| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

# Course "Polynomials: Their Power and How to Use Them", JASS'07

# Basics about Polynomials

#### Maximilian Butz

Fakultät für Mathematik TU München

#### March 20, 2007

Maximilian Butz: Basics about Polynomials

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| <b>000</b> 000       | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

A ring is an algebraic system  $(R, +, \cdot)$  satisfying the following:

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| • <b>00</b><br>00000 | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

A ring is an algebraic system  $(R, +, \cdot)$  satisfying the following:

• The set R with the addition + is an abelian group.

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| • <b>00</b><br>00000 | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

A ring is an algebraic system  $(R, +, \cdot)$  satisfying the following:

- The set R with the addition + is an abelian group.
- ► The multiplication · is associative.

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| <b>000</b> 000       | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

A ring is an algebraic system  $(R, +, \cdot)$  satisfying the following:

- The set R with the addition + is an abelian group.
- ► The multiplication · is associative.
- Multiplication distributes over addition:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 and  $(b+c) \cdot a = b \cdot a + c \cdot a$ 

for all  $a, b, c \in R$ .

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| <b>000</b> 000       | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

A ring is an algebraic system  $(R, +, \cdot)$  satisfying the following:

- The set R with the addition + is an abelian group.
- ► The multiplication · is associative.
- Multiplication distributes over addition:

$$a \cdot (b + c) = a \cdot b + a \cdot c$$
 and  $(b + c) \cdot a = b \cdot a + c \cdot a$ 

for all  $a, b, c \in R$ .

We say that  $(R, +, \cdot)$  is a ring with unity, if R contains an multiplicative identity, denoted by 1. For commutative rings, multiplication has to be commutative, too.

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| 00000                | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| 00000                | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

▶  $a \in R$  divides  $c \in R$ , if there exists  $b \in R$ , so that  $c = a \cdot b$ .

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| 00000                | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

- ▶  $a \in R$  divides  $c \in R$ , if there exists  $b \in R$ , so that  $c = a \cdot b$ .
- In particular, a ∈ R, a ≠ 0 is called a zerodivisor, if there exists b ∈ R, b ≠ 0 with a ⋅ b = 0.

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| 000                  | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

- ▶  $a \in R$  divides  $c \in R$ , if there exists  $b \in R$ , so that  $c = a \cdot b$ .
- In particular, a ∈ R, a ≠ 0 is called a zerodivisor, if there exists b ∈ R, b ≠ 0 with a ⋅ b = 0.
- *u* ∈ *R* is called a unit if there is an multiplicative inverse *v* ∈ *R* so that *u* · *v* = 1.

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| 00000                | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

- ▶  $a \in R$  divides  $c \in R$ , if there exists  $b \in R$ , so that  $c = a \cdot b$ .
- In particular, a ∈ R, a ≠ 0 is called a zerodivisor, if there exists b ∈ R, b ≠ 0 with a ⋅ b = 0.
- *u* ∈ *R* is called a unit if there is an multiplicative inverse *v* ∈ *R* so that *u* · *v* = 1.

# Example 2

The residue classes  $\mathbb{Z}/8\mathbb{Z}$  with the usual addition and multiplication form a ring. The equivalence classes of odd numbers are units, the equivalence classes [2], [4] and [6] are zerodivisors.

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| <b>○○●</b><br>○○○○○  | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

A nontrivial ring (a ring that contains more than one element), with unity and without zero divisors is called domain. If multiplication is commutative, we call it integral domain.

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| <b>○○●</b><br>○○○○○  | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

A nontrivial ring (a ring that contains more than one element), with unity and without zero divisors is called domain. If multiplication is commutative, we call it integral domain.

# Example 4

The ring of integers  $\left(\mathbb{Z},+,\cdot\right)$  is an integral domain with units 1 and -1.

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| 00000                | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

A nontrivial ring (a ring that contains more than one element), with unity and without zero divisors is called domain. If multiplication is commutative, we call it integral domain.

#### Example 4

The ring of integers  $\left(\mathbb{Z},+,\cdot\right)$  is an integral domain with units 1 and -1.

#### Definition 5

A field is a commutative, nontrivial ring with unity, in which every nonzero element is a unit.

| Basic definitions    | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------|---------------------------------|--------------------------|---------------------------|
| 00000                | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Algebraic structures |                                 |                          |                           |

A nontrivial ring (a ring that contains more than one element), with unity and without zero divisors is called domain. If multiplication is commutative, we call it integral domain.

#### Example 4

The ring of integers  $\left(\mathbb{Z},+,\cdot\right)$  is an integral domain with units 1 and -1.

#### Definition 5

A field is a commutative, nontrivial ring with unity, in which every nonzero element is a unit.

Wellknown examples for fields are the rationals  $\mathbb Q,$  the reals  $\mathbb R$  or the complex numbers  $\mathbb C.$ 

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomials       |                                 |                          |                           |

Definition 6 Let  $(R, +, \cdot)$  be a ring and S be the set of sequences  $\{a_0, a_1, ...\}$  with  $a_i \in R$  for all  $i \in \mathbb{N}_0$ 

such that  $a_i = 0$  for all but a finite number of  $i \in \mathbb{N}_0$ .

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomials       |                                 |                          |                           |

# Definition 6 Let $(R, +, \cdot)$ be a ring and S be the set of sequences

$$\{a_0,a_1,...\}$$
 with  $a_i\in R$  for all  $i\in\mathbb{N}_0$ 

such that  $a_i = 0$  for all but a finite number of  $i \in \mathbb{N}_0$ . If we define addition and multiplication on S by:

$$\{a_0, a_1, ...\} + \{b_0, b_1, ...\} := \{a_0 + b_0, a_1 + b_1, ...\}$$
$$\{a_0, a_1, ...\} \cdot \{b_0, b_1, ...\} := \{a_0 \cdot b_0, a_1 \cdot b_0 + a_0 \cdot b_1, ...\}$$
then  $(S, +, \cdot)$  is the ring  $R[X]$  of univariate polynomials over  $R$ 

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000               | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomials       |                                 |                          |                           |

For a polynomial  $P = \{a_0, a_1, ...\} \in R[X]$ , the degree deg(P) is defined as the maximal number n so, that  $a_n \neq 0$ . In this case,  $lc(P) := a_n$  is called the leading coefficient of P.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomials       |                                 |                          |                           |

For a polynomial  $P = \{a_0, a_1, ...\} \in R[X]$ , the degree deg(P) is defined as the maximal number n so, that  $a_n \neq 0$ . In this case,  $lc(P) := a_n$  is called the leading coefficient of P.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000               | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomials       |                                 |                          |                           |

For a polynomial  $P = \{a_0, a_1, ...\} \in R[X]$ , the degree deg(P) is defined as the maximal number n so, that  $a_n \neq 0$ . In this case,  $lc(P) := a_n$  is called the leading coefficient of P.

• 
$$deg(P+Q) \le max\{deg(P), deg(Q)\}$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000               | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomials       |                                 |                          |                           |

For a polynomial  $P = \{a_0, a_1, ...\} \in R[X]$ , the degree deg(P) is defined as the maximal number n so, that  $a_n \neq 0$ . In this case,  $lc(P) := a_n$  is called the leading coefficient of P.

- $deg(P+Q) \le max\{deg(P), deg(Q)\}$
- $deg(P \cdot Q) \leq deg(P) + deg(Q)$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000               | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomials       |                                 |                          |                           |

For a polynomial  $P = \{a_0, a_1, ...\} \in R[X]$ , the degree deg(P) is defined as the maximal number n so, that  $a_n \neq 0$ . In this case,  $lc(P) := a_n$  is called the leading coefficient of P.

- $deg(P+Q) \le max\{deg(P), deg(Q)\}$
- $deg(P \cdot Q) \leq deg(P) + deg(Q)$
- ▶ if R contains no zerodivisors, its even deg(P · Q) = deg(P) + deg(Q).

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000               | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomials       |                                 |                          |                           |

For a ring with unity, we can define the variable

 $X:=\{0,1,0,0,...\}$ 

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomials       |                                 |                          |                           |

For a ring with unity, we can define the variable

 $X:=\{0,1,0,0,...\}$ 

With this definition we have

$$X^n := \{\underbrace{0, ..., 0}_{n \text{ zeroes}}, 1, 0, 0, ...\}$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000               | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomials       |                                 |                          |                           |

For a ring with unity, we can define the variable

 $X:=\{0,1,0,0,...\}$ 

With this definition we have

$$X^n := \{ \underbrace{0, ..., 0}_{n \text{ zeroes}}, 1, 0, 0, ... \}$$

Now we can write a polynomial of degree n like this:

$$\{a_0, a_1, ...\} = \sum_{k=0}^n a_k X^k$$

Maximilian Butz: Basics about Polynomials

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000               | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomials       |                                 |                          |                           |

For any polynomial  $P(X) = \sum_{k=0}^{n} a_k X^k$  in R[X] we can define a function

$$P: R o R$$
, with  $P(z) := \sum_{k=0}^{''} a_k z^k$ 

by substituting the formal symbol X by elements of R.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000               | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomials       |                                 |                          |                           |

For any polynomial  $P(X) = \sum_{k=0}^{n} a_k X^k$  in R[X] we can define a function

$$P:R
ightarrow R,$$
 with  $P(z):=\sum_{k=0}^{''}a_kz^k$ 

by substituting the formal symbol X by elements of R. Note that, for different *polynomials* P(X) and Q(X), the *functions* P and Q can be equal.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000               | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomials       |                                 |                          |                           |

For any polynomial  $P(X) = \sum_{k=0}^{n} a_k X^k$  in R[X] we can define a function

$$P:R
ightarrow R,$$
 with  $P(z):=\sum_{k=0}^n a_k z^k$ 

by substituting the formal symbol X by elements of R. Note that, for different *polynomials* P(X) and Q(X), the *functions* P and Q can be equal.

#### Example 8

For p prime,  $z^p - z = 0$  for all elements of  $\mathbb{Z}/p\mathbb{Z}$ , but  $X^p - X$  is obviously *not* the zero polynomial (the polynomial with zero coefficients).

| Basic definitions<br>○○○<br>○○○○● | First properties and algorithms<br>0<br>000<br>000<br>0000 | Greatest common divisors<br>00<br>00000<br>00000 | Real roots<br>0000000<br>0000<br>0<br>0 |
|-----------------------------------|------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| Polynomials                       |                                                            |                                                  |                                         |

The definition of multivariate polynomials follows from the univariate case:

#### Definition 9

Let *R* be a ring. For  $m \in \mathbb{N}$  we define the ring of multivariate polynomials in *m* variables  $\{X_1, ..., X_m\}$  over *R* by

$$R[X_1, ..., X_m] = R[X_1, ..., X_{m-1}][X_m]$$

| Basic definitions         | First properties and algorithms | Greatest common divisors | Real roots                |
|---------------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000              |                                 | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomial representation | ons                             |                          |                           |

To store and to represent a polynomial P(X) of degree n, we can use a dense representation like

$$P = \{X, n, a_n, ..., a_1, a_0\},\$$

where we mention all coefficients of P.

| Basic definitions        | First properties and algorithms | Greatest common divisors | Real roots                |
|--------------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000             |                                 | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomial representativ | one                             |                          |                           |

To store and to represent a polynomial P(X) of degree n, we can use a dense representation like

$$P = \{X, n, a_n, ..., a_1, a_0\},\$$

where we mention all coefficients of P.

However, for a polynomial with many zero coefficients it is enough to store the nonzero coefficients in a sparse representation:

$$P = \{X, a_s, m_s, ..., a_2, m_2, a_1, m_1\},\$$

where  $a_i$  are the nonzero coefficients and  $m_i$  are the exponents in decreasing order.

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots                |
|-----------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000          | 0<br>●00<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomial operations |                                 |                          |                           |
|                       |                                 |                          |                           |

Now, we want to take a look on the computational complexity of addition and multiplication in R[X].

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots                |
|-----------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000          | ○<br>●○○<br>○○○<br>○○○○         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomial operations |                                 |                          |                           |

Now, we want to take a look on the computational complexity of addition and multiplication in R[X].

Assume that operations in R can be done in time O(1), and let P(X) and Q(X) two Polynomials, with deg(P) = m, deg(Q) = n, and let s and t be the numbers of nonzero coefficients. It is obvious that the calculation of P + Q is done in a time of  $O(max\{m, n\})$  in dense representation, while sparse representation leads to a computing time of  $O(max\{s, t\})$ .

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots                |
|-----------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000          | ○<br>○●○<br>○○○<br>○○○○         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomial operations |                                 |                          |                           |

#### Theorem 10

In dense representation, the calculation of  $P \cdot Q$  is done in O(mn), while in sparse representation the calculation is done in  $O(st \cdot log_2(t))$ 

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots                |
|-----------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000          |                                 | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomial operations |                                 |                          |                           |

#### Theorem 10

In dense representation, the calculation of  $P \cdot Q$  is done in O(mn), while in sparse representation the calculation is done in  $O(st \cdot log_2(t))$ 

#### Proof. (dense case)

$$P(X) \cdot Q(X) = \left(\sum_{j=0}^{m} a_j X^j\right) \cdot \left(\sum_{k=0}^{n} b_k X^k\right) = \sum_{l=0}^{m+n} c_l X^l$$

with  $c_l = \sum_{s=0}^{l} a_s b_{l-s}$ . Thus, we are doing  $(m+1) \cdot (n+1)$  multiplications and mn additions.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>00●<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Polynomial operations

The sparse algorithm is illustrated by an (not very sparse) example: For s = 3, t = 4, we want to multiply  $X^3 + 7X + 9$  and  $X^4 + X^2 + 3X + 2$  over the integers. First, we calculate all  $s \cdot t$  monomials:
| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>00●<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Polynomial operations

The sparse algorithm is illustrated by an (not very sparse) example: For s = 3, t = 4, we want to multiply  $X^3 + 7X + 9$  and  $X^4 + X^2 + 3X + 2$  over the integers. First, we calculate all  $s \cdot t$  monomials:

| $X^7$    | $7X^{5}$        | $9X^{4}$    |
|----------|-----------------|-------------|
| $X^5$    | 7X <sup>3</sup> | $9X^{2}$    |
| $3X^{4}$ | $21X^{2}$       | 27 <i>X</i> |
| $2X^{3}$ | 14X             | 18          |

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>00●<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Polynomial operations

The sparse algorithm is illustrated by an (not very sparse) example: For s = 3, t = 4, we want to multiply  $X^3 + 7X + 9$  and  $X^4 + X^2 + 3X + 2$  over the integers. First, we calculate all  $s \cdot t$  monomials:

| $X^7$    | $7X^{5}$        | $9X^{4}$    |
|----------|-----------------|-------------|
| $X^5$    | 7X <sup>3</sup> | $9X^{2}$    |
| $3X^{4}$ | $21X^{2}$       | 27 <i>X</i> |
| $2X^{3}$ | 14X             | 18          |

Then we fuse, sort, and where possible, add, neighbouring rows:

$$\begin{array}{cccccccc} X^7 & 8X^5 & 9X^4 & 7X^3 & 9X^2 \\ 3X^4 & 2X^3 & 21X^2 & 41X & 18 \end{array}$$

Sorting again, we have:

$$X^7 8X^5 12X^4 9X^3 30X^2 41X 18$$

| Basic definitions   | First properties and algorithms | Greatest common divisors | Real roots                |
|---------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000        | 0<br>000<br>●00<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomial division |                                 |                          |                           |

#### Theorem 11

Let R be an integral domain and  $P_1(X)$  and  $P_2(X)$  two polynomials over R with  $lc(P_2)$  a unit in R. Then there exist unique Q(X), R(X), so that:

 $P_1(X) = Q(X) \cdot P_2(X) + R(X)$  and  $deg(R(X)) < deg(P_2(X))$ .

| Basic definitions   | First properties and algorithms | Greatest common divisors | Real roots                |
|---------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000        | 0<br>000<br><b>00</b><br>0000   | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomial division |                                 |                          |                           |

#### Theorem 11

Let R be an integral domain and  $P_1(X)$  and  $P_2(X)$  two polynomials over R with  $lc(P_2)$  a unit in R. Then there exist unique Q(X), R(X), so that:

$$P_1(X) = Q(X) \cdot P_2(X) + R(X)$$
 and  $deg(R(X)) < deg(P_2(X))$ .

# Definition 12

In this situation, we call  $Q(X) =: quo(P_1(X), P_2(X))$  the quotient and  $R(X) =: rem(P_1(X), P_2(X))$  the remainder of  $P_1(X), P_2(X)$ .

| Basic definitions   | First properties and algorithms | Greatest common divisors | Real roots                |
|---------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000        | 0<br>000<br><b>0●0</b><br>0000  | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Polynomial division |                                 |                          |                           |

Let 
$$P_1(X) = \sum_{j=0}^m a_j X^j$$
,  $P_2(X) = \sum_{k=0}^n b_k X^k$ ,  $m \ge n \ge 0$ , and  $b_n$  be a unit. The algorithm for polynomial division is:

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br><b>0●</b> 0<br>0000 | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Let 
$$P_1(X) = \sum_{j=0}^m a_j X^j$$
,  $P_2(X) = \sum_{k=0}^n b_k X^k$ ,  $m \ge n \ge 0$ , and  $b_n$  be a unit. The algorithm for polynomial division is:

$$\frac{\text{for } i = m - n \text{ down to } 0 \text{ do}}{q_i := a_{n+i}b_n^{-1}}$$

$$\frac{\text{for } l = n + i - 1 \text{ down to } i \text{ do}}{a_l := a_l - q_i b_{l-i}}$$

$$\frac{\text{od}}{\text{od}}$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br><b>0●</b> 0<br>0000 | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Let 
$$P_1(X) = \sum_{j=0}^m a_j X^j$$
,  $P_2(X) = \sum_{k=0}^n b_k X^k$ ,  $m \ge n \ge 0$ , and  $b_n$  be a unit. The algorithm for polynomial division is:

$$\begin{array}{l} \underline{\text{for }} i = m - n \ \underline{\text{down to }} \ 0 \ \underline{\text{do}} \\ q_i := a_{n+i} b_n^{-1} \\ \underline{\text{for }} l = n + i - 1 \ \underline{\text{down to }} i \ \underline{\text{do}} \\ a_l := a_l - q_i b_{l-i} \\ \underline{\text{od}} \\ \underline{\text{od}} \end{array}$$

Then, 
$$Q(X) = \sum_{i=0}^{m-n} q_i X^i$$
, and  $R(X) = \sum_{l=0}^{n-1} a_l X^l$ .

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br><b>0●0</b><br>0000  | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Let 
$$P_1(X) = \sum_{j=0}^m a_j X^j$$
,  $P_2(X) = \sum_{k=0}^n b_k X^k$ ,  $m \ge n \ge 0$ , and  $b_n$  be a unit. The algorithm for polynomial division is:

$$\begin{array}{l} \underline{\text{for }} i = m - n \ \underline{\text{down to }} \ 0 \ \underline{\text{do}} \\ q_i := a_{n+i} b_n^{-1} \\ \underline{\text{for }} I = n + i - 1 \ \underline{\text{down to }} i \ \underline{\text{do}} \\ a_l := a_l - q_i b_{l-i} \\ \underline{\text{od}} \\ \underline{\text{od}} \end{array}$$

Then,  $Q(X) = \sum_{i=0}^{m-n} q_i X^i$ , and  $R(X) = \sum_{l=0}^{n-1} a_l X^l$ . Computing time: Assuming that operations in R take O(1), the whole algorithm is done in O(n(m - n + 1)).

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br><b>00●</b><br>0000  | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Let R be an integral domain.

Definition 13 For  $P(X) \in R[X]$ ,  $\alpha \in R$  is called a root of P(X), if  $P(\alpha)=0$ .

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br><b>00●</b><br>0000  | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Let R be an integral domain.

Definition 13 For  $P(X) \in R[X]$ ,  $\alpha \in R$  is called a root of P(X), if  $P(\alpha)=0$ .

# Theorem 14

 $\alpha \in R$  is a root of P(X) if  $(X - \alpha)$  divides P(X).

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br><b>00●</b><br>0000  | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Let R be an integral domain.

Definition 13 For  $P(X) \in R[X]$ ,  $\alpha \in R$  is called a root of P(X), if  $P(\alpha)=0$ .

#### Theorem 14

$$\alpha \in R$$
 is a root of  $P(X)$  if  $(X - \alpha)$  divides  $P(X)$ .

#### Proof.

Observe that 
$$rem(P(X), (X - \alpha)) = P(\alpha)$$
.

| Basic definitions | First properties and algorithms       | Greatest common divisors | Real roots                |
|-------------------|---------------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br><b>00</b><br>0000<br>0000 | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                       |                          |                           |

Let R be an integral domain.

Definition 13 For  $P(X) \in R[X]$ ,  $\alpha \in R$  is called a root of P(X), if  $P(\alpha)=0$ .

#### Theorem 14

$$\alpha \in R$$
 is a root of  $P(X)$  if  $(X - \alpha)$  divides  $P(X)$ .

#### Proof.

Observe that  $rem(P(X), (X - \alpha)) = P(\alpha)$ .

#### Definition 15

 $\alpha \in R$  is a root with multiplicity *m*, if  $(X - \alpha)^m$  divides P(X).

| Basic definitions | First properties and algorithms       | Greatest common divisors | Real roots                |
|-------------------|---------------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br><b>00</b><br>0000<br>0000 | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                       |                          |                           |

Let R be an integral domain.

Definition 13 For  $P(X) \in R[X]$ ,  $\alpha \in R$  is called a root of P(X), if  $P(\alpha)=0$ .

#### Theorem 14

$$\alpha \in R$$
 is a root of  $P(X)$  if  $(X - \alpha)$  divides  $P(X)$ .

#### Proof.

Observe that  $rem(P(X), (X - \alpha)) = P(\alpha)$ .

#### Definition 15

 $\alpha \in R$  is a root with multiplicity *m*, if  $(X - \alpha)^m$  divides P(X).

#### Theorem 16

If  $P(X) \neq 0$ , P(X) can have at most deg(P(X)) roots, counting multiplicities.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Field extensions  |                                 |                          |                           |

Let K be a field, and  $M(X) \in K[X]$  with deg(M(X)) > 0. Then we can define the equivalence relation  $\equiv_{M(X)}$  on K[X]:

$$P(X) \equiv_{M(X)} Q(X) \text{ if } rem(P(X), M(X)) = rem(Q(X), M(X)).$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Field extensions  |                                 |                          |                           |

Let K be a field, and  $M(X) \in K[X]$  with deg(M(X)) > 0. Then we can define the equivalence relation  $\equiv_{M(X)}$  on K[X]:

$$P(X) \equiv_{M(X)} Q(X) \text{ if } rem(P(X), M(X)) = rem(Q(X), M(X)).$$

The set of equivalence classes, denoted by  $K[X]_{M(X)}$ , together with the operations

 $[P(X)]_{M(X)} + [Q(X)]_{M(X)} := [P(X) + Q(X)]_{M(X)}$  $[P(X)]_{M(X)} \cdot [Q(X)]_{M(X)} := [P(X) \cdot Q(X)]_{M(X)}$ 

is a commutative ring with unity.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br><b>0●00</b>  | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Field extensions  |                                 |                          |                           |

A polynomial  $P(X) \in R[X]$ , R an integral domain, is called irreducible, if, whenever  $P(X) = P_1(X) \cdot P_2(X)$ ,  $P_1(X)$  or  $P_2(X)$  is a unit of R[X].

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br><b>0●00</b>  | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Field extensions  |                                 |                          |                           |

A polynomial  $P(X) \in R[X]$ , R an integral domain, is called irreducible, if, whenever  $P(X) = P_1(X) \cdot P_2(X)$ ,  $P_1(X)$  or  $P_2(X)$  is a unit of R[X].

# Example 19

 $2X^2 + 4$  is reducible both over  $\mathbb{Z}$  and  $\mathbb{C}$ , but not over  $\mathbb{R}$ .

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br><b>0●00</b>  | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Field extensions  |                                 |                          |                           |

A polynomial  $P(X) \in R[X]$ , R an integral domain, is called irreducible, if, whenever  $P(X) = P_1(X) \cdot P_2(X)$ ,  $P_1(X)$  or  $P_2(X)$  is a unit of R[X].

#### Example 19

 $2X^2 + 4$  is reducible both over  $\mathbb Z$  and  $\mathbb C$ , but not over  $\mathbb R$ .

#### Theorem 20

For K a field and  $M(X) \in K[X]$  with deg(M(X)) > 0,  $K[X]_{M(X)}$  is a field if and only if M(X) is irreducible over K.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br><b>0●00</b>  | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Field extensions  |                                 |                          |                           |

A polynomial  $P(X) \in R[X]$ , R an integral domain, is called irreducible, if, whenever  $P(X) = P_1(X) \cdot P_2(X)$ ,  $P_1(X)$  or  $P_2(X)$  is a unit of R[X].

#### Example 19

 $2X^2 + 4$  is reducible both over  $\mathbb Z$  and  $\mathbb C$ , but not over  $\mathbb R$ .

#### Theorem 20

For K a field and  $M(X) \in K[X]$  with deg(M(X)) > 0,

 $K[X]_{M(X)}$  is a field if and only if M(X) is irreducible over K.

In this case,  $K[X]_{M(X)}$  contains a subfield isomorphic to K and is therefore a field extension of K.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      |                                 | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Field extensions  |                                 |                          |                           |

## Example 21

Let  $K = \mathbb{R}$  and  $M(X) = X^2 + 1$ . Then all elements of  $\mathbb{R}[X]_{X^2+1}$  are of the form  $a \cdot [1] + b \cdot [X]$  with  $a, b \in \mathbb{R}$ . Addition and multiplication are given by:

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>00●0         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Field extensions  |                                 |                          |                           |

## Example 21

Let  $K = \mathbb{R}$  and  $M(X) = X^2 + 1$ . Then all elements of  $\mathbb{R}[X]_{X^2+1}$  are of the form  $a \cdot [1] + b \cdot [X]$  with  $a, b \in \mathbb{R}$ . Addition and multiplication are given by:

(a[1] + b[X]) + (c[1] + d[X]) = (a + c)[1] + (b + d)[X]

 $(a[1] + b[X]) \cdot (c[1] + d[X]) = ac[1] + bd[X^2] + ad[X] + bc[X]$ 

=(ac-bd)[1]+(ad+bc)[X]

| Basic definitions                                                                                              | First properties and algorithms | Greatest common divisors | Real roots                |
|----------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000                                                                                                   |                                 | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| En la companya de la |                                 |                          |                           |

## Example 21

Let  $K = \mathbb{R}$  and  $M(X) = X^2 + 1$ . Then all elements of  $\mathbb{R}[X]_{X^2+1}$  are of the form  $a \cdot [1] + b \cdot [X]$  with  $a, b \in \mathbb{R}$ . Addition and multiplication are given by:

$$(a[1] + b[X]) + (c[1] + d[X]) = (a + c)[1] + (b + d)[X]$$

 $(a[1] + b[X]) \cdot (c[1] + d[X]) = ac[1] + bd[X^2] + ad[X] + bc[X]$ 

$$= (\mathit{ac} - \mathit{bd})[1] + (\mathit{ad} + \mathit{bc})[X]$$

Therefore,  $\mathbb{R}[X]_{X^2+1}$  is isomorphic to  $\mathbb{C}$ .

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>000●         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Field extensions  |                                 |                          |                           |

A field K is algebraically closed, if every nonconstant polynomial with coefficients in K has a root in K.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br><b>000</b> ● | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Field extensions  |                                 |                          |                           |

A field K is algebraically closed, if every nonconstant polynomial with coefficients in K has a root in K.

# Theorem 23

Every field J has an algebraic closure, i.e. a field extension K that is algebraically closed.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>000●         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Field extensions  |                                 |                          |                           |

A field K is algebraically closed, if every nonconstant polynomial with coefficients in K has a root in K.

# Theorem 23

Every field J has an algebraic closure, i.e. a field extension K that is algebraically closed.

For us, it is important to know the

Theorem 24 (Fundamental Theorem of Algebra)  $\mathbb{C}$  is the algebraic closure of  $\mathbb{R}$ .

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |

For  $a, b \in R$ , R an integral domain,  $d \in R$  is called a greatest common divisor of a and b, d = gcd(a, b), if d divides a and b, and every  $t \in R$  dividing a and b divides d, too.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

For  $a, b \in R$ , R an integral domain,  $d \in R$  is called a greatest common divisor of a and b, d = gcd(a, b), if d divides a and b, and every  $t \in R$  dividing a and b divides d, too.

If a gcd(a, b) exists, it is unique up to units, and thus it makes sense to speak of *the gcd* of *a* and *b*.

| Basic definitions | First properties and algorithms | Greatest common divisors                   | Real roots                |
|-------------------|---------------------------------|--------------------------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | • •<br>• • • • • • • • • • • • • • • • • • | 0000000<br>0000<br>0<br>0 |
| GCD over fields   |                                 |                                            |                           |

#### SCD over fields

#### Theorem 26

Let K be a field, and  $P_1(X)$ ,  $P_2(X) \neq 0$  polynomials from K[X]. Then there exists  $gcd(P_1(X), P_2(X)) \in K[X]$ , and there are  $A(X), B(X) \in K[X]$ , with  $deg(A(X)) < deg(P_2(X))$  and  $deg(B(X)) < deg(P_1(X))$  with

$$gcd(P_1(X),P_2(X)) = A(X) \cdot P_1(X) + B(X) \cdot P_2(X).$$

| Basic definitions | First properties and algorithms | Greatest common divisors                   | Real roots                |
|-------------------|---------------------------------|--------------------------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | • •<br>• • • • • • • • • • • • • • • • • • | 0000000<br>0000<br>0<br>0 |
| GCD over fields   |                                 |                                            |                           |

#### Theorem 26

Let K be a field, and  $P_1(X)$ ,  $P_2(X) \neq 0$  polynomials from K[X]. Then there exists  $gcd(P_1(X), P_2(X)) \in K[X]$ , and there are  $A(X), B(X) \in K[X]$ , with  $deg(A(X)) < deg(P_2(X))$  and  $deg(B(X)) < deg(P_1(X))$  with

$$gcd(P_1(X),P_2(X)) = A(X) \cdot P_1(X) + B(X) \cdot P_2(X).$$

#### Proof.

We construct both  $gcd(P_1(X), P_2(X))$  and A(X), B(X) by the extended Euclidean Algorithm over a field.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| GCD over fields   |                                 |                          |                           |

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| GCD over fields   |                                 |                          |                           |

$$[A(X), B(X)] := [1, 0]$$
  
 $[a(X), b(X)] := [0, 1]$ 

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| 0.00              |                                 |                          |                           |

#### GCD over fields

$$\begin{split} & [A(X), B(X)] := [1, 0] \\ & [a(X), b(X)] := [0, 1] \\ & \underline{\text{while}} \ P_2(X) \neq 0 \ \underline{\text{do}} \\ & [Q(X), R(X)] := [quo(P_1(X), P_2(X)), rem(P_1(X), P_2(X))] \\ & [P_1(X), P_2(X)] := [P_2(X), R(X)] \end{split}$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| GCD over fields   |                                 |                          |                           |

$$\begin{split} & [A(X), B(X)] := [1, 0] \\ & [a(X), b(X)] := [0, 1] \\ & \underline{while} \ P_2(X) \neq 0 \ \underline{do} \\ & [Q(X), R(X)] := [quo(P_1(X), P_2(X)), rem(P_1(X), P_2(X))] \\ & [P_1(X), P_2(X)] := [P_2(X), R(X)] \\ & [A(X), a(X)] := [a(X), A(X) - Q(X)a(X)] \\ & [B(X), b(X)] := [b(X), B(X) - Q(X)b(X)] \\ & \underline{od} \end{split}$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| GCD over fields   |                                 |                          |                           |

$$\begin{split} & [A(X), B(X)] := [1, 0] \\ & [a(X), b(X)] := [0, 1] \\ & \underline{while} \ P_2(X) \neq 0 \ \underline{do} \\ & [Q(X), R(X)] := [quo(P_1(X), P_2(X)), rem(P_1(X), P_2(X))] \\ & [P_1(X), P_2(X)] := [P_2(X), R(X)] \\ & [A(X), a(X)] := [a(X), A(X) - Q(X)a(X)] \\ & [B(X), b(X)] := [b(X), B(X) - Q(X)b(X)] \\ & \underline{od} \\ & \underline{return} \ [P_1(X), A(X), B(X)] \end{split}$$

| Basic definitions<br>000<br>00000 | First properties and algorithms<br>0<br>000<br>000<br>0000 | Greatest common divisors<br>○○<br>●○○○○<br>○○○○○ | <b>Real roots</b><br>0000000<br>0000<br>0<br>0 |
|-----------------------------------|------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|
| $GCD$ over $\mathbb Z$            |                                                            |                                                  |                                                |

Polynomial division in the Euclidean algorithm works, because  $lc(P_2(X))$  is a unit throughout the algorithm, because K is a field. From now on, we consider Polynomials over  $\mathbb{Z}$ , and the Euclidean algorithm will not work in general.

| Basic definitions<br>000<br>00000 | First properties and algorithms<br>0<br>000<br>000<br>0000 | Greatest common divisors<br>○○<br>●○○○○<br>○○○○○ | Real roots<br>0000000<br>0000<br>0<br>0 |
|-----------------------------------|------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| GCD over Z                        |                                                            |                                                  |                                         |

Polynomial division in the Euclidean algorithm works, because  $lc(P_2(X))$  is a unit throughout the algorithm, because K is a field. From now on, we consider Polynomials over  $\mathbb{Z}$ , and the Euclidean algorithm will not work in general.

Let  $P_1(X) = \sum_{i=0}^m a_i X^i$ ,  $P_2(X) = \sum_{j=0}^n b_j X^j \neq 0$ ,  $m \ge n$ . For a pseudodivision in  $\mathbb{Z}[X]$ , premultiply  $P_1(X)$  by  $b_n^{m-n+1}$ , and define pseudoquotient and pseudoremainder by

$$pquo(P_1(X), P_2(X)) = quo(b_n^{m-n+1} \cdot P_1(X), P_2(X))$$
$$prem(P_1(X), P_2(X)) = rem(b_n^{m-n+1} \cdot P_1(X), P_2(X)).$$
| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | ○○<br>○●○○○<br>○○○○○     | 0000000<br>0000<br>0<br>0 |
| GCD over Z        |                                 |                          |                           |

For  $P(X) \in \mathbb{Z}[X]$ , define the content cont(P(X)) as gcd of the coefficients of P(X), and the primitive part  $pp(P(X)) = \frac{P(X)}{cont(P(X))}$ .

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots                |
|-----------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000          | 0<br>000<br>000<br>0000         |                          | 0000000<br>0000<br>0<br>0 |
| GCD over $\mathbb{Z}$ |                                 |                          |                           |

For  $P(X) \in \mathbb{Z}[X]$ , define the content cont(P(X)) as gcd of the coefficients of P(X), and the primitive part  $pp(P(X)) = \frac{P(X)}{cont(P(X))}$ .

Theorem 28  $\mathbb{Z}[X]$  is a unique factorization domain, and therefore, a gcd exists for all pairs of nonzero Polynomials over Z.

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots                |
|-----------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000          | 0<br>000<br>000<br>0000         |                          | 0000000<br>0000<br>0<br>0 |
| GCD over $\mathbb{Z}$ |                                 |                          |                           |

For  $P(X) \in \mathbb{Z}[X]$ , define the content cont(P(X)) as gcd of the coefficients of P(X), and the primitive part  $pp(P(X)) = \frac{P(X)}{cont(P(X))}$ .

Theorem 28  $\mathbb{Z}[X]$  is a unique factorization domain, and therefore, a gcd exists for all pairs of nonzero Polynomials over Z. For  $P_1(X), P_2(X) \in \mathbb{Z}[X]$ , we have

 $cont(gcd(P_1(X), P_2(X))) = gcd(cont(P_1(X)), cont(P_2(X)))$  $pp(gcd(P_1(X), P_2(X))) = gcd(pp(P_1(X)), pp(P_2(X))).$ 

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots                |
|-----------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000          | 0<br>000<br>000<br>0000         |                          | 0000000<br>0000<br>0<br>0 |
| GCD over $\mathbb{Z}$ |                                 |                          |                           |

### Generalized Euclidean Algorithm

$$c := gcd(cont(P_1(X)), cont(P_2(X))) [P_1(X), P_2(X)] := [pp(P_1(X)), pp(P_2(X))]$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>000          |                          | 0000000<br>0000<br>0<br>0 |
| GCD over ℤ        |                                 |                          |                           |

### Generalized Euclidean Algorithm

$$\begin{split} c &:= gcd(cont(P_1(X)), cont(P_2(X)))\\ &[P_1(X), P_2(X)] := [pp(P_1(X)), pp(P_2(X))]\\ &\underline{while} \ P_2(X) \neq 0 \ \underline{do}\\ &[P_1(X), P_2(X)] := [P_2(X), prem(P_1(X), P_2(X))]\\ &\underline{od} \end{split}$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         |                          | 0000000<br>0000<br>0<br>0 |
| GCD over ℤ        |                                 |                          |                           |

### Generalized Euclidean Algorithm

$$\begin{split} c &:= gcd(cont(P_{1}(X)), cont(P_{2}(X)))\\ [P_{1}(X), P_{2}(X)] &:= [pp(P_{1}(X)), pp(P_{2}(X))]\\ \underline{while} \ P_{2}(X) \neq 0 \ \underline{do}\\ [P_{1}(X), P_{2}(X)] &:= [P_{2}(X), prem(P_{1}(X), P_{2}(X))]\\ \underline{od}\\ \underline{return} \ c \cdot pp(P_{1}(X)) \end{split}$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| GCD over ℤ        |                                 |                          |                           |

# Example 29 $P_1(X) = X^3 - 2X^2 + 3 + 1, P_2(X) = 2X^2 + 1$

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots                |
|-----------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000          | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| GCD over $\mathbb{Z}$ |                                 |                          |                           |

Example 29  

$$P_1(X) = X^3 - 2X^2 + 3 + 1, P_2(X) = 2X^2 + 1$$
  
 $2^2 \cdot (X^3 - 2X^2 + 3 + 1) = (2X - 4) \cdot (2X^2 + 1) + (10X + 8)$ 

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots                |
|-----------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000          | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| GCD over $\mathbb{Z}$ |                                 |                          |                           |

Example 29  

$$P_1(X) = X^3 - 2X^2 + 3 + 1, P_2(X) = 2X^2 + 1$$
  
 $2^2 \cdot (X^3 - 2X^2 + 3 + 1) = (2X - 4) \cdot (2X^2 + 1) + (10X + 8)$   
 $10^2 \cdot (2X^2 + 1) = (20X - 16) \cdot (10X + 8) + 228$ 

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots                |
|-----------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000          | 0<br>000<br>000<br>0000         |                          | 0000000<br>0000<br>0<br>0 |
| GCD over $\mathbb{Z}$ |                                 |                          |                           |

Example 29  

$$P_1(X) = X^3 - 2X^2 + 3 + 1, P_2(X) = 2X^2 + 1$$
  
 $2^2 \cdot (X^3 - 2X^2 + 3 + 1) = (2X - 4) \cdot (2X^2 + 1) + (10X + 8)$   
 $10^2 \cdot (2X^2 + 1) = (20X - 16) \cdot (10X + 8) + 228$   
 $228^2 \cdot (10X - 8) = (2280X - 1824) \cdot 228 + 0$ 

| Basic definitions      | First properties and algorithms | Greatest common divisors | Real roots                |
|------------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000           | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| $GCD$ over $\mathbb Z$ |                                 |                          |                           |

Example 29  
$$P_1(X) = X^3 - 2X^2 + 3 + 1$$
,  $P_2(X) = 2X^2 + 1$ 

$$2^{2} \cdot (X^{3} - 2X^{2} + 3 + 1) = (2X - 4) \cdot (2X^{2} + 1) + (10X + 8)$$
  

$$10^{2} \cdot (2X^{2} + 1) = (20X - 16) \cdot (10X + 8) + 228$$
  

$$228^{2} \cdot (10X - 8) = (2280X - 1824) \cdot 228 + 0$$

 $gcd(cont(P_1(X)), cont(P_2(X))) = 1$ , and therefore,  $gcd(P_1(X), P_2(X)) = 1$ .

Premultiplication leads to an exponential growth of coefficients, the greatest number in our calculation was 519840.

| Basic definitions       | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000            | 0<br>000<br>000<br>0000         | 00<br>0000<br>00000      | 0000000<br>0000<br>0<br>0 |
| $GCD  over  \mathbb{Z}$ |                                 |                          |                           |
|                         |                                 |                          |                           |

One possiblility to reduce the the coefficient growth, is to divide every pseudoremainder by its content.

| Basic definitions       | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000            | 0<br>000<br>000<br>0000         | 00<br>0000<br>00000      | 0000000<br>0000<br>0<br>0 |
| $GCD  over  \mathbb{Z}$ |                                 |                          |                           |

One possiblility to reduce the the coefficient growth, is to divide every pseudoremainder by its content.

The problem is,that we would have to do a gcd calculation in  $\mathbb{Z}$  at every step of our algorithm.

| Basic definitions      | First properties and algorithms | Greatest common divisors | Real roots                |
|------------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000           | 0<br>000<br>000<br>0000         | 00<br>0000<br>00000      | 0000000<br>0000<br>0<br>0 |
| $GCD$ over $\mathbb Z$ |                                 |                          |                           |

One possiblility to reduce the the coefficient growth, is to divide every pseudoremainder by its content.

The problem is,that we would have to do a gcd calculation in  $\mathbb{Z}$  at every step of our algorithm.

Before we go on with *gcd* computations, we ask what it means, if two Polynomials in  $\mathbb{Z}[X]$  have a common root in  $\mathbb{C}$ .

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

### Definition 30

For two Polynomials  $P_1(X) = \sum_{j=0}^m a_j X^j$ ,  $P_2(X) = \sum_{k=0}^n b_k X^k$  in  $\mathbb{Z}[X]$ , we define the resultant

$$\operatorname{res}[P_1(X), P_2(X)] := a_m^n b_n^m \prod_{j=0}^m \prod_{k=0}^n (\alpha_j - \beta_k).$$

where  $\alpha_j$  are the roots of  $P_1$ ,  $\beta_k$  of  $P_2$ .

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Resultants        |                                 |                          |                           |

For two Polynomials  $P_1(X) = \sum_{j=0}^m a_j X^j$ ,  $P_2(X) = \sum_{k=0}^n b_k X^k$  in  $\mathbb{Z}[X]$ , we define the resultant

$$\operatorname{res}[P_1(X),P_2(X)] := a_m^n b_n^m \prod_{j=0}^m \prod_{k=0}^n (\alpha_j - \beta_k).$$

where  $\alpha_j$  are the roots of  $P_1$ ,  $\beta_k$  of  $P_2$ .

Theorem 31

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
| Resultants        |                                 |                          |                           |

For two Polynomials  $P_1(X) = \sum_{j=0}^m a_j X^j$ ,  $P_2(X) = \sum_{k=0}^n b_k X^k$  in  $\mathbb{Z}[X]$ , we define the resultant

$$\operatorname{res}[P_1(X),P_2(X)] := a_m^n b_n^m \prod_{j=0}^m \prod_{k=0}^n (\alpha_j - \beta_k).$$

where  $\alpha_j$  are the roots of  $P_1$ ,  $\beta_k$  of  $P_2$ .

### Theorem 31

1.  $res[P_1(X), P_2(X)] = 0$  if  $P_1(X)$  and  $P_2(X)$  have a common root.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

### Definition 30

For two Polynomials  $P_1(X) = \sum_{j=0}^m a_j X^j$ ,  $P_2(X) = \sum_{k=0}^n b_k X^k$  in  $\mathbb{Z}[X]$ , we define the resultant

$$\operatorname{res}[P_1(X),P_2(X)] := a_m^n b_n^m \prod_{j=0}^m \prod_{k=0}^n (\alpha_j - \beta_k).$$

where  $\alpha_j$  are the roots of  $P_1$ ,  $\beta_k$  of  $P_2$ .

### Theorem 31

1.  $res[P_1(X), P_2(X)] = 0$  if  $P_1(X)$  and  $P_2(X)$  have a common root.

2. 
$$res[P_1(X), P_2(X)] = (-1)^{mn} b_n^m \prod_{k=1}^n P_1(\beta_k) = a_m^n \prod_{j=1}^m P_2(\alpha_j)$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         |                          | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Theorem 32  

$$res(P_1(X), P_2(X)) = det \begin{pmatrix} a_m & \cdots & \cdots & a_0 & \mathbf{0} \\ & \ddots & & & \ddots & & \\ \mathbf{0} & a_m & \cdots & \cdots & a_0 \\ & b_n & \cdots & b_0 & & \\ & & & \mathbf{0} & & \\ & & & & & \ddots & & \\ & & & & & & \\ \mathbf{0} & & & & & \\ & & & & & & b_n & \cdots & b_n \end{pmatrix}$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         |                          | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Theorem 32  $res(P_1(X), P_2(X)) = det \begin{pmatrix} a_m & \cdots & \cdots & a_0 & \mathbf{0} \\ & \ddots & & & \ddots & & \\ \mathbf{0} & a_m & \cdots & \cdots & a_0 \\ & b_n & \cdots & b_0 & & \\ & & & \mathbf{0} & & \\ & & & & \ddots & & \\ & & & & & & \\ \mathbf{0} & & & & & & \\ & & & & & & & \\ \mathbf{0} & & & & & & \\ & & & & & & & \\ \mathbf{0} & & & & & & \\ & & & & & & & \\ \mathbf{0} & & & & & & \\ & & & & & & & \\ \mathbf{0} & & & & & & \\ & & & & & & & \\ \mathbf{0} & & &$ 

The Matrix is  $(m + n) \times (m + n)$  and contains n "a" rows and m "b" rows.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         |                          | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Proof. bn

and assume the simple case, that  $P_2(X)$  has only single roots  $\beta_i$ , and that all  $P_1(\beta_i)$  are different.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>000          |                          | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Then, for all  $1 \le i \le n$ ,  $\lambda = P_1(\beta_i)$  is a root of  $q(\lambda)$ , and because  $q(\lambda)$  has at most *n* different roots,  $P_1(\beta_i)$  are all roots.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         |                          | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Then, for all  $1 \le i \le n$ ,  $\lambda = P_1(\beta_i)$  is a root of  $q(\lambda)$ , and because  $q(\lambda)$  has at most *n* different roots,  $P_1(\beta_i)$  are all roots. Defining  $q_n = lc(q(\lambda))$  and  $q_0 = q(0)$ , we have:

$$(-1)^n q_n \prod_{k=1}^n P_1(\beta_k) = q_0.$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         |                          | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Then, for all  $1 \le i \le n$ ,  $\lambda = P_1(\beta_i)$  is a root of  $q(\lambda)$ , and because  $q(\lambda)$  has at most *n* different roots,  $P_1(\beta_i)$  are all roots. Defining  $q_n = lc(q(\lambda))$  and  $q_0 = q(0)$ , we have:

$$(-1)^n q_n \prod_{k=1}^n P_1(\beta_k) = q_0.$$

And, by the structure of the matrix:

$$q(\lambda) = (-1)^{mn} b_n^m \cdot (-\lambda)^n + \dots$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots                |
|-------------------|---------------------------------|--------------------------|---------------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         |                          | 0000000<br>0000<br>0<br>0 |
|                   |                                 |                          |                           |

Then, for all  $1 \le i \le n$ ,  $\lambda = P_1(\beta_i)$  is a root of  $q(\lambda)$ , and because  $q(\lambda)$  has at most *n* different roots,  $P_1(\beta_i)$  are all roots. Defining  $q_n = lc(q(\lambda))$  and  $q_0 = q(0)$ , we have:

$$(-1)^n q_n \prod_{k=1}^n P_1(\beta_k) = q_0.$$

And, by the structure of the matrix:

$$q(\lambda) = (-1)^{mn} b_n^m \cdot (-\lambda)^n + \dots$$

Therefore,

$$(-1)^{mn}b_n^m\prod_{k=1}^n P_1(\beta_k)=q_0.$$

| 0 | )<br>100<br>1000<br>1000 | 00<br>00000<br>00000● | 0000000<br>0000<br>0<br>0 |
|---|--------------------------|-----------------------|---------------------------|

### Instead of

$$(lc(P_{i+1}(X)))^{n_i-n_i+1+1}P_i(X) = P_{i+1}(X)Q_i(X) + P_{i+2}(X),$$

### calculate

$$(lc(P_{i+1}(X)))^{n_i-n_i+1+1}P_i(X) = P_{i+1}(X)Q_i(X) + \beta_iP_{i+2}(X).$$

### Where

$$\beta_1 = (-1)^{n_1 - n_2 + 1}, \ \beta_i = (-1)^{n_i - n_{i+1} + 1} lc(P_i(X)) \cdot H_i^{n_i - n_{i+1}},$$

and

$$H_2 = (lc(P_2(X))^{n_1-n_2}, H_i = (lc(P_i(X))^{n_{i-1}-n_i}H_{i-1}^{1+n_i-n_{i-1}})$$

| 000         0         00         000000           000         000         00000         00000           000         000         00000         00000           000         00000         00000         0 | Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|--------------------------|------------|
|                                                                                                                                                                                                         |                   | 000                             | 00000                    |            |

Now we will consider the real roots of polynomials in  $\mathbb{Z}[X]$ . We are interested in methods to count them, in order to isolate and finally approximate them.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------|---------------------------------|--------------------------|------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     |            |
|                   |                                 |                          |            |

### Theorem 33

Let p(x) be a polynomial in  $\mathbb{R}[x]$ . Then, for a real root y of multiplicity m, we have, that the sequence

$$[p(y-\epsilon), p'(y-\epsilon), ..., p^{(m)}(y-\epsilon)]$$

has alternating sign, while the elements of

$$[p(y+\epsilon), p'(y+\epsilon), ..., p^{(m)}(y+\epsilon)]$$

have the same sign, for  $\epsilon$  sufficiently small.

| 000         0         00         000000           000000         00000         000000         00000           000000         000000         00000         00000 | Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|--------------------------|------------|
|                                                                                                                                                                 |                   | 000                             |                          |            |

### Definition 34

For a polynomial p(x), with n = deg(p(x)) > 0, the Fourier sequence is defined as  $fseq(x) := [p(x), p^{(1)}(x), ..., p^{(n)}(x)]$ .

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------|---------------------------------|--------------------------|------------|
|                   |                                 | 00000                    |            |

### Definition 34

For a polynomial p(x), with n = deg(p(x)) > 0, the Fourier sequence is defined as  $fseq(x) := [p(x), p^{(1)}(x), ..., p^{(n)}(x)]$ .

### Definition 35

For a sequence of real numbers  $S = [a_0, ..., a_n]$ , we say that there is a sign variation between  $a_i$  and  $a_j$ , if  $a_i$  and  $a_j$  have opposite sign, and all members between (if there are any) are zero. The number of sign variations is denoted by Var(S).

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------|---------------------------------|--------------------------|------------|
|                   |                                 | 00000                    |            |

### Definition 34

For a polynomial p(x), with n = deg(p(x)) > 0, the Fourier sequence is defined as  $fseq(x) := [p(x), p^{(1)}(x), ..., p^{(n)}(x)]$ .

### Definition 35

For a sequence of real numbers  $S = [a_0, ..., a_n]$ , we say that there is a sign variation between  $a_i$  and  $a_j$ , if  $a_i$  and  $a_j$  have opposite sign, and all members between (if there are any) are zero. The number of sign variations is denoted by Var(S).

### Theorem 36

(Fourier) For real numbers a < b, we have: The number N of roots in (a, b], counting multiplicities is bounded by:

$$N = V(fseq(a)) - V(fseq(b)) - 2 \cdot \lambda, \lambda \ge 0.$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------|---------------------------------|--------------------------|------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     |            |
|                   |                                 |                          |            |

# With his theorem, Fourier could only give an upper bound. Sturm gave a method for exact counting:

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------|---------------------------------|--------------------------|------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     |            |
|                   |                                 |                          |            |

With his theorem, Fourier could only give an upper bound. Sturm gave a method for exact counting:

### Definition 37

For  $p(x) \in \mathbb{R}[x]$  a generalized Sturm sequence is a sequence of polynomials  $gsseq(x) := [p(x), p_1(x), ..., p_{k+1}(x)]$ , so that:

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------|---------------------------------|--------------------------|------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     |            |
|                   |                                 |                          |            |

With his theorem, Fourier could only give an upper bound. Sturm gave a method for exact counting:

# Definition 37

For  $p(x) \in \mathbb{R}[x]$  a generalized Sturm sequence is a sequence of polynomials  $gsseq(x) := [p(x), p_1(x), ..., p_{k+1}(x)]$ , so that:

In a sufficiently small neighbourhood of every zero y of p(x), p(x) and p₁(x) have opposite signs for x < y, and same signs for x ≥ y.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------|---------------------------------|--------------------------|------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     |            |
|                   |                                 |                          |            |

With his theorem, Fourier could only give an upper bound. Sturm gave a method for exact counting:

# Definition 37

For  $p(x) \in \mathbb{R}[x]$  a generalized Sturm sequence is a sequence of polynomials  $gsseq(x) := [p(x), p_1(x), ..., p_{k+1}(x)]$ , so that:

- In a sufficiently small neighbourhood of every zero y of p(x), p(x) and p₁(x) have opposite signs for x < y, and same signs for x ≥ y.
- Consecutive members do not vanish simultaneously.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------|---------------------------------|--------------------------|------------|
| 000<br>00000      | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     |            |
|                   |                                 |                          |            |

With his theorem, Fourier could only give an upper bound. Sturm gave a method for exact counting:

# Definition 37

For  $p(x) \in \mathbb{R}[x]$  a generalized Sturm sequence is a sequence of polynomials  $gsseq(x) := [p(x), p_1(x), ..., p_{k+1}(x)]$ , so that:

- In a sufficiently small neighbourhood of every zero y of p(x), p(x) and p₁(x) have opposite signs for x < y, and same signs for x ≥ y.
- Consecutive members do not vanish simultaneously.
- The two neighbours of a vanishing member have opposite sign.
| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------|---------------------------------|--------------------------|------------|
| 000<br>00000      | 0<br>000<br>000<br>000          | 00<br>00000<br>00000     |            |
|                   |                                 |                          |            |

With his theorem, Fourier could only give an upper bound. Sturm gave a method for exact counting:

# Definition 37

For  $p(x) \in \mathbb{R}[x]$  a generalized Sturm sequence is a sequence of polynomials  $gsseq(x) := [p(x), p_1(x), ..., p_{k+1}(x)]$ , so that:

- In a sufficiently small neighbourhood of every zero y of p(x), p(x) and p₁(x) have opposite signs for x < y, and same signs for x ≥ y.
- Consecutive members do not vanish simultaneously.
- The two neighbours of a vanishing member have opposite sign.
- $p_{k+1}(x)$  has no real roots, and thus always the same sign.

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------|---------------------------------|--------------------------|------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     |            |
|                   |                                 |                          |            |

# For p(x) without multiple roots in $\mathbb{R}$ , one possible *gsseq* is

$$sseq(x) = [p(x), p'(x), r_1(x), ..., r_k(x)],$$

with

$$r_{j-2}(x) := r_{j-1}(x)q_k(x) - r_j(x).$$

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------|---------------------------------|--------------------------|------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     |            |
|                   |                                 |                          |            |

For p(x) without multiple roots in  $\mathbb{R}$ , one possible *gsseq* is

$$sseq(x) = [p(x), p'(x), r_1(x), ..., r_k(x)],$$

with

$$r_{j-2}(x) := r_{j-1}(x)q_k(x) - r_j(x).$$

Theorem 38 (Sturm) For real numbers a < b, we have:

 $|\{a < x \le b : p(x) = 0\}| = V(gsseq(a)) - V(gsseq(b)).$ 

Maximilian Butz: Basics about Polynomials

| Basic definitions       | First properties and algorithms          | Greatest common divisors | Real roots |
|-------------------------|------------------------------------------|--------------------------|------------|
| 000<br>00000            |                                          | 00<br>00000<br>00000     |            |
| Root counting and isola | tion with Fourier's and Sturm's theorems |                          |            |

Now we also have a method for counting the complex roots of p(x):

## Theorem 39

Let p(x) be a polynomial of degree n, and let gsseq(x) be a complete sequence (i.e. it contains n + 1 members). Then p(x) has as many pairs of complex roots as there are sign variations in the sequence of leading coefficients in gsseq(x).

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------|---------------------------------|--------------------------|------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     |            |

Theorem 40 (Cauchy) If  $p(x) = \sum_{j=0}^{n} c_j x^j$  with  $c_n > 0$  has got  $\lambda \ge 0$  negative coefficients,

$$b := max_{\{1 \le k < n: c_{n-k} < 0\}} \{ | \frac{\lambda c_{n-k}}{c_n} | ^{\frac{1}{k}} \}$$

is an upper bound for the positive roots of p(x).

| 000 0 00                             | Real roots                       |
|--------------------------------------|----------------------------------|
| 00000 000 00000<br>000 00000<br>0000 | <b>00000●0</b><br>0000<br>0<br>0 |

Theorem 40 (Cauchy) If  $p(x) = \sum_{j=0}^{n} c_j x^j$  with  $c_n > 0$  has got  $\lambda \ge 0$  negative coefficients,

$$b := max_{\{1 \le k < n: c_{n-k} < 0\}} \{ |\frac{\lambda c_{n-k}}{c_n}|^{\frac{1}{k}} \}$$

is an upper bound for the positive roots of p(x).

Now, we are ready to understand Sturms Bisection algorithm for isolation of real roots. For  $p(x) \in \mathbb{Z}[x]$  with only single roots the algorithm will

determine, whether 0 is a root,

| 000 0 00                             | Real roots                       |
|--------------------------------------|----------------------------------|
| 00000 000 00000<br>000 00000<br>0000 | <b>00000●0</b><br>0000<br>0<br>0 |

Theorem 40 (Cauchy) If  $p(x) = \sum_{j=0}^{n} c_j x^j$  with  $c_n > 0$  has got  $\lambda \ge 0$  negative coefficients,

$$b := max_{\{1 \le k < n: c_{n-k} < 0\}} \{ |rac{\lambda c_{n-k}}{c_n}|^{rac{1}{k}} \}$$

is an upper bound for the positive roots of p(x).

Now, we are ready to understand Sturms Bisection algorithm for isolation of real roots. For  $p(x) \in \mathbb{Z}[x]$  with only single roots the algorithm will

- determine, whether 0 is a root,
- calculate a bound on the positive roots, obtain isolation intervals using bisection and Sturms theorem,

| 000 0 00                             | Real roots                       |
|--------------------------------------|----------------------------------|
| 00000 000 00000<br>000 00000<br>0000 | <b>00000●0</b><br>0000<br>0<br>0 |

Theorem 40 (Cauchy) If  $p(x) = \sum_{j=0}^{n} c_j x^j$  with  $c_n > 0$  has got  $\lambda \ge 0$  negative coefficients,

$$b := max_{\{1 \le k < n: c_{n-k} < 0\}} \{ |\frac{\lambda c_{n-k}}{c_n}|^{\frac{1}{k}} \}$$

is an upper bound for the positive roots of p(x).

Now, we are ready to understand Sturms Bisection algorithm for isolation of real roots. For  $p(x) \in \mathbb{Z}[x]$  with only single roots the algorithm will

- determine, whether 0 is a root,
- calculate a bound on the positive roots, obtain isolation intervals using bisection and Sturms theorem,
- do the same for the negative roots.

| Basic definitions       | First properties and algorithms          | Greatest common divisors | Real roots                |
|-------------------------|------------------------------------------|--------------------------|---------------------------|
| 000<br>00000            | 0<br>000<br>000<br>0000                  | 00<br>00000<br>00000     | 000000●<br>0000<br>0<br>0 |
| Root counting and isola | tion with Fourier's and Sturm's theorems |                          |                           |

# Without a derivation: The Sturm bisection method is performed in $O(n^7 L^3[|p(x)|_{\infty}])$ , where $L[m] := \lfloor log_2(|m|) \rfloor + 1$ .

| Basic definitions       | First properties and algorithms          | Greatest common divisors | Real roots               |
|-------------------------|------------------------------------------|--------------------------|--------------------------|
| 000<br>00000            |                                          | 00<br>00000<br>00000     | 000000<br>0000<br>0<br>0 |
| Poot counting and icols | tion with Equiver's and Sturm's theorems |                          |                          |

Without a derivation: The Sturm bisection method is performed in  $O(n^7 L^3[|p(x)|_{\infty}])$ , where  $L[m] := \lfloor log_2(|m|) \rfloor + 1$ .

#### Example 41

For 
$$p(x) = x^3 + 2x^2 - x - 2$$
 we have:  
 $sseq(x) = [x^3 + 2x^2 - x - 2, 3x^2 + 4x - 1, 7x + 8, 1].$ 

| Basic definitions       | First properties and algorithms          | Greatest common divisors | Real roots                |
|-------------------------|------------------------------------------|--------------------------|---------------------------|
| 000<br>00000            | 0<br>000<br>000<br>0000                  | 00<br>00000<br>00000     | 000000●<br>0000<br>0<br>0 |
| Root counting and isola | tion with Fourier's and Sturm's theorems |                          |                           |

Root counting and isolation with Fourier's and

> Without a derivation: The Sturm bisection method is performed in  $O(n^7 L^3[|p(x)|_{\infty}])$ , where  $L[m] := |log_2(|m|)| + 1$ .

#### Example 41

For 
$$p(x) = x^3 + 2x^2 - x - 2$$
 we have:  
 $sseq(x) = [x^3 + 2x^2 - x - 2, 3x^2 + 4x - 1, 7x + 8, 1]$ .  
 $b_p = 2$  is a bound for positive roots,  $b_n = -4$  is a bound for negative roots.

| Basic definitions       | First properties and algorithms          | Greatest common divisors | Real roots               |
|-------------------------|------------------------------------------|--------------------------|--------------------------|
| 000<br>00000            |                                          | 00<br>00000<br>00000     | 000000<br>0000<br>0<br>0 |
| Poot counting and icols | tion with Equiver's and Sturm's theorems |                          |                          |

Without a derivation: The Sturm bisection method is performed in  $O(n^7 L^3[|p(x)|_{\infty}])$ , where  $L[m] := \lfloor log_2(|m|) \rfloor + 1$ .

#### Example 41

For  $p(x) = x^3 + 2x^2 - x - 2$  we have:  $sseq(x) = [x^3 + 2x^2 - x - 2, 3x^2 + 4x - 1, 7x + 8, 1]$ .  $b_p = 2$  is a bound for positive roots,  $b_n = -4$  is a bound for negative roots.

The algorithm directly finds the root -2, and returns (-2, 0) and (0, 2) as isolation intervals for the roots -1 and 1.

| Basic definitions        | First properties and algorithms | Greatest common divisors | Real roots          |
|--------------------------|---------------------------------|--------------------------|---------------------|
| 000<br>00000             | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 000000<br>0000<br>0 |
| Root isolation with cont | inued fractions                 |                          |                     |

## Theorem 42

(Budan, equivalent to Fourier) Let a < b be real and consider  $p(x) \in \mathbb{R}[x]$ . The number of roots that p(x) has in (a, b] is never greater than the loss of sign variations in the coefficient sequence of p(x + b) compared to p(x + a).

| Basic definitions       | First properties and algorithms | Greatest common divisors | Real roots          |
|-------------------------|---------------------------------|--------------------------|---------------------|
| 000<br>00000            | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 000000<br>0000<br>0 |
| Root isolation with con | tinued fractions                |                          |                     |

## Theorem 42

(Budan, equivalent to Fourier) Let a < b be real and consider  $p(x) \in \mathbb{R}[x]$ . The number of roots that p(x) has in (a, b] is never greater than the loss of sign variations in the coefficient sequence of p(x + b) compared to p(x + a).

# Definition 43

For a nonsingular matrix  $\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ , define the Möbius substitution by  $y := \mathbf{M}(x) = \frac{a \cdot x + b}{c \cdot x + d}$ .

| Basic definitions       | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------------|---------------------------------|--------------------------|------------|
| 000<br>00000            | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     |            |
| Root isolation with con | tinued fractions                |                          |            |

## Theorem 44

For a polynomial p(x) with rational coefficients and without multiple roots, and for  $a_1 \ge 0$ ,  $a_i > 0$ , i > 1 there is always  $m \in \mathbb{N}$  and the corresponding transformation

$$x := a_1 + \frac{1}{a_2 + \cdots + \frac{1}{a_m + \frac{1}{y}}}$$

so that the transformed polynomial  $p_{ti}(y)$  has at most one sign variation in its coefficient sequence.

| Basic definitions        | First properties and algorithms | Greatest common divisors | Real roots |
|--------------------------|---------------------------------|--------------------------|------------|
| 000<br>00000             | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     |            |
| Root isolation with cont | inued fractions                 |                          |            |

The continued fraction transformation can be written as Möbius substitution:

$$x = \left[\begin{array}{cc} a_1 & 1 \\ 1 & 0 \end{array}\right] \cdots \left[\begin{array}{cc} a_m & 1 \\ 1 & 0 \end{array}\right] (y).$$

| Basic definitions       | First properties and algorithms | Greatest common divisors | Real roots |
|-------------------------|---------------------------------|--------------------------|------------|
| 000<br>00000            | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     |            |
| Root isolation with con | tinued fractions                |                          |            |

The continued fraction transformation can be written as Möbius substitution:

$$x = \left[\begin{array}{cc} a_1 & 1 \\ 1 & 0 \end{array}\right] \cdots \left[\begin{array}{cc} a_m & 1 \\ 1 & 0 \end{array}\right] (y).$$

## Theorem 45

(Cardano-Descartes) A polynomial with no or exactly one sign variation in its coefficient sequence has no or exactly one positive root, respectivly.

| Basic definitions                       | First properties and algorithms | Greatest common divisors | Real roots |  |
|-----------------------------------------|---------------------------------|--------------------------|------------|--|
| 000<br>00000                            | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     |            |  |
| Root isolation with continued fractions |                                 |                          |            |  |

| Basic definitions                       | First properties and algorithms | Greatest common divisors | Real roots         |  |
|-----------------------------------------|---------------------------------|--------------------------|--------------------|--|
| 000<br>00000                            | 0<br>000<br>000                 | 00<br>00000<br>00000     | 000000<br>000<br>0 |  |
|                                         | 0000                            |                          | 0                  |  |
| Root isolation with continued fractions |                                 |                          |                    |  |

 Calculate lower bounds for the positive zeroes of p(x) and transformed polynomials.

| Basic definitions                       | First properties and algorithms | Greatest common divisors | Real roots      |  |
|-----------------------------------------|---------------------------------|--------------------------|-----------------|--|
| 000<br>00000                            | 0<br>000<br>000                 | 00<br>00000<br>00000     | 0000000<br>0000 |  |
|                                         | 0000                            |                          | ŏ               |  |
| Root isolation with continued fractions |                                 |                          |                 |  |

- Calculate lower bounds for the positive zeroes of p(x) and transformed polynomials.
- ► Use Möbius substitutions to transform every positve root of p(x) to the only positive root of some p<sub>ti</sub>(y), and calculate isolation intervals from the transformation formula.

| Basic definitions                       | First properties and algorithms | Greatest common divisors | Real roots      |  |
|-----------------------------------------|---------------------------------|--------------------------|-----------------|--|
| 000<br>00000                            | 0<br>000<br>000                 | 00<br>00000<br>00000     | 0000000<br>0000 |  |
|                                         | 0000                            |                          | ŏ               |  |
| Root isolation with continued fractions |                                 |                          |                 |  |

- Calculate lower bounds for the positive zeroes of p(x) and transformed polynomials.
- ► Use Möbius substitutions to transform every positve root of p(x) to the only positive root of some p<sub>ti</sub>(y), and calculate isolation intervals from the transformation formula.
- ► Treat the negative roots in the same way by substituting p(x) := ±p(-x).

| Basic definitions                       | First properties and algorithms | Greatest common divisors | Real roots      |  |
|-----------------------------------------|---------------------------------|--------------------------|-----------------|--|
| 000<br>00000                            | 0<br>000<br>000                 | 00<br>00000<br>00000     | 0000000<br>0000 |  |
|                                         | 0000                            |                          | ŏ               |  |
| Root isolation with continued fractions |                                 |                          |                 |  |

- Calculate lower bounds for the positive zeroes of p(x) and transformed polynomials.
- ► Use Möbius substitutions to transform every positve root of p(x) to the only positive root of some p<sub>ti</sub>(y), and calculate isolation intervals from the transformation formula.
- ► Treat the negative roots in the same way by substituting p(x) := ±p(-x).

Complexity:  $O(n^5 L^3[|p(x)|_{\infty}])$ .

| Basic definitions | First properties and algorithms | Greatest common divisors | Real roots          |
|-------------------|---------------------------------|--------------------------|---------------------|
| 000<br>00000      | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 000000<br>0000<br>0 |
|                   |                                 |                          |                     |

Root approximation by bisection

Now we are left with a single root of p(x) inside an open isolation interval (a, b). To approximate it with a precision of  $\epsilon$ , we can use the bisection algorithm.

$$\begin{array}{rl} \underline{\text{while } b - a > \epsilon & \underline{\text{do}} \\ \underline{\text{if } p(\frac{a+b}{2}) = 0} \\ \underline{\text{return } \frac{a+b}{2}} \\ \underline{\text{else}} \\ \underline{\text{if } sgn(p(\frac{a+b}{2}))} = sgn(p(a)) \\ a := \frac{a+b}{2} \\ \underline{\text{else}} \\ b := \frac{a+b}{2} \\ \underline{\text{endif}} \\ \underline{\text{endif}} \\ \underline{\text{od } \text{return }} (a, b) \end{array}$$

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots          |
|-----------------------|---------------------------------|--------------------------|---------------------|
| 000<br>00000          | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 000000<br>0000<br>0 |
| Root approximation by | continued fractions             |                          |                     |

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots          |
|-----------------------|---------------------------------|--------------------------|---------------------|
| 000<br>00000          | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 000000<br>0000<br>0 |
| Root approximation by | continued fractions             |                          |                     |

1. Compute the integer part *a* of the positive root of  $p_M(y)$ .

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots          |
|-----------------------|---------------------------------|--------------------------|---------------------|
| 000<br>00000          | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 000000<br>0000<br>0 |
| Root approximation by | continued fractions             |                          |                     |

- 1. Compute the integer part *a* of the positive root of  $p_M(y)$ .
- 2. Update  $p_M(y) := p_M(y+a)$  and  $\mathbf{M}(y) := \mathbf{M}(y+a)$ .

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots           |
|-----------------------|---------------------------------|--------------------------|----------------------|
| 000<br>00000          | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0 |
| Root approximation by | continued fractions             |                          |                      |

- 1. Compute the integer part *a* of the positive root of  $p_M(y)$ .
- 2. Update  $p_M(y) := p_M(y+a)$  and  $\mathbf{M}(y) := \mathbf{M}(y+a)$ .
- 3. Test, whether  $p_M(0) = 0$ . Then return  $\frac{M_{12}}{M_{22}}$  as exact value for the root.

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots           |
|-----------------------|---------------------------------|--------------------------|----------------------|
| 000<br>00000          | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0 |
| Root approximation by | continued fractions             |                          |                      |

- 1. Compute the integer part *a* of the positive root of  $p_M(y)$ .
- 2. Update  $p_M(y) := p_M(y+a)$  and  $\mathbf{M}(y) := \mathbf{M}(y+a)$ .
- 3. Test, whether  $p_M(0) = 0$ . Then return  $\frac{M_{12}}{M_{22}}$  as exact value for the root.

4. Test, whether 
$$\left|\frac{M_{11}}{M_{21}} - \frac{M_{12}}{M_{22}}\right| \le \epsilon$$
. If so, return  $\left(\frac{M_{11}}{M_{21}}, \frac{M_{12}}{M_{22}}\right)$ .

| Basic definitions     | First properties and algorithms | Greatest common divisors | Real roots           |
|-----------------------|---------------------------------|--------------------------|----------------------|
| 000<br>00000          | 0<br>000<br>000<br>0000         | 00<br>00000<br>00000     | 0000000<br>0000<br>0 |
| Root approximation by | continued fractions             |                          |                      |

- 1. Compute the integer part *a* of the positive root of  $p_M(y)$ .
- 2. Update  $p_M(y) := p_M(y+a)$  and  $\mathbf{M}(y) := \mathbf{M}(y+a)$ .
- 3. Test, whether  $p_M(0) = 0$ . Then return  $\frac{M_{12}}{M_{22}}$  as exact value for the root.
- 4. Test, whether  $\left|\frac{M_{11}}{M_{21}} \frac{M_{12}}{M_{22}}\right| \le \epsilon$ . If so, <u>return</u>  $\left(\frac{M_{11}}{M_{21}}, \frac{M_{12}}{M_{22}}\right)$ .

5. Set 
$$p_M(y) := p_M(\frac{1}{y})$$
 and  $\mathbf{M}(y) := \mathbf{M}(\frac{1}{y})$ , and return to 1.