The total degree of X% is |ot| := o1 + + -+ + .
© The total degree of f is

deg(f) = max{|«| | x € N™ with a, # 0}.

Q ay is called the coefficient of X,
Q If ax #0, then agX* is a term of f.

Johannes Mittmann Grébner Bases JASS 2007 31



Grdbner Bases Division Algorithm

Monomial Orders

Definition
A monomial order < in K[X7,...,Xy] is a relation on N™ such that the
following hold:

@ < is a total order on N™,
Q@ a<p = a+y<pP+vyforall & B,y € N, and
© < is a well-order.

If &, p € N™ with & < B, we write X* < XB.
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Grdbner Bases Division Algorithm

Standard Monomial Orders

Let o, p € N™
© The lexicographic order <o on N™ is defined by

X <jex B &= the leftmost nonzero entry in o« — 3 € Z™ is negative.
@ The graded lexicographic order <gex on N™ is defined by
X <grex B = |&| < [B] or (|&| =[B] and & <jex B).
© The graded reverse lexicographic order <gyeyiex On N™ is defined by

|| < |B] or (|| = |B| and the rightmost
x ‘<grevlex B — ( . n - ..
nonzero entry in x — 3 € Z™ is p05|t|ve).
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Grdbner Bases Division Algorithm

Consider the monomials X3, Y190 XYZ2 XY2Z € K[X,Y, Z].

> lex X3 XY?Z Xyz? Y00
aex | Y XY?Z  XYZZ X3
arevlex | Y1 XYZ? XY?Z X3
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Grdbner Bases Division Algorithm

The Multidegree

Let f =) cnm aaX* € K[Xy,...,Xn]\ {0} and let < be a monomial order
on N™

© The multidegree of f is
multideg(f) = max{a € N™| aq #0}.

© The leading coefficient of f is LC(f) = amusideg(f) € K \ {0}
© The leading monomial of f is LMm(f) = Xmultideg(f)
Q The leading term of f is LT(f) = LC(f) - LM(f).

Moreover,

multideg(0) = —o0 and Lc(0) = Mm(0) = LT(0) = 0.
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Grdbner Bases Division Algorithm

Let f = X2Y + XY24+ Y2, f; = XY —1 and f, = Y2 — 1 be polynomials in
R[X, Y] and let <=~<e.

XY—1 Y2—1 rem
X2Y 4+ XY2 + Y2 X
—(X2Y = X)
XY? + X +Y? Y
—(XY2-Y)
X+Y?4+Y X
—X
YZ+Y 1
—(Y2-1)
Y+1

Therefore,
f=X4+Y)-f1+1-f2+X+Y+1).
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Grdbner Bases Division Algorithm

The Division Algorithm in K[X;i, ..., X;]

Input: f,f7,...,fs € K[Xq,...,Xn] \ {0} and a monomial order <.
Output: q1,...,9s,7 € K[Xq,...,Xn] such that f = q1f1+ -+ qsfs+ 7
and no term in 1 is divisible by any of LT(f7),...,LT(fs).

O p—f~f, r«0, fori=1,...;sdoq;i <0
@ while p #£0 do

o if LT(fy) | LT(p) for a minimal 1 € {1,...,s} then

LT(p) . LT(p)

w) PP T

di & gi +

o else
T 1+LT(p), Ppp—LT(p)

© return q1,...,qs,T
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Grdbner Bases Division Algorithm

Correctness

Proposition

At each entry to the while-loop in the Division Algorithm the following
invariants hold:

Q f=p+qifi+ -+ qsfs + r and multideg(f) = multideg(p).
@ No term in r is divisible by any of LT(f{),...,LT(fs).
© If qifi #0 for someie{1,...,s} then

multideg(f) = multideg(qify).

Definition

The remainder on division of f by the s-tuple F = (fy,...,fs) is denoted by

T
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Grdbner Bases Existence and Uniqueness

Monomial ldeals

Definition

An ideal T < K[Xy,...,Xn] is called monomial ideal if there is a subset
A C N™ such that

I= (XA = (X*| x€A).

Lemma

Let A C N™ be a subset, I = (X} < K[Xj,...,Xn] @ monomial ideal and
B € N™. Then

XPel < 3FaeA:X*|XB
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Grdbner Bases Existence and Uniqueness

Dickson’s Lemma

Lemma (Dickson)

Let A C N™ be a subset and I = (X*) < K[Xq,...,Xn] a monomial ideal.
Then there exists a finite subset B C A such that

(XA) = (XB).
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Grdbner Bases Existence and Uniqueness

Grobner Bases

Definition
Let I < K[Xy,...,Xn] be an ideal and let < be a monomial order on N™.
A finite set G C I is a Grobner basis for 1 with respect to < if

(L7(G)) = (Le(D)).

Theorem

Let < be a monomial order on N™. Then every ideal 1 < K[Xy,...,Xn] has
a Grobner basis G w.r.t. <. Moreover,

I=(G).
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Grdbner Bases Existence and Uniqueness

The Normal Form

Let I < K[Xq,...,X] be an ideal and let G be an Grébner basis for 1. Let
feKXy,..., Xnl.

Then there is a unique v € K[X;,...,Xy] such that
Q f—rel and
@ no term of v is divisble by any term in LT(G).

In particu/ar,
=G
r="f 9

and is called the normal form of f with respect to G.
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Grdbner Bases Existence and Uniqueness

Minimal Grobner Bases

Lemma

Let I < K[Xq,...,X] be an ideal and let G be a Grébner basis for 1. If
g € G such that

rr(g) € (Lr(G\{g})),
then G \ {g} is also a Grébner basis for 1.

Definition
Let I < K[Xy,...,X] be an ideal. A Grébner basis G for I is called
minimal if for all g € G

Q@ 1c(g) =1, and

@ t7(g) ¢ (LT(G \{g}))-
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Grdbner Bases Existence and Uniqueness

Reduced Grobner Bases

Definition
Let I < K[Xq,...,Xn] be an ideal and let G be a Grobner basis for I. An
element g € G is called reduced with respect to G if no monomial of g is in

(Le(G \ {g}).

G is called reduced if G is minimal and every g € G is reduced with respect
to G.

Theorem
Every ideal 1 < K[Xy,...,Xu] has a unique reduced Grébner basis.
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Grdbner Bases Buchberger's Algorithm

The Syzygy Polynomial

Let f,g € K[Xy,...,Xu] \ {0}. Let & = multideg(f), f = multideg(g) and

v = (max{o, B1}, ..., max{on, Bn}).

Then the S-polynomial of f and g is
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Grdbner Bases Buchberger's Algorithm

Buchberger's Criterion

Theorem (Buchberger 1965)

A finite set G C K[Xy,...,X] is a Grobner basis for the ideal (G) if and
only if

S(p,q) =0 for all p # q € G.
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Grdbner Bases Buchberger's Algorithm

Buchberger's Algorithm

Algorithm

Input: fy,...,fs € K[Xq,...,Xn] and a monomial order <.
Output: A Grdbner basis G for the ideal I = (fy,...,fs) w.r.t. < such
that fq,...,fs € G.

QO G« {f1,...,fs}

© repeat
o S— U
e for each {p, q} C G with p # q do
o r—3Spa
o if r #0 then S — SU{r}
e G—GUS
until S =@
© return G
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Grobner Bases  Applications

The Ideal Membership Problem

Let I < K[Xq,...,X] be an ideal and let G be a Grébner basis for 1. Let
f e K[Xq,...,Xnl, then
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Grobner Bases  Applications

The Consistency Problem

Let I < K[Xq,...,Xn] be an ideal and let G be the reduced Grébner basis
for 1. Then

lel & G={1}
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Grobner Bases  Applications

The Radical Membership Problem

Proposition

Let T = (fy,...,fs) SK[Xy,...,Xn] be an ideal and let f € K[X1,...,Xnl.

Define
]:: <f‘|,..-,fs, Xn+1f_ 1> < K[X1)"')Xﬂ+]]-

Then
feVvl = 1leJ.

Johannes Mittmann Grébner Bases JASS 2007

50



Grobner Bases  Applications

The Elimination Theorem

Let I < K[Xq,...,Xn] be an ideal. The {-th elimination ideal Iy is defined
by

I, =INKXg1,...,Xal.

Let I < K[Xq,...,Xn] be an ideal and let G be a Grobner basis for 1 with
respect to <jex. Then

Ge=GNKXeg1,..., Xn]

is a Grébner basis for 1.
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Grobner Bases  Applications

3-Colouring Revisited

G=(VE). 2
1 —e 4
Let 3
I=(X}—1[ieV)+(X{+XX;+X}| (1,j) € E) QCIXy,..., X4l.
The reduced Grobner basis for I w.r.t. <ex is G ={g1,..., g4} with
g1 = X1 — Xy,

g2 = X2+ X3+ Xy,
93 = X3 4+ X3X4 + X2,
94:X2—1.

Therefore
(1,e%/3™ /3™ 1) € Var(I).
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Grobner Bases  Applications

Intersection of Ideals

Let I,] < K[Xq,...,Xu] be ideals. Then

Iﬂ]z(X0~I+(]—Xo)-])ﬂK[X1,...,Xn].
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Computational Complexity
Decision Problems

© The ideal membership problem is defined by

IM = {(f,f1,...,fs) € (QX1,...,Xa])*" [ f € (f1,..., o)}
@ The consistency problem is defined by

Cons = {(f1,...,fs) € (QXy,..., Xa)*| T € {f1,...,fs)}.

© The radical membership problem is defined by

RM = {(f,f1,...,fs) € (QXq,..., Xu)ST [ f € \/(f1,...,fs) }.
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Computational Complexity Degree Bounds

A Degree Bound for Ideal Membership

Theorem (Hermann 1926)
Let I = (fy,...,fs) S QIXy,...,Xn] be an ideal and let

d = max{deg(fy),...,deg(fs)}.
If f €1 then there are q1,...,qs € Q[X;,...,Xn] such that

f:q1f1+“'+qsfs

and
deg(qi) < deg(f) + (sd)®"  foralli=1,...,s.
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Computational Complexity Degree Bounds

Effective Nullstellensiatze

Theorem (Brownawell 1987)
Let I = (fy,...,fs) <QIXy,...,Xn] be an ideal, u = min{s,n} and
d = max{deg(fy),...,deg(fs)}.

@ If the f; have no common zero in C™, then there are

di,...,9s € QXy,..., Xn] with 1 = q1f1 + - - - + qsfs such that

deg(qi) < und* + pud fori=1,...,s.

Q Iff € Q[Xy,...,Xnl such that f(&) = O for all common zeros &, of the
fi in C™, then there are e € N-g and q1,...,ds € Q[Xy,...,Xn] with

e < (L+1)(mn+2)(d+ 1) and
<

deg(qi) < (n+ 1M +2)(d+ 12 fori=1,...,s.
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Computational Complexity Degree Bounds

A Degree Bound for Grobner Bases

Theorem (Dubé 1990)
Let I = (fy,...,fs) <K[Xy,...,Xnl be an ideal and let

d = max{deg(fy),...,deg(fs)}.

Then for any monomial order, the total degree of polynomials in the
reduced Grébner basis for 1 is bounded above by

z(d?2 +d)2ﬂ1.
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Computational Complexity Degree Bounds

Upper Bounds

Theorem (Mayr 1989)

IM € EXPSPACE.

Corollary

Cons € PSPACE and RM € PSPACE.
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Computational Complexity

The Mayr—Meyer Construction

For n € N define e, = 2%". Then

en = (en—1
Variables:
S
F
B1,...,Bs
Cq,...,Cy

for each level r =0, ...,n.

Johannes Mittmann

)2

Grébner Bases

Mayr—Meyer ldeals

for all n € N.o.

start
finish
counters

catalysts

JASS 2007
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Computational Complexity Mayr—Meyer ldeals

Generators

Level r =0:
SC;—FC{B? fori=1,...,4.
Level 1 > 0:
S —sc, sca—F
fC] — SCp, SC3 — fC4,
fcoby — fesby, SC3 — SC2,
szCibz — szCiBibg fori= ], R ,4,
where s,f,by,...,bs,c1,...,cq are variables of level v — 1.
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Computational Complexity Mayr—Meyer ldeals

An Exponential Space Lower Bound

Theorem (Mayr & Meyer 1982)
IM is EXPSPACE-hard.
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For further reading:

[§ Ernst W. Mayr and Albert R. Meyer:
The Complexity of the Word Problems for Commutative Semigroups

and Polynomial Ideals.
Advances in Mathematics 46, 305-329, 1982.

¥ David Cox, John Little and Donal O'Shea:
Ideals, Varieties, and Algorithms.
Springer-Verlag, New York, 2"¢ edition, 1997.

¥ Joachim von zur Gathen and Jiirgen Gerhard:
Modern Computer Algebra.
University Press, Cambridge, ond edition, 2003.
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