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Introduction GCD Factorization

Arithmetics with multivariate polynomials

Definition 1
Let R be a ring. R[x1, . . . , xk ] = R[x] is the set of all multivariate
polynomials over R. We write a(x) ∈ R[x] as

a(x) =
∑

e∈Nk

aex
e

To work with multivariate polynomials, we need some basic
arithmetic concepts such as an ordering.
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Arithmetics with multivariate polynomials

Definition 2
Lexicographical ordering: Let d , e ∈ Nk be two exponent vectors.
Let j < k be the smallest integer such that dj 6= ej . Define an
ordering as follows:
d < e if dj < ej

d > e if dj > ej

The coefficient of the first term of a lexicographically ordered
polynomial is called leading coefficient and denoted by lcoeff(a(x)).

Example 3

The following polynomial ∈ Z[x , y , z ] is arranged in
lexicographically decreasing order:
A(x) = 2x3y3z7 + 3x3y2z8 − 5x2y7 + z3
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Arithmetics with multivariate polynomials

Definition 4
The degree vector δ(A(x)) of a multivariate polynomial is the
exponent vector of its leading term. The total degree of a
multivariate polynomial is the maximum degree of any of its
summands. The degree of a summand is the sum of all exponents
of its terms.
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Arithmetics with multivariate polynomials

Problem of Euclidean Algorithm with polynomials: Growth of
Remainders, even when adjusted to work only in rings.
Consider the following example:

Example 5

Let A(x), B(x) ∈ Z[x ] be defined as

A(x) = x8 + x6 − 3x4 − 3x3 + x2 + 2x − 5

B(x) = 3x6 + 5x4 − 4x2 − 9x + 21
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Arithmetics with multivariate polynomials

Running the Euclidean algorithm in Q yields the following
remainder sequence:

R2(x) = −5

9
x4 +

1

9
x2 − 1

3

R3(x) = −117

25
x2 − 9x +

411

25

R4(x) =
233150

19773
x − 102500

6591

R5(x) = −1288744821

543589225

Since R5(x) is a unit in Q, A and B are relatively prime.
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Introduction GCD Factorization

Algorithm MGCD works as follows:

I Use ring homomorphisms to map polynomials from D to
simpler UFDs D ′

I Solve for GCD in new UFD (e.g. by Euclidean Algorithm)

I It can be shown that deg(GCD in D) ≤ deg(GCD in D ′). We
thus have an upper bound for the degree of the GCD in D.

I Information loss is compensated by using several different
homomorphisms

I Multivariate polynomials are handled recursively by viewing
R[x1, . . . , xk ] as R[x1, . . . , xk−1][xk ]
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Modular GCD algorithm MGCD
Input: A, B ∈ Z[x1, . . . , xk ]
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Example 6

Consider the following polynomials ∈ Z[x , y , z ]:
A(x , y , z) = 9x5 + 2x4yz − 189x3y2z + 117x3yz2 + 3x3 −
42x2y4z2 + 26x2y2z3 + 18x2 − 63xy3z + 39xyz2 + 4xyz + 6
B(x , y , z) =
6x6 − 126x4y3z + 78x4yz2 + x4y + x4z + 13x3 − 21x2y4z −
21x2y3z2 +13x2y2z2 +13x2yz3−21xy3z +13xyz2 +2xy +2xz +2
Use 3 moduli in which to work: 11, 13 and 17.
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In Z11 we now work with the polynomials
A11(x , y , z) = −2x5 + 2x4yz − 2x3y2z − 4x3yz2 + 3x3 +
2x2y4z2 + 4x2y2z3 − 4x2 + 3xy3z − 5xyz2 + 4xyz − 5 and
B11(x , y , z) = −5x6−5x4y3z +x4yz2 +x4y +x4z +2x3 +x2y4z +
x2y3z2 + 2x2y2z2 + 2x2yz3 + xy3z + 2xyz2 + 2xy + 2xz + 2
Now evaluate polynomials at four arbitrary points and compute
GCD recursively.
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Problems with MGCD:

I Need to throw away ”unlucky homomorphisms”

I Number of domains which have to be used is exponential in
the number of variables of the polynomials.

I Ineffective, when the polynomials have a ”sparse” rather than
a ”dense” structure

I Hence: Especially useless for multivariate polynomials!
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Algorithm SparseMod (Zippel, 1979) works as follows:

I Constructs alternating sequence of dense and sparse
interpolations
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Algorithm EZ-GCD (Moses, Yun 1973) works as follows:

I Uses Hensel’s lemma to reduce polynomials to a univariate
representation, determine GCD in simpler domain

I Requires just one homomorphism for each variable

I As with MGCD, relatively prime polynomials are discovered
quickly
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Extended Zassenhaus GCD algorithm EZ-GCD
Input: A, B ∈ Z[x]
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Introduction

Multivariate factoring problems over Z can be reduced to
univariate factoring problems modulo a prime

Definition 7
a(x) ∈ R[x ] is called square-free if it has no repeated factors.

Definition 8
The square-free factorization of a(x) is a(x) =

∏k
i=1 ai (x)i , where

each ai (x) is square-free, and GCD(ai (x), aj(x)) = 1 for i 6= j .
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Introduction

Algorithm SquareFree determines the square-free factorization of a
polynomial a(x) ∈ R[x ], R UFD with char(R) = 0
Improvement by Yun (19??): One more differentiation than
SquareFree, but much simpler GCD calculations.
Similar algorithm determines square-free factorization over finite
fields GF (q)
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Introduction

Algorithm by Berlekamp (1967) works as follows: Factors
polynomials in GF (q)[x ] where q = pm
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Introduction

Berlekamp’s Factoring Algorithm
Input: A, B ∈ Z[x]
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Introduction

Multivariate Factoring: Accomplished by factoring of univariate
polynomials over a finite field and Hensel liftings.
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