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Abstract

After introducing polynomials, my talk will concentrate on algorithms
for polynomial division or pseudodivision, on methods to find the gcd of
polynomials or to construct pseudo-remainder-series. In the second half
of the talk we will use this knowledge to develop an algorithm to count
and isolate real roots of polynomials.

1 Basic definitions

1.1 Algebraic structures

Definition 1. A ring is an algebraic system (R,+, ·) satisfying the following:

• The set R with the addition + is an abelian group.

• The multiplication · is associative.

• Multiplication distributes over addition:

a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a

for all a, b, c ∈ R.

We say that (R,+, ·) is a ring with unity, if R contains an multiplicative identity,
denoted by 1. For commutative rings, multiplication has to be commutative,
too.

For a commutative ring (R,+, ·) with unity we define for the elements of R:

• a ∈ R divides c ∈ R, if there exists b ∈ R, so that c = a · b.

• In particular, a ∈ R, a 6= 0 is called a zerodivisor, if there exists b ∈ R,
b 6= 0 with a · b = 0.

• u ∈ R is called a unit if there is an multiplicative inverse v ∈ R so that
u · v = 1.
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Example 2. The residue classes Z/8Z with the usual addition and multiplication
form a ring. The equivalence classes of odd numbers are units, the equivalence
classes [2], [4] and [6] are zerodivisors.

Definition 3. A nontrivial ring (a ring that contains more than one element),
with unity and without zero divisors is called domain. If multiplication is com-
mutative, we call it integral domain.

Example 4. The ring of integers (Z,+, ·) is an integral domain with units 1 and
-1.

Definition 5. A field is a commutative, nontrivial ring with unity, in which
every nonzero element is a unit.

Wellknown examples for fields are the rationals Q, the reals R or the complex
numbers C.

1.2 Polynomials

Definition 6. Let (R,+, ·) be a ring and S be the set of sequences

{a0, a1, ...} with ai ∈ R for all i ∈ N0

such that ai = 0 for all but a finite number of i ∈ N0. If we define addition
and multiplication on S by:

{a0, a1, ...}+ {b0, b1, ...} := {a0 + b0, a1 + b1, ...}

{a0, a1, ...} · {b0, b1, ...} := {a0 · b0, a1 · b0 + a0 · b1, ...}

then (S, +, ·) is the ring R[X] of univariate polynomials over R.

Definition 7. For a polynomial P = {a0, a1, ...} ∈ R[X], the degree deg(P ) is
defined as the maximal number n so, that an 6= 0. In this case, lc(P ) := an is
called the leading coefficient of P .

By definition of addition and multiplication on R[X] we have for two poly-
nomials P,Q:

• deg(P + Q) ≤ max{deg(P ), deg(Q)}

• deg(P ·Q) ≤ deg(P ) + deg(Q)

• if R contains no zerodivisors, its even deg(P ·Q) = deg(P ) + deg(Q).

For a ring with unity, we can define the variable

X := {0, 1, 0, 0, ...}

With this definition we have

Xn := { 0, ..., 0︸ ︷︷ ︸
n zeroes

, 1, 0, 0, ...}
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Now we can write a polynomial of degree n like this:

{a0, a1, ...} =
n∑

k=0

akXk

For any polynomial P (X) =
∑n

k=0 akXk in R[X] we can define a function

P : R → R, with P (z) :=
n∑

k=0

akzk

by substituting the formal symbol X by elements of R. Note that, for different
polynomials P (X) and Q(X), the functions P and Q can be equal.

Example 8. For p prime, zp − z = 0 for all elements of Z/pZ, but Xp − X is
obviously not the zero polynomial (the polynomial with zero coefficients).

The definition of multivariate polynomials follows from the univariate case:

Definition 9. Let R be a ring. For m ∈ N we define the ring of multivariate
polynomials in m variables {X1, ..., Xm} over R by

R[X1, ..., Xm] = R[X1, ..., Xm−1][Xm]

2 First properties and algorithms

2.1 Polynomial representations

To store and to represent a polynomial P (X) of degree n, we can use a dense
representation like

P = {X, n, an, ..., a1, a0},
where we mention all coefficients of P . However, for a polynomial with many
zero coefficients it is enough to store the nonzero coefficients in a sparse repre-
sentation:

P = {X, as,ms, ..., a2,m2, a1,m1},
where ai are the nonzero coefficients and mi are the exponents in decreasing
order.

2.2 Polynomial operations

Now, we want to take a look on the computational complexity of addition and
multiplication in R[X]. Assume that operations in R can be done in time
O(1), and let P (X) and Q(X) two Polynomials, with deg(P ) = m, deg(Q) = n,
and let s and t be the numbers of nonzero coefficients. It is obvious that the
calculation of P +Q is done in a time of O(max{m,n}) in dense representation,
while sparse representation leads to a computing time of O(max{s, t}).

Theorem 10. In dense representation, the calculation of P · Q is done in
O(mn), while in sparse representation the calculation is done in O(st · log2(t))
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Proof. (dense case)

P (X) ·Q(X) =

 m∑
j=0

ajX
j

 ·

(
n∑

k=0

bkXk

)
=

m+n∑
l=0

clX
l

with cl =
∑l

s=0 asbl−s. Thus, we are doing (m+1) · (n+1) multiplications and
mn additions.

The sparse algorithm is illustrated by an (not very sparse) example: For
s = 3, t = 4, we want to multiply X3 + 7X + 9 and X4 + X2 + 3X + 2 over the
integers. First, we calculate all s · t monomials:

X7 7X5 9X4

X5 7X3 9X2

3X4 21X2 27X
2X3 14X 18

Then we fuse, sort, and where possible, add, neighbouring rows:

X7 8X5 9X4 7X3 9X2

3X4 2X3 21X2 41X 18

Sorting again, we have:

X7 8X5 12X4 9X3 30X2 41X 18

2.3 Polynomial division

Theorem 11. Let R be an integral domain and P1(X) and P2(X) two polyno-
mials over R with lc(P2) a unit in R. Then there exist unique Q(X), R(X), so
that:

P1(X) = Q(X) · P2(X) + R(X) and deg(R(X)) < deg(P2(X)).

Proof. Existence: For deg(P2(X)) > deg(P1(X)), choose R(X) = P1(X),
Q(X) = 0. For n = deg(P2(X)) ≤ m = deg(P1(X)), defining

P ′
1(X) := P1(X)− lc(P2)−1lc(P1) ·Xm−n · P2(X)

we can succesivly cancel off the leading terms of P1(X), until we are in the first
case. Thats also the idea for the next algorithm.
Uniqueness: Let Q̄(X), R̄(X) be another solution. Then

(Q̄(X)−Q(X))P2(X) = R(X)− R̄(X) and deg(R(X)− R̄(X)) < deg(P2(X)).

Since R is an integral domain, this is only possible for Q(X) = Q̄(X) and
R(X) = R̄(X).

Definition 12. In this situation, we call Q(X) =: quo(P1(X), P2(X)) the quo-
tient and R(X) =: rem(P1(X), P2(X)) the remainder of P1(X), P2(X).
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Let P1(X) =
∑m

j=0 ajX
j , P2(X) =

∑n
k=0 bkXk, m ≥ n ≥ 0, and bn be a

unit. The algorithm for polynomial division is:

for i = m− n down to 0 do
qi := an+ib

−1
n

for l = n + i− 1 down to i do
al := al − qibl−i

od
od

Then, Q(X) =
∑m−n

i=0 qiX
i, and R(X) =

∑n−1
l=0 alX

l.
Computing time: Assuming that operations in R take O(1), the whole algorithm
is done in O(n(m− n + 1)). Let R be an integral domain.

Definition 13. For P (X) ∈ R[X], α ∈ R is called a root of P (X), if P (α)=0.

Theorem 14. α ∈ R is a root of P (X) if (X − α) divides P (X).

Proof. Observe that rem(P (X), (X − α)) = P (α).

Definition 15. α ∈ R is a root with multiplicity m, if (X−α)m divides P (X).

Theorem 16. If P (X) 6= 0, P (X) can have at most deg(P (X)) roots, counting
multiplicities.

2.4 Field extensions

Definition 17. Let K be a field, and M(X) ∈ K[X] with deg(M(X)) > 0.
Then we can define the equivalence relation ≡M(X) on K[X]:

P (X) ≡M(X) Q(X) if rem(P (X),M(X)) = rem(Q(X),M(X)).

The set of equivalence classes, denoted by K[X]M(X), together with the
operations

[P (X)]M(X) + [Q(X)]M(X) := [P (X) + Q(X)]M(X)

[P (X)]M(X) · [Q(X)]M(X) := [P (X) ·Q(X)]M(X)

is a commutative ring with unity.

Definition 18. A polynomial P (X) ∈ R[X], R an integral domain, is called
irreducible, if, whenever P (X) = P1(X) · P2(X), P1(X) or P2(X) is a unit of
R[X].

Example 19. 2X2 + 4 is reducible both over Z and C, but not over R.

Theorem 20. For K a field and M(X) ∈ K[X] with deg(M(X)) > 0,
K[X]M(X) is a field if and only if M(X) is irreducible over K.
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Proof. “⇒”: If M(X) was reducible, K[X]M(X) would contain zerodivisors.
“⇐”: We proof that every nonzero element of K[X]M(X) is a unit.
Let [P (X)]M(X) 6= [0]M(X). As we will see later, there are G(X),H(X) ∈ K[X]
with P (X) ·G(X) + M(X) ·H(X) = 1, and therefore
[P (X)]M(X) · [G(X)]M(X) = [1]M(X).

In this case, K[X]M(X) contains a subfield isomorphic to K and is therefore
a field extension of K.

Example 21. Let K = R and M(X) = X2 + 1. Then all elements of R[X]X2+1

are of the form a · [1] + b · [X] with a, b ∈ R. Addition and multiplication are
given by:

(a[1] + b[X]) + (c[1] + d[X]) = (a + c)[1] + (b + d)[X]

(a[1] + b[X]) · (c[1] + d[X]) = ac[1] + bd[X2] + ad[X] + bc[X]

= (ac− bd)[1] + (ad + bc)[X]

Therefore, R[X]X2+1 is isomorphic to C.

Definition 22. A field K is algebraically closed, if every nonconstant polyno-
mial with coefficients in K has a root in K.

Theorem 23. Every field J has an algebraic closure, i.e. a field extension K
that is algebraically closed.

For us, it is important to know the

Theorem 24. (Fundamental Theorem of Algebra) C is the algebraic closure of
R.

3 Greatest common divisors

Definition 25. For a, b ∈ R, R an integral domain, d ∈ R is called a greatest
common divisor of a and b, d = gcd(a, b), if d divides a and b, and every t ∈ R
dividing a and b divides d, too.

If a gcd(a, b) exists, it is unique up to units, and thus it makes sense to speak
of the gcd of a and b.

3.1 GCD over fields

Theorem 26. Let K be a field, and P1(X), P2(X) 6= 0 polynomials from K[X].
Then there exists gcd(P1(X), P2(X)) ∈ K[X], and there are A(X), B(X) ∈
K[X], with deg(A(X)) < deg(P2(X)) and deg(B(X)) < deg(P1(X)) with

gcd(P1(X), P2(X)) = A(X) · P1(X) + B(X) · P2(X).
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Proof. We construct both gcd(P1(X), P2(X)) and A(X), B(X) by the extended
Euclidean Algorithm over a field.

[A(X), B(X)] := [1, 0]
[a(X), b(X)] := [0, 1]
while P2(X) 6= 0 do

[Q(X), R(X)] := [quo(P1(X), P2(X)), rem(P1(X), P2(X))]
[P1(X), P2(X)] := [P2(X), R(X)]
[A(X), a(X)] := [a(X), A(X)−Q(X)a(X)]
[B(X), b(X)] := [b(X), B(X)−Q(X)b(X)]

od
return [P1(X), A(X), B(X)]

3.2 GCD over Z
Polynomial division in the Euclidean algorithm works, because lc(P2(X)) is a
unit throughout the algorithm, because K is a field. From now on, we con-
sider Polynomials over Z, and the Euclidean algorithm will not work in general.
Let P1(X) =

∑m
i=0 aiX

i, P2(X) =
∑n

j=0 bjX
j 6= 0, m ≥ n. For a pseudodi-

vision in Z[X], premultiply P1(X) by bm−n+1
n , and define pseudoquotient and

pseudoremainder by

pquo(P1(X), P2(X)) = quo(bm−n+1
n · P1(X), P2(X))

prem(P1(X), P2(X)) = rem(bm−n+1
n · P1(X), P2(X)).

Definition 27. For P (X) ∈ Z[X], define the content cont(P (X)) as gcd of the
coefficients of P (X), and the primitive part pp(P (X)) = P (X)

cont(P (X)) .

Theorem 28. Z[X] is a unique factorization domain, and therefore, a gcd
exists for all pairs of nonzero Polynomials over Z.

Proof. A proof that Z[X] is a UFD is to long for this paper, but at least, it is
easy to derive a formula for the gcd on UFD ’s.

For P1(X), P2(X) ∈ Z[X], we have

cont(gcd(P1(X), P2(X))) = gcd(cont(P1(X)), cont(P2(X)))
pp(gcd(P1(X), P2(X))) = gcd(pp(P1(X)), pp(P2(X))).

Using polynomial pseudodivion instead of polynomial division in the Euclidean
algorithm, we can find the gcd for two nonzero polynomials over Z:
Generalized Euclidean Algorithm
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c := gcd(cont(P1(X)), cont(P2(X)))
[P1(X), P2(X)] := [pp(P1(X)), pp(P2(X))]
while P2(X) 6= 0 do

[P1(X), P2(X)] := [P2(X), prem(P1(X), P2(X))]
od
return c · pp(P1(X))

Example 29. P1(X) = X3 − 2X2 + 3 + 1, P2(X) = 2X2 + 1

22 · (X3 − 2X2 + 3 + 1) = (2X − 4) · (2X2 + 1) + (10X + 8)
102 · (2X2 + 1) = (20X − 16) · (10X + 8) + 228

2282 · (10X − 8) = (2280X − 1824) · 228 + 0

gcd(cont(P1(X)), cont(P2(X))) = 1, and therefore, gcd(P1(X), P2(X)) = 1.
Premultiplication leads to an exponential growth of coefficients, the greatest
number in our calculation was 519840.

One possiblility to reduce the the coefficient growth, is to divide every pseu-
doremainder by its content. The problem is,that we would have to do a gcd
calculation in Z at every step of our algorithm. Before we go on with gcd com-
putations, we ask what it means, if two Polynomials in Z[X] have a common
root in C.

3.3 Resultants

Definition 30. For two Polynomials P1(X) =
∑m

j=0 ajX
j , P2(X) =

∑n
k=0 bkXk

in Z[X], we define the resultant

res[P1(X), P2(X)] := an
mbm

n

m∏
j=0

n∏
k=0

(αj − βk).

where αj are the roots of P1, βk of P2.

Theorem 31. 1. res[P1(X), P2(X)] = 0 if P1(X) and P2(X) have a com-
mon root.

2. res[P1(X), P2(X)] = (−1)mnbm
n

∏n
k=1 P1(βk) = an

m

∏m
j=1 P2(αj)

Proof. 1. Obvious.

2. Write, for example, P1(X) as a product of linear factors.

Theorem 32. res(P1(X), P2(X)) = det

0BBBBBBBBBBBBB@

am · · · · · · a0 0

. . .
. . .

0 am · · · · · · a0

bn · · · · · · b0

0

. . .
. . .

0
bn · · · · · · bn

1CCCCCCCCCCCCCA
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The Matrix is (m + n)× (m + n) and contains n “a” rows and m “b” rows.

Proof.
Consider the polynomial

q(λ) := det

0BBBBBBBBBBBBB@

am · · · · · · a0 − λ 0

. . .
. . .

0 am · · · · · · a0 − λ
bn · · · · · · b0

0

. . .
. . .

0
bn · · · · · · bn

1CCCCCCCCCCCCCA
,

and assume the simple case, that P2(X) has only single roots βi, and that all
P1(βi) are different. Then, for all 1 ≤ i ≤ n, λ = P1(βi) is a root of q(λ),
and because q(λ) has at most n different roots, P1(βi) are all roots. Defining
qn = lc(q(λ)) and q0 = q(0), we have:

(−1)nqn

n∏
k=1

P1(βk) = q0.

And, by the structure of the matrix:

q(λ) = (−1)mnbm
n · (−λ)n + ...

Therefore,

(−1)mnbm
n

n∏
k=1

P1(βk) = q0.

Now, we can find the elements of the pseudoremainder sequence by calculating
special subdeterminants of this matrix, so called subresultants.
There is no time to derive this, but this is the Sylvester-Habicht Method for
pseudoremainders:

Instead of

(lc(Pi+1(X)))ni−ni+1+1Pi(X) = Pi+1(X)Qi(X) + Pi+2(X),

calculate

(lc(Pi+1(X)))ni−ni+1+1Pi(X) = Pi+1(X)Qi(X) + βiPi+2(X).

Where

β1 = (−1)n1−n2+1, βi = (−1)ni−ni+1+1lc(Pi(X)) ·Hni−ni+1
i ,

and
H2 = (lc(P2(X))n1−n2 , Hi = (lc(Pi(X))ni−1−niH

1+ni−ni−1
i−1 .

9



4 Real roots

Now we will consider the real roots of polynomials in Z[X]. We are interested
in methods to count them, in order to isolate and finally approximate them.

4.1 Root counting and isolation with Fourier’s and Sturm’s
theorems

Theorem 33. Let p(x) be a polynomial in R[x]. Then, for a real root y of
multiplicity m, we have, that the sequence

[p(y − ε), p′(y − ε), ..., p(m)(y − ε)]

has alternating sign, while the elements of

[p(y + ε), p′(y + ε), ..., p(m)(y + ε)]

have the same sign, for ε sufficiently small.

Proof. Apply Taylors theorem to all p(k)(y ± ε) up to the first non-vanishing
order.

Definition 34. For a polynomial p(x), with n = deg(p(x)) > 0, the Fourier
sequence is defined as fseq(x) := [p(x), p(1)(x), ..., p(n)(x)].

Definition 35. For a sequence of real numbers S = [a0, ..., an], we say that
there is a sign variation between ai and aj , if ai and aj have opposite sign, and
all members between (if there are any) are zero.
The number of sign variations is denoted by V ar(S).

Theorem 36. (Fourier) For real numbers a < b, we have: The number N of
roots in (a, b], counting multiplicities is bounded by:

N = V (fseq(a))− V (fseq(b))− 2 · λ, λ ≥ 0.

Proof. fseq(x) can only lose sign variations when x “passes by” a root of p(x)
or one of the derivatives. Show that fseq(x) loses m sign variations at roots
of p(x) with multiplicity m, and that it loses an even number of variations at
roots of the derivatives.

With his theorem, Fourier could only give an upper bound. Sturm gave a
method for exact counting:

Definition 37. For p(x) ∈ R[x] a generalized Sturm sequence is a sequence of
polynomials gsseq(x) := [p(x), p1(x), ..., pk+1(x)], so that:

• In a sufficiently small neighbourhood of every zero y of p(x), p(x) and
p1(x) have opposite signs for x < y, and same signs for x ≥ y.

• Consecutive members do not vanish simultaneously.
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• The two neighbours of a vanishing member have opposite sign.

• pk+1(x) has no real roots, and thus always the same sign.

For p(x) without multiple roots in R, one possible gsseq is

sseq(x) = [p(x), p′(x), r1(x), ..., rk(x)],

with
rj−2(x) := rj−1(x)qk(x)− rj(x).

Theorem 38. (Sturm) For real numbers a < b, we have:

|{a < x ≤ b : p(x) = 0}| = V (gsseq(a))− V (gsseq(b)).

Proof. Show that gsseq loses exactly one sign varation at roots of p(x) and no
sign variation at roots of the other members.

Now we also have a method for counting the complex roots of p(x):

Theorem 39. Let p(x) be a polynomial of degree n, and let gsseq(x) be a
complete sequence (i.e. it contains n + 1 members). Then p(x) has as many
pairs of complex roots as there are sign variations in the sequence of leading
coefficients in gsseq(x).

Proof. “Evaluate” gsseq(x) at −∞ and +∞.

Sturms theorem seems insufficient, because it only treats polynomials with
single roots. But there is an algorithm that gives us the squarefree factorization
of a polynomial over an integral domain.
Next we compute an upper bound for the positive roots of a polynomial.

Theorem 40. (Cauchy) If p(x) =
∑n

j=0 cjx
j with cn > 0 has got λ ≥ 0 negative

coefficients,

b := max{1≤k<n:cn−k<0}{|
λcn−k

cn
| 1k }

is an upper bound for the positive roots of p(x).

Proof. Verify that ∑
{1≤k<n:cn−k<0}

|cn−k|bn−k ≤ cnbn.

An algorithm for b will not really calculate k-th roots. Instead, it will cal-
culate a power of 2 that is a bound for b.

Now, we are ready to understand Sturms Bisection algorithm for isolation
of real roots. For p(x) ∈ Z[x] with only single roots the algorithm will

• determine, whether 0 is a root,
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• calculate a bound on the positive roots, obtain isolation intervals using
bisection and Sturms theorem,

• do the same for the negative roots.

Without a derivation: The Sturm bisection method is performed in O(n7L3[|p(x)|∞]),
where L[m] := blog2(|m|)c+ 1.
Example 41. For p(x) = x3 + 2x2 − x − 2 we have: sseq(x) = [x3 + 2x2 − x −
2, 3x2 + 4x− 1, 7x + 8, 1].
bp = 2 is a bound for positive roots, bn = −4 is a bound for negative roots.
The algorithm directly finds the root −2, and returns (−2, 0) and (0, 2) as
isolation intervals for the roots −1 and 1.

4.2 Root isolation with continued fractions

Theorem 42. (Budan, equivalent to Fourier) Let a < b be real and consider
p(x) ∈ R[x]. The number of roots that p(x) has in (a, b] is never greater than
the loss of sign variations in the coefficient sequence of p(x + b) compared to
p(x + a).

Proof. When can the number of sign variations in the coefficient sequence of
p(x + a) change?

Definition 43. For a nonsingular matrix M =

»
a b
c d

–
, define the Möbius

substitution by y := M(x) = a·x+b
c·x+d .

Note that composition of substitutions is described by multiplication of the
matrices, and that these matrices form a group.

Theorem 44. For a polynomial p(x) with rational coefficients and without mul-
tiple roots, and for a1 ≥ 0, ai > 0, i > 1 there is always m ∈ N and the
corresponding transformation

x := a1 +
1

a2+
. . .

1
am+ 1

y

so that the transformed polynomial pti(y) has at most one sign variation in its
coefficient sequence.

For this theorem (and some other), a proof is omitted because it would be to long
and lead to far away from the main topic of root isolation. For an understanding,
why the isolation algorithm might work as it should, this theorem is enough.

The continued fraction transformation can be written as Möbius substitu-
tion:

x =
[

a1 1
1 0

]
· · ·
[

am 1
1 0

]
(y).
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Theorem 45. (Cardano-Descartes) A polynomial with no or exactly one sign
variation in its coefficient sequence has no or exactly one positive root, respec-
tivly.

Proof. Evaluate fseq(x) at 0 and ∞.

The continued fraction isolation algorithm returns isolation intervals for
polynomials p(x) in Z[x] without multiple roots. It will:

• Calculate lower bounds for the positive zeroes of p(x) and transformed
polynomials.

• Use Möbius substitutions to transform every positve root of p(x) to the
only positive root of some pti(y), and calculate isolation intervals from the
transformation formula.

• Treat the negative roots in the same way by substituting p(x) := ±p(−x).

Complexity: O(n5L3[|p(x)|∞]).

4.3 Root approximation by bisection

Now we are left with a single root of p(x) inside an open isolation interval (a, b).
To approximate it with a precision of ε, we can use the bisection algorithm.

while b− a > ε do
if p(a+b

2 ) = 0
return a+b

2
else

if sgn(p(a+b
2 )) = sgn(p(a))

a := a+b
2

else
b := a+b

2
endif

endif
od
return (a, b)

4.4 Root approximation by continued fractions

If the root was isolated by the continued fraction method, we already know a
transformation x = M(y) and a polynomial pM (y) which has only one positive
root. Then our algorithm looks like this:

1. Compute the integer part a of the positive root of pM (y).

2. Update pM (y) := pM (y + a) and M(y) := M(y + a).

13



3. Test, whether pM (0) = 0. Then return M12
M22

as exact value for the root.

4. Test, whether |M11
M21

− M12
M22

| ≤ ε. If so, return
(

M11
M21

, M12
M22

)
.

5. Set pM (y) := pM ( 1
y ) and M(y) := M( 1

y ), and return to 1.
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