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Abstract

To solve GCD calculations and factorization of polynomials in com-
puter algebra systems, they are reduced to problems of simpler domains,
from multivariate to univariate domains or from integer numbers to mod-
ular rings. Constructing the solution to the original problem from the
solution of the simpler problem is called Hensel lifting. We present the
necessary background and the idea of this lifting.

1 General background

Motivation and overview

To solve GCD calculations and factorization of multivariate polynomi-
als efficiently, the given problems are projected to one or multiple simpler
domains, namely Zp[x1], with ring homomorphisms.
This is abstractly shown in the first figure.
Solving the problem in the simpler domain gives one or multiple solutions
for Zp[x1] and these can be lifted to the original domain of the problem,
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namely Z[x1, . . . , xv]. While applying the ring homomorphisms is a com-
putationally easy task, inverting the homomorphism is computationally
and algorithmically very hard. But because solving the problem in the
original domain can be almost unfeasible, the long route by homomor-
phism methods can decrease the computational cost in many cases.
We will begin with defining ring homomorphisms and especially consider
two special homomorphisms, the modular and evaluation homomorphism.

Definition 1 (ring homomorphism). Let R and R’ be two rings. Then a
mapping θ : R→ R′ is called a ring homomorphism if

1. θ(a+ b) = θ(a) + θ(b) for all a, b ∈ R
2. θ(ab) = θ(a)θ(b) for all a, b ∈ R
3. θ(1) = 1

From this definition and the ring axioms also follows:

• θ(0) = 0

• θ(−a) = −θ(a)

Notice that in the definition the operator + and · is used in the ring
R and also in ring R’ depending on the context.
This definition just extends the definition of a homomorphism by the third
property, θ(1) = 1. This suffices to ensure that important properties are
preserved under the homomorphism, such as θ(0) = 0 and θ(−a) = −θ(a).
Ring homomorphisms are a very abstract construct and can be found in
many different domains. For our purposes, we will now consider two
special homomorphisms, the modular homomorphism and the evaluation
homomorphism.

Example 2 (modular homomorphism). The homomorphism

θm : Z[x1, . . . , xv]→ Zm[x1, . . . , xv]

is defined for a fixed m ∈ Z by:

• θm(xi) = xi for 1 ≤ i ≤ v
• θm(a) = rem(a,m) for all coefficients a ∈ Z

rem(a,m) is the function that returns the remainder of the division of a
by m. Intuitively, this means replace all coefficients by their ”modulo m”
representation.

We examine the following polynomial with the homomorphism θ5: For
the polynomial a(x, y) = 2xy + 7x− y2 + 8 ∈ Z[x, y]:

θ5(a) = 2xy + 2x− y2 − 2 ∈ Z5[x, y]

The modular homomorphism obviously reduces the absolute value of
all coefficients to bounds depending on m.
The next homomorphism is the evaluation homomorphism:

Example 3 (evaluation homomorphism). The homomorphism

θxi−α : D[x1, . . . , xv]→ D[x1, . . . , xi−1, xi+1, . . . , xv]

is defined for a particular indeterminate xi and a fixed α ∈ D by:
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θxi−α(a(x1, . . . , xv)) = a(x1, . . . , xi−1, α, xi+1, . . . , xv)

Again intuively, this means substitute the value α for the indeterminate
xi.

For a polynomial a(x, y) = 2xy + 7x+ y2 + 8 ∈ Z[x, y], this results in
θx−2(a) = 4y + 14 + y2 + 8 ∈ Z[y]

With the evaluation homomorphism, we can reduce polynomials in the
number of indeterminates.

In the following section, we will show that ring homomorphisms can be
characterized by ideals. Therefore we define ideals, show that the kernel
of every homomorphism is an ideal and the kernel of an homomorphism
completely determines the homomorphic image (up to isomorphism).

Characterization of homomorphisms
Ring homomorphisms can be uniquely be characterized by ideals.

Definition 4. Let R be a commutative ring. A nonempty subset I of R
is called ideal if

1. a+ b ∈ I for all a, b ∈ I
2. −a ∈ I for all a ∈ I
3. ar ∈ I for all a ∈ I and for all r ∈ R.

The definition of an ideal implies that an ideal is closed under all ring
operations, addition, multiplication and negation, but it even implies more
than that. The third property says that it even closed under multiplication
by any element of R.
To get a better insight of ideals, we will regard a few examples:

Example 5 (Examples for ideals). The following examples are all ideals:

• 〈m〉 ⊂ Z = {m · r : r = 0,±1,±2, . . .}
• 〈4〉 = {0,±4,±8,±12, . . .}
• 〈p(x)〉 ⊂ Z[x] = {p(x) · a(x) : a(x) ∈ Z[x]}
• 〈x− 2〉 = {(x− 2) · a(x) : a(x) ∈ Z[x]}
We can easily see that the properties for ideals hold for these four ex-

amples.
Ring homomorphism can be characterized by ideals because of the follow-
ing reason:

Correspondence of ideals and homomorphisms
We note that:

• Let R and R’ be commutative rings. The kernel K of a homomor-
phism θ : R→ R′ is an ideal in R.

• If θ1 : R → R′ and θ2 : R → R′′ have the kernel K, the two homo-
morphic images are θ1(R) and θ2(R) are isomorphic.

• Consequently, homomorphism can be constructed and notated using
their ideal.

• Congruence Arithmetic can be done modulo I for any ideal I.
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Given a homomorphism, we can determine the kernel which is the
characterizing ideal. On the opposite, we can construct a homomorphism
given an ideal which should serve as kernel.
Furthermore, there is a natural way of defining arithmetic for any ideal,
which we annotate with ”modulo I”.

Example 6. Consider

• The homomorphism θ4 has the kernel/ideal 〈4〉.
• The homomorphism θx−2 has the kernel 〈x− 2〉.
• Evaluation of p(x): p(c) = d is equivalent to p(x) ≡ d mod (x− c).
• From an ”ideal” viewpoint, modular and evaluation homomorphisms

are the same.

From these examples, we can see that evaluation of a polynomial at a
point c is isomorph to the operation ”modulo (x - c)”. Furthermore, we
will now define operations on ideals:

Operations on ideals

• The ideal 〈a1, a2, . . . , an〉 is defined as {a1r1 + · · ·+ anrn : ri ∈ R}
a1, . . . , an ∈ R is called basis.

• For ideal I = 〈a1, . . . , an〉 and J = 〈b1, . . . , bm〉: The sum of two
ideals is

I + J = 〈I + J〉 = 〈I, J〉 = 〈a1, . . . , an, b1, . . . , bm〉

The product of two ideals is

I · J = 〈I · J〉 = 〈a1b1, . . . , a1bm, a2b1, . . . , a2bm, . . . , anb1, . . . , anbm〉

The i-th power is recursively defined by:

I1 = I and Ii = I · Ii−1 for i ≥ 2.

Example 7. The following examples give you a simple and informal ex-
planation how the elements in the presented ideals look like:

• 〈x, y〉 are all polynomials a1x+ a2y with a1, a2 ∈ R[x, y].

• 〈x, y〉 · 〈x, y〉 are all polynomials a1x
2 +a2xy+a3y

2 with a1, a2, a3 ∈
R[x, y].

• 〈x, y〉k are all polynomials with terms of at least a total degree k.

Now, we have considered enough basics and we can get started with
inverting the homomorphisms. First, we will look at simple inversion
methods, the Chinese Remainder Algorithm and the Newton Interpola-
tion.

2 Chinese Remainder Algorithm and New-
ton Interpolation

The Chinese Remainder Algorithm, also known as Garner’s Algorithm,
can invert modular homomorphisms by using the information of multiple
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modular homomorphisms to construct the integer number which the ho-
momorphism were applied to. We assume that the integer numbers are
all bounded by a fixed number and the homomorphisms are suitable to
uniquely determine the integer number from the image problems.

Inverting modular homomorphisms with Chinese Remain-
der Algorithm

The Chinese Remainder problem is stated as follows: Given pairwise
comaximal ideals I0, I1, . . . , In and given corresponding residues si ∈ Z/Ii,
0 ≤ i ≤ n, find an integer u ∈ Z/

∏n
i=0 Ii such that

u ≡ si mod Ii, 0 ≤ i ≤ n.

The Chinese Remainder Algorithm: Garner’s Algorithm
The key to the algorithm: Express the solution u ∈ Z/

∏n
i=0 Ii in

mixed radix representation.

Definition 8 (mixed radix representation). A element u ∈ Z/
∏n
i=0 Ii is

in mixed radix representation when it is in the form

u(1) + ∆u(1) + ∆u(2) + . . .+ ∆u(n)

where u(1) = u0 ∈ Z/I0 and ∆u(k) ∈
∏k−1
i=0 Ii/

∏k
i=0 Ii for 1 ≤ k ≤ d and

n is the number of equations.

We define u(k+1) = u(1) + ∆u(1) + . . .+ ∆u(k).

Mixed radix representation
So, for ideals Ii = 〈mi〉, the elements ∆u(k) can be represented in the

following form:

∆u(k) = uk ·
∏k−1
i=0 mi

where uk ∈ Zmk for 0 ≤ k ≤ n. Therefore, u can be written as:

u = u0 + u1 ·m0 + u2 · (m0m1) + · · ·+ un · (
∏n−1
i=0 mi)

Example 9. We would like to represent the number five in mixed radix
representation for m0 = 3;m1 = 5;m = 3 · 5 = 15

5 = (−1) + 2 · 3
We can see that any number from -7 to 7 can be represented in this form.

From modulo equations to mixed radix form
To construct the mixed radix form from the modulo equation, we just

iterate over the modular equations and calculate one new element ui from
the modular equation and the existing elements from the prior iterations.
The algorithm is scetched as follows: Iteration over i = 0 . . . n:

• For i = 0: u = s0 mod m0 Choose u0 = s0.

• For i = k: u0, . . . , uk−1 are known.

Solve u0 + u1(m0) + u2(m0m1) + · · ·+ uk(
∏k−1
i=0 mi) ≡ sk mod mk

=⇒ uk ≡(
sk −

(
u0 + · · ·+ uk−1

(∏k−2
i=0 mi

)))(∏k−1
i=0 mi

)−1

mod mk
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We recall that we get from mixed radix representation to standard repre-
sentation by evaluation with Horner scheme.

Uniqueness of the Chinese Remainder problem
The Chinese Remainder Problem can be uniquely solved and can be

transfered from the domain Z/
∏n
i=0 Ii to Z if all moduli m0, . . . ,mn are

pairwise prime and a ≤ u ≤ a+m with m =
∏n
i=0mi for any fixed integer

a ∈ Z.

Inverting evaluation homomorphisms with Newton Inter-
polation

The polynomial interpolation problem is stated as follows: Let D be a
domain of polynomials over a coefficient field R. Given ideals 〈x−α0〉, 〈x−
α1〉, . . . , 〈x−αn〉 where αi ∈ R, 0 ≤ i ≤ n and given corresponding residues
si ∈ D, 0 ≤ i ≤ n, find a polynomial u(x) ∈ D[x] such that

u(x) ≡ si mod x− αi, 0 ≤ i ≤ n.

α1, . . . , αn are also called interpolation points. The polynomial inter-
polation problem can be uniquely solved with Newton interpolation if
deg(u(x)) ≤ n with n+ 1 distinct interpolation points.

From a viewpoint of ideals, modular and evaluation homomorphisms are
quite similar. Therefore the Garner’s algorithm and the Newton
interpolation algorithm are also very similar.

3 The Hensel lifting

In this section, we look at the Hensel lifting for the factorization problem.

The factorization problem
We consider the following problem: Given a polynomial a(x), we look

for two polynomials u(x), w(x) such that

a(x) = u(x) · w(x)

Reformulated, we are looking for a root of the function

F (u,w) = a(x)− u(x)w(x)

Assume, we found a solution u(1) and w(1) in R/I. We now invert a ho-
momorphism θI : R→ R/I lifting two polynomials u and v as solution by
an iterative method. This iterative method is called the Hensel construc-
tion. Analogous to the Chinese Remainder Algorithm, we find better
approximation step by step to our solution. Therefore, we define:

Ideal-adic representation
Definition 10. Let I be an given ideal. A polynomial u is in ideal-adic
representation when it is in the form

u(1) + ∆u(1) + ∆u(2) + . . .+ ∆u(d) where u(1) ∈ R/I and ∆u(k) ∈ Ik/Ik+1

for 1 ≤ k ≤ d and d is maximal total degree of u with respect to I.

We define u(k+1) = u(1) + ∆u(1) + . . .+ ∆u(k).
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Ideal-adic approximation

Definition 11. Let I ⊂ R be an ideal. For a given polynomial a ∈ R, a
polynomial b ∈ R is an order k ideal-adic approximation to a with respect
to I if

a ≡ b mod Ik

The error approximating a by b is a− b ∈ Ik.

Example 12. The polynomial u(k) is an order k ideal-adic approximation
to the polynomial u.

The iteration step of the Hensel construction

• Assume, we already have a pair of order k approximations u(k) and
w(k), so F (u(k), w(k)) ≡ 0 mod Ik.

• We want to get k+1 order approximations u(k+1) = u(k) +∆u(k) and
w(k+1) = w(k) + ∆w(k)

• So F (u(k) + ∆u(k), w(k) + ∆w(k)) ≡ 0 mod Ik+1

• F (u(k), w(k))+ δF
δu

(u(k), w(k))∆u(k)+ δF
δw

(u(k), w(k))∆w(k) ≡ 0mod Ik+1

• With F (u,w) = a−uw, we get: F (u(k), w(k))−w(k)∆u(k)−u(k)∆w(k) ≡
0 mod Ik+1

• Finally, we have: w(k)∆u(k) + u(k)∆w(k) ≡ F (u(k), w(k)) mod Ik+1

The final result states that to improve our k order approximation to
a (k + 1) order approximation we must solve equations of the following
form in each iteration:

w(k)∆u(k) + u(k)∆w(k) ≡ F (u(k), w(k)) mod Ik+1

In which form the variables w(k),∆u(k), u(k),∆w(k) occur depends on the
homomorphism to invert. For inverting a modular homomorphism, we can
use the univariate Hensel lifting. To invert a evaluation homomorphism,
we need to use the multivariate Hensel lifting. So in the following of this
section, we will consider the univariate Hensel lifting and the multivariate
Hensel lifting.

Univariate Hensel lifting
We want to invert a modular homomorphism θp : Z[x] → Zp[x]. So

given polynomials a(x) ∈ Z[x] and u(1)(x), w(1)(x) ∈ Zp[x] such that

a(x) ≡ u0(x)w0(x) mod p

calculate u(x), w(x) ∈ Zpt [x] such that

F (u,w) = a(x)− uw = 0 and u(x) ≡ u(1)(x) mod p and
w(x) ≡ w(1)(x) mod p

The general ideal-adic representation and approximation simplifies to
the p-adic representation and approximation.
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p-adic representation and approximation

Definition 13. Let I = 〈p〉 be an ideal and let R = Z[x]. A polynomial
u(x) is in its polynomial p-adic representation when it is in the form

u(1) + ∆u(1) + ∆u(2) + . . .+ ∆u(d) where u(1) ∈ R/I and ∆u(k) ∈ Ik/Ik+1

for 1 ≤ k ≤ d and d is maximal total degree of u with respect to I.

We define u(k+1) = u(1) + ∆u(1) + . . .+ ∆u(k).

More specific view at the p-adic representation
u(1) ∈ R/I is a polynomial with coefficients in Z/p. and the elements

∆u(k) can be represented in the following form:

∆u(k) = uk(x) · pk

where uk ∈ Zpk [x] for 0 ≤ k ≤ n. Therefore, u can be written as:

u(x) = u0(x) + u1(x)p+ u2(x)p2 + · · ·+ un(x)pn.

order n p-adic approximation

Definition 14. Let a(x) ∈ Z[x] be a given polynomial. A polynomial
b(x) ∈ Z[x] is called an order n p-adic approximation to a(x) if

a(x) ≡ b(x) mod pn

The error in approximating a(x) by b(x) is a(x)− b(x) ∈ Z[x].

Example 15. u(x) = 27x2 + 11x + 7 in polynomial p-adic representation
for p = 5: u(x) = (2x2 + x+ 2) + (2x+ 1) · 5 + x2 · 52

Now that we have defined our representation and approximation, we
can reconsider the iteration step of the Hensel lifting.

The iteration step of the Hensel lifting

• We have order k approximations to u(x) and w(x), called u(k) and
w(k).

• Recall that w(k)∆u(k) + u(k)∆w(k) ≡ F (u(k), w(k)) mod Ik+1

• Solve w0(x)uk(x) + u0(x)wk(x) = θp
(
a(x)−u(k)w(k)

pk

)
with Extended

Euclidean Algorithm

• Define u(k+1) = u(k) + uk(x)pk and w(k+1) = w(k) + wk(x)pk and
repeat iteration.

For the univariate Hensel lifting, we do one Extended Euclidean cal-
culation for every iteration step.

Uniqueness of the Hensel construction
If a(x) ∈ Z[x] is monic and u(1) and w(1) are monic and relative prime,

then there are uniquely determined monic polynomials factors u(k) and
w(k) for any k ≥ 1. For a non-monic polynomial a(x), some pre- and
postprocessing has to be done.
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Example for univariate Hensel lifting

• Factorizing a(x) = x3 + 10x2 − 432x+ 5040 with p = 5

• Applying θ5(a(x)) = x3 − 2x = x(x2 − 2) = u(1) · w(1)

• First iteration of Hensel construction

– Calculate θ5(a(x)−u
(1)w(1)

5
) = 2x2 − x− 2

– Solve (x2 − 2)u1(x) + xw1(x) = 2x2 − x− 2

– u1(x) = 1;w1(x) = x− 1

– u(2) = u(1) + u1(x) · p = x+ 5

w(2) = w(1) + w1(x) · p = x2 + 5x− 7

• Next iterations:

Iter uk wk u(k)(x) w(k)(x) e(x)

0 - - x x2 − 2 10x2 − 430x+ 5040
1 1 x− 1 x+ 5 x2 + 5x− 7 −450x+ 5075
2 1 −x+ 2 x+ 30 x2 − 20x+ 43 125x+ 3750
3 0 1 x+ 30 x2 − 20x+ 168 0

Whereas the iteration step of the univariate Hensel lifting is still simple
(by using the Extended Euklidean Algorithm once), the iteration step of
the multivariate Hensel lifting will turn out to be more difficult - even if
it is conceptual the same.

4 Multivariate Hensel lifting

For the multivariate Hensel lifting we are interested in inverting a mul-
tivariate evaluation homomorphism θI : Z[x1, . . . , xv] → Z[x1]. So given
polynomials a(x) ∈ Z[x1, . . . , xv] and u(1)(x1), w(1)(x1) ∈ R/I such that

a(x1) ≡ u(1)(x1)w(1)(x1) mod I

calculate u(x1, . . . , xv), w(x1, . . . , xv) ∈ R[x1, . . . , xv] such that

F (u,w) = a(x)− uw = 0 and u(x1, . . . , xv) ≡ u(1)(x1) mod I and
w(x1, . . . , xv) ≡ w(1)(x1) mod I

The ideal I has the form 〈x2 − α2, . . . , xv − αv〉.

Ideal-adic representation
Analogously to p-adic representation, we can define a ideal-adic rep-

resentation for an ideal I.

Definition 16. Let I = 〈x2−α2, x3−α3, . . . , xv−αv〉 be an given ideal.
A polynomial u(x1, . . . , xv) is in ideal-adic representation when it is in the
form

u(1) + ∆u(1) + ∆u(2) + . . .+ ∆u(d) where u(1) ∈ R/I and ∆u(k) ∈ Ik/Ik+1

for 1 ≤ k ≤ d and d is maximal total degree of u with respect to I.

We define u(k+1) = u(1) + ∆u(1) + . . .+ ∆u(k).
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More specific view at the ideal-adic representation
The term u(1) is u(x1, α2, α3, . . . , αv). A term ∆u(k) ∈ Ik is a sum of

all terms with total degree of k with respect to I, so it has the form
v∑

i1=2

v∑
i2=i1

· · ·
v∑

ik=ik−1︸ ︷︷ ︸
k sums

u
(k)
i (x1)︸ ︷︷ ︸

coefficient

(xi1 − αi1) · (xi2 − αi2) · · · · · (xik − αik )︸ ︷︷ ︸
k factors

where 2 ≤ i1 ≤ . . . ≤ ik ≤ v and i is a vector with k entries of indices
= (i1, i2, . . . , ik)

Ideal-adic approximation

Definition 17. Let I be an ideal in Z[x1, . . . , xv]. For a given polynomial
a ∈ Z[x1, . . . , xv], a polynomial b ∈ Z[x1, . . . , xv] is an order k ideal-adic
approximation to a with respect to I if

a ≡ b mod Ik

The error is approximating a by b is a− b ∈ Ik.

Example 18. The polynomial u(k) is an order k ideal-adic approximation
to the polynomial u.

Iteration step for multivariate Hensel construction
From an k order ideal-adic approximation u(k) and w(k), we calculate

an k+1 order ideal-adic u(k+1) and w(k+1) approximation.

• The update formula

w(k)∆u(k) + u(k)∆w(k) = (a(x1, . . . , xv)− u(k)w(k)) mod Ik+1

• Represent

a(x1, . . . , xv)− u(k)w(k) =∑v
i1=2

∑v
i2=i1

· · ·
∑v
ik=ik−1

c
(k)
i (x1)(xi1 − αi1) · · · · · (xik − αik )

• Separate and simplify equation to w(1)ui(x1) + u(1)wi(x1) = ci(x1)

• Solve with Extended Euclidean Algorithm

The idea of the multivariate Hensel construction is the same as in the
univariate case. The calculation has become more inscrutable because
the equations now contain k nested summations for the k-th iteration
step. Whereas this is not technically difficult to split up to different
equations and solve, we cannot present any simple example as the number
of equations is just too large.

Outlook
We did not discuss

• Leading Coefficient Problem in the univariate Hensel construction

• Bad performance because of the Bad-Zero Problem

• Using sparseness of solution to improve Hensel construction
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• Quadratic Iteration, also known as Zassenhaus construction

This paper is intended to give you an general insight of the Hensel con-
struction. An implementation following the idea of this paper would be
possible, but the execution time would be still too large for pratical pur-
poses, because many improvements would have to added to get an useful
algorithm. The most important improvement is taking advantage of the
sparseness of solutions, which primarily justifies the Hensel construction
instead of using the Chinese Remainder Algorithm. Many details have not
been presented, but the uncovered topics can be found in the following
literature.
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