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Introduction to Coloring Problem

We are going to color maps on an island (or on a sphere).
Countries are planar regions.
In case of proper coloring 2 neighboring countries must have
different colors.

Terminological remark:

proper coloring vs coloring
coloring vs assignment of colors
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Introduction to Coloring Problem

Boundaries are Jordan curves
(Jordan curve is a continuous image of a segment [a, b]).

It can be proved that countries may be colored in 6 colors.
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Introduction to Coloring Problem

If we consider countries as vertices of graph and connect
neighboring countries by an edge, then we can reformulate the
problem in terms of coloring the graph.

The problem can easily be reduced to the case of 3-valent graph.

Line graph:
its vertices correspond to edges of initial graph,
2 vertices are connected by edge iff 2 corresponding edges of initial
graph are incidental

6 / 67



Introduction to Coloring Problem

If we consider countries as vertices of graph and connect
neighboring countries by an edge, then we can reformulate the
problem in terms of coloring the graph.

The problem can easily be reduced to the case of 3-valent graph.

Line graph:
its vertices correspond to edges of initial graph,
2 vertices are connected by edge iff 2 corresponding edges of initial
graph are incidental

6 / 67



Introduction to Coloring Problem

If we consider countries as vertices of graph and connect
neighboring countries by an edge, then we can reformulate the
problem in terms of coloring the graph.

The problem can easily be reduced to the case of 3-valent graph.

Line graph:
its vertices correspond to edges of initial graph,
2 vertices are connected by edge iff 2 corresponding edges of initial
graph are incidental

6 / 67



Introduction to Coloring Problem

1852, Guthrie: The Four Color Conjecture (4CC).
1976, Appel, Haken: a computer-to-computer proof (cannot be
checked by human).

Searching for simplified reformulations where proofs can be
checked by a human being.
Polynomials are the main instrument of counting colorings.
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Algebraic methods of counting graph colorings

χG (p) is the number of (proper) colorings of (vertices of) graph G
in p colors.
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Algebraic methods: the theorem

MG (p) =
∏

(vk ,vl )∈E

Np(xk , xl)

Np(y , z) = p − 1− yp−1z − yp−2z2 − . . .− yzp−1

Operator Rp replaces the exponent of each variable xp by its value
modulo p:

x3p+1
i 7→ xi

Theorem

For any graph G = (V ,E ), |V | = m, |E | = n ∀p ∈ N

χG (p) = pm−n(RpMp(G ))(0, . . . , 0).
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Algebraic methods: Proof of the theorem

Polynomial RpMp(G ) can be uniquely determined by choosing
appropriate pm values of set of variables.

Let c0 = 1, c1 = ω, . . . , cp−1 = ωp−1 be colors (where ω is the
primitive root of 1 of degree p).

µ : V → C = {c0, . . . , cp−1} is a coloring of the graph G .
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Algebraic methods: Proof of the theorem (cont.)

Using interpolation theorem we get:

RpMp(G ) =
∑

µ

(RpMp(G ))(µ(v1), . . . , µ(vm))Pµ

(the sum is taken through all pm colorings),

Pµ =
m∏

k=1

Sp(xk , µ(vk)),

Sp(x , cq) =
∏

0≤l≤p−1, l 6=q

x − cl

cq − cl
.

For arguments from C values of Mp(G ) and RpMp(G ) are the
same, so we have

RpMp(G ) =
∑

µ

Mp(G )(µ(v1), . . . , µ(vm))Pµ
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Algebraic methods: Proof of the theorem (cont.)

Np(y , y) = p − 1− yp − . . .− yp = 0,

Np(y , z) = p − yp − zp

y − z
y = p if y 6= z ,

Mp(G )(µ(v1), . . . , µ(vm)) = pn for a proper coloring,
else Mp(G )(µ(v1), . . . , µ(vm)) = 0. We came to

RpMp(G ) = pn
∑

µ

Pµ

where sum is taken through χG (p) proper colorings.
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Algebraic methods: Proof of the theorem (cont.)

Substituting x1 = . . . = xm = 0:

Pµ(0, . . . , 0) =
m∏

k=1

Sp(0, µ(vk)),

Sp(0, cq) =
∏

0≤l≤p−1, l 6=q

−cl

cq − cl
=

∏
0≤l≤p−1, l 6=q

1

1− cq

cl

=
∏

1≤l≤p−1

1

1− ωl

So Sp(0, cq) = Sp(0) is independent of cq.
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Algebraic methods: Proof of the theorem (cont.)

(RpMp(G ))(0, . . . , 0) = pnSp(0)mχG (p)

If we substitute any specific graph (e.g. K1 that has 1 vertex and 0
edges) we get Sp(0):
m = 1, n = 0, (RpMp(K1))(0, . . . , 0) = 1, χK1(p) = p.

Therefore Sp(0) = p−1 and χG (p) = pm−n(RpMp(G ))(0, . . . , 0).

15 / 67



Algebraic methods: Proof of the theorem (cont.)

(RpMp(G ))(0, . . . , 0) = pnSp(0)mχG (p)

If we substitute any specific graph (e.g. K1 that has 1 vertex and 0
edges) we get Sp(0):
m = 1, n = 0, (RpMp(K1))(0, . . . , 0) = 1, χK1(p) = p.

Therefore Sp(0) = p−1 and χG (p) = pm−n(RpMp(G ))(0, . . . , 0).

15 / 67



Algebraic methods: Colorings of 3-valent graphs

Let G be a planar 3-valent graph (each vertex has 3 adjacent
vertices).

3-valent graph T can be represented as
T = {〈ei1 , ej1 , ek1〉, . . . , 〈ei2n , ej2n , ek2n〉} (2n vertices, 3n edges).

λG (p) is the number of (proper) colorings of edges of G in p colors.
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Algebraic methods: Colorings of 3-valent graphs

L(xp, xq, xr ) = (xp − xq)(xq − xr )(xr − xp)

M(G ) =
2n∏
l=1

L(xil , xjl , xkl
)

R3M(G )(x1, . . . , x3n) =
∑

d1,...,d3n∈{0,1,2}

cd1,...,d3nx
d1
1 . . . xd3n

3n

Theorem

For any planar 3-valent graph G

λG (3) = (R3M(G ))(0, . . . , 0) = c0,...,0.
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Algebraic methods: Proof of the theorem

Here coloring is defined as ν : E → {1, ω, ω2} where ω = −1+i
√

3
2 ,

the primitive cubic root of 1.

By interpolation theorem:

R3M(G ) =
∑

ν

M(G )(ν(e1), . . . , ν(e3n))Pν ,

Pν =
3n∏

k=1

S3(xk , ν(ek)),

summation is taken through all 33n colorings, but really through
proper ones because

M(G )(ν(e1), . . . , ν(e3n)) =

=
2n∏
l=1

(ν(eil )− ν(ejl ))(ν(ejl )− ν(ekl
))(ν(ekl

)− ν(eil ))

equals 0 if ν is not a proper coloring.

18 / 67
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Algebraic methods: Proof of the theorem cont.

If the coloring ν is proper
then there are 1, ω, ω2 between ν(ep), ν(eq), ν(er ),
so L(ν(ep), ν(eq), ν(er )) = ±i3

√
3,

and M(G )(ν(e1), . . . , ν(e3n)) = ±33n.

The proper sign is +, as can be proven by induction on n
(Exercise).

Then R3M(G ) = 33n
∑

ν Pν ,
here are λG (3) summands.
(R3M(G ))(0, . . . , 0) = 33n(S3(0))3nλG (3) = λG (3).
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Orientations: Definitions 1

G = (V ,E ), f : V → Z. G is f -choosable if
∀S : V → 2Z, |S(v)| = f (v)∀v
there exists a proper coloring c : V → Z such that ∀v c(v) ∈ S(v).

G is k-choosable (k ∈ Z) if f ≡ k.
Minimal k for which G is k-choosable is referred to as a choice
number of G .
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Orientations: Definitions 2

Let χ(G ), χ′(G ) be chromatic numbers of G and line graph of G
resp., and ch(G ), ch’(G ) choice numbers.

Obviously for any graph G holds ch(G ) ≥ χ(G ).

There exist graphs with ch(G ) > χ(G ).

Figure: S(ui ) = S(vi ) = {1, 2, 3} \ {i}

But there is a conjecture claiming that ∀G ch’(G ) = χ′(G ).
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Orientations: Definitions 3. Main Theorem

Consider oriented graphs (digraphs).
Eulerian graph: for each vertex its indegree equals its outdegree.

Even (odd) graph: a graph with even (odd) number of edges.
EE (D): a number of even Eulerian subgraphs of graph D.
EO(D): a number of odd Eulerian subgraphs of graph D.
d+
D (v): outdegree of vertex v in D.

Theorem

D = (V ,E ) being a digraph, |V | = n, di = d+
D (vi ),

f (i) = di + 1 ∀i ∈ {1, . . . , n}, EE (D) 6= EO(D) ⇒
D is f -choosable.
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Orientations: Proof of the theorem

Lemma

Let P(x1, . . . , xn) be polynomial in n variables over Z, for 1 ≤ i ≤ n
the degree of P in xi doesn’t exceed di , Si ⊂ Z : |Si | = di + 1.
If ∀(x1, . . . , xn) ∈ S1 × . . .× Sn P(x1, . . . , xn) = 0 then P ≡ 0.

(Exercise — proof by induction.)
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Orientations: Proof of the theorem (cont.)

Graph polynomial of undirected graph G :

fG (x1, . . . , xn) =
∏

i<j ,vivj∈E

(xi − xj)

Monomials of that polynomial are in natural correspondence with
orientations of G .

We call edge vivj decreasing if i > j .

Orientation is even if it has even number of decreasing edges, else
it’s odd.
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Orientations: Proof of the theorem (cont.)

DE (d1, . . . , dn) and DO(d1, . . . , dn) are sets of even and odd
orientations;
here non-negative numbers di correspond to outdegrees of vertices.

Then evidently holds

Lemma

fG (x1, . . . , xn) =
∑

d1,...,dn≥0

(|DE (d1, . . . , dn)|−|DO(d1, . . . , dn)|)
n∏

i=1

xdi
i
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Orientations: Proof of the theorem (cont.)

Let us further take D1,D2 ∈ DE (d1, . . . , dn) ∪ DO(d1, . . . , dn).
D1 ⊕ D2 denotes set of edges in D1 that have the opposite
direction in D2.

Mapping D2 7→ D1 ⊕ D2 is a bijection between
DE (d1, . . . , dn) ∪ DO(d1, . . . , dn) and set of Eulerian subgraphs of
D1.
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Orientations: Proof of the theorem (cont.)

If D1 is even then it maps even orientations to even subgraphs and
odd ones to odd ones.

If D1 is odd then it maps even to odd and odd to even.

Thus we get

||DE (d1, . . . , dn)| − |DO(d1, . . . , dn)|| = |EE (D1)− EO(D1)|

(it’s the coefficient of the monomial
∏

xdi
i in fG ).
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Orientations: Proof of the theorem (cont.)

Recall the statement of the theorem. Suppose there is no such
coloring.

Then ∀(x1, . . . , xn) ∈ S1 × . . .× Sn fG (x1, . . . , xn) = 0.

Let Qi (xi ) be

Qi (xi ) =
∏
s∈Si

(xi − s) = xdi+1
i −

di∑
j=0

qijx
j
i .
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Orientations: Proof of the theorem (cont.)

If xi ∈ Si then xdi+1
i =

∑di
j=0 qijx

j
i .

We are going to replace in fG each occurrence of x fi
i , fi > di , by a

linear combination of smaller powers (using the above equality).
So we get polynomial f̃G .

∀(x1, . . . , xn) ∈ S1 × . . .× Sn f̃G (x1, . . . , xn) = 0 and by first
Lemma f̃G ≡ 0.

But coefficient of
∏n

i=1 xdi
i in fG is nonzero, and it remains the

same in f̃G due to homogeneity of fG . We come to a contradiction.
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Orientations: Corollaries 1

Corollary

If undirected graph G has orientation D satisfying
EE (D) 6= EO(D) in which maximal outdegree is d
then G is (d + 1)-colorable.

(Evident)

31 / 67



Orientations: Corollaries

Definition

Set of vertices S ⊂ V is called independent if vertices in S can be
colored in the same color.

Corollary

If undirected graph G with vertices V = {v1, . . . , vn} has
orientation D satisfying EE (D) 6= EO(D),
d1 ≥ . . . ≥ dn is ordered sequence of outdegrees of its vertices
then ∀k : 0 ≤ k < n G has an independent set of size at least⌈

n−k
dk+1+1

⌉
.

(Exercise)
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Probabilistic restatement: introduction

G is a 3-valent biconnected undirected graph with 2n vertices, 3n
edges.
Its undirected line graph FG has 3n vertices (each of degree 4) and
6n edges.

We assign the same probability to each of 26n orientations that can
be attached to FG .
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Probabilistic restatement: introduction

Consider 2 orientations F ′
G and F ′′

G .

Orientations have the same parity if they differ in direction of even
number of edges.
Orientations F ′

G ,F ′′
G are equivalent modulo 3 if for every vertex

its outdegree in F ′
G equals modulo 3 its outdegree in F ′′

G .

Event AG : 2 randomly chosen orientations have the same parity.
Event BG : 2 randomly chosen orientations are equivalent modulo
3.
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Probabilistic restatement: the theorem

Theorem

For any biconnected planar 3-valent graph G having 2n vertices

P (BG |AG )− P(BG ) =

(
27

4096

)n

· χG (4)

4
.

So 4CC is equivalent to the statement
that there is a positive correlation between AG and BG .
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Probabilistic restatement: proof of the theorem

Let us examine 2 graph polynomials:
M ′ =

∏
eiej∈LG

(xi − xj) (here LG is a set of edges of FG ),

M ′′ =
∏

eiej∈LG
(x2

i − x2
j ).

Orientations that are equivalent modulo 3 correspond to equal (up
to sign) monomials in R3M

′.
(Operator R3, as usually, reduces all powers modulo 3.)

Let us count m0, that is, free term of R3(M
′M ′′) in two different

ways.
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Probabilistic restatement: proof of the theorem

The first way.
P(AG ) = 1

2 ⇒ P (BG |AG )− P(BG ) = 2P(AGBG )− P(BG )

If 2 orientations are not equivalent modulo 3 then they contribute
0 into probabilities and 0 into m0.
If they are equivalent modulo 3 and have the same parity then they
contribute 2−12n into probabilities and 1 into m0.
If they are equivalent but have the different parity they contribute
−2−12n and −1 respectively.

Finally we have m0 = 212n(P (BG |AG )− P(BG )).
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Probabilistic restatement: proof cont.

The second way deals with Tait colorings. We have a map
colored in 4 colors (say, α, β, γ, δ) and construct a coloring of
edges by the following rule.

An edge which separates α from β or γ from δ gets color 1.

An edge which separates α from γ or β from δ gets color 2.

An edge which separates α from δ or β from γ gets color 3.
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Probabilistic restatement: proof cont.

For any vertex three edges incidental to it have 3 different colors.

And vice versa: for given Tait coloring of edges (in 3 colors) we
may reconstruct coloring of vertices in 4 colors.

Thus number of Tait colorings is χG (4)
4 .

40 / 67



Probabilistic restatement: proof cont.

For any vertex three edges incidental to it have 3 different colors.

And vice versa: for given Tait coloring of edges (in 3 colors) we
may reconstruct coloring of vertices in 4 colors.

Thus number of Tait colorings is χG (4)
4 .

40 / 67



Probabilistic restatement: proof cont.

For any vertex three edges incidental to it have 3 different colors.

And vice versa: for given Tait coloring of edges (in 3 colors) we
may reconstruct coloring of vertices in 4 colors.

Thus number of Tait colorings is χG (4)
4 .

40 / 67



Probabilistic restatement: proof cont.

For any vertex three edges incidental to it have 3 different colors.

And vice versa: for given Tait coloring of edges (in 3 colors) we
may reconstruct coloring of vertices in 4 colors.

Thus number of Tait colorings is χG (4)
4 .

40 / 67



Probabilistic restatement: proof cont.

We are going to determine R3(M
′M ′′) = R3M by choosing

appropriate 33n values of variables.

Let xj(j ∈ {1, . . . , 3n}) take values 1, ω, ω2 where ω = −1+i
√

3
2

(cubic root of 1).
Applying interpolation formula we see

R3M =
∑

µ

(R3M)(ωµ(v1), . . . , ωµ(v3n))Pµ =
∑

µ

M(ωµ(v1), . . . , ωµ(v3n))Pµ

(R eliminated due to the choice of colors, summation through Tait
colorings enough),

Pµ =
3n∏

k=1

(xk − ωµ(vk )+1)(xk − ωµ(vk )+2)

(ωµ(vk ) − ωµ(vk )+1)(ωµ(vk ) − ωµ(vk )+2)
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Probabilistic restatement: proof cont.

We break 12n factors in M into 2n groups, each group looking like
(xi − xj)(xj − xk)(xi − xk)(x2

i − x2
j )(x2

j − x2
k )(x2

i − x2
k )

(i < j < k, edges ei , ej , ek are incidental to the same vertex).

Such a product for Tait coloring equals 27.
Therefore m0 = 36n

∑
µ Pµ(0, . . . , 0).

Pµ(0, . . . , 0) can be easily computed and equals 3−3n.

212n(P (BG |AG )− P(BG )) = 33n · χG (4)

4

We have proved the theorem.
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212n(P (BG |AG )− P(BG )) = 33n · χG (4)

4

We have proved the theorem.
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Probabilistic restatement: proof cont.
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Arithmetical restatement: The Main Theorem Formulation

Theorem

∃p, q ∈ N, 4q linear functions
Ak(m, c1, . . . , cp),Bk(m, c1, . . . , cp),Ck(m, c1, . . . , cp),Dk(m, c1, . . . , cp),
k ∈ {1, . . . , q} such that 4CC is equivalent to the following
statement:

∀m, n ∃c1, . . . , cp E (n,m, c1, . . . , cp) 6≡ 0 mod 7,

E (n,m, c1, . . . , cp) =

(
Ak(m, c1, . . . , cp) + 7nBk(m, c1, . . . , cp)
Ck(m, c1, . . . , cp) + 7nDk(m, c1, . . . , cp)

)
.
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Arithmetical restatement: Value of The Main Theorem

Having E (n,m, c1, . . . , cp)
we can take G (m, n) whose values are never divisible by 7,
arbitrary integer-valued functions F (n,m, c1, . . . , cp),

and∑
c1

. . .
∑
cp

E (n,m, c1, . . . , cp)F (n,m, c1, . . . , cp) = G (m, n)

implies the 4CC.
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Arithmetical restatement: Reformulations

We are to come to main theorem from original 4CC step by step
using reformulations.

Firstly, we will color not countries but their capitals (2 capitals
are connected by road iff countries are neighbors).

Then we introduce internal and external (as a whole –
ranked) edges (G = 〈V ,EI ,EX 〉). Ends of internal edge
should have the same color, ends of external edge should be
colored differently. Now the 4CC sounds as follows:

If a planar graph with ranked edges can be colored in some
number of colors (more precisely in 6 colors – it’s always possible)

then it can be colored in 4 colors.
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Arithmetical restatement: Reformulations

Then we say: we have a graph with vertices (V ) colored
somehow and edges (E ).
2 colorings are equivalent if they induce the same division of
E in 2 groups (internal and external).
For every coloring we are searching for the equivalent one
consisting of 4 colors.
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Arithmetical restatement: Reformulations

The next term to introduce is spiral graph.
It has infinitely many vertices k.
2 vertices i , j are connected by edge iff |i − j | = 1 or
|i − j | = n.
We color this construct in colors from {0, . . . , 6} so that
finitely many vertices have color greater than 0.

4-coloring λ for a given coloring µ is made paying attention to
3 properties:

1 λ(k) = 0 ⇐⇒ µ(k) = 0
2 λ(k) = λ(k + 1) ⇐⇒ µ(k) = µ(k + 1)
3 λ(k) = λ(k + n) ⇐⇒ µ(k) = µ(k + n)
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Arithmetical restatement: Reformulations

We can represent our colorings as a natural number in base-7
notation: m =

∑∞
k=0 µ(k)7k , l =

∑∞
k=0 λ(k)7k .

Our requirements to λ imply that:

1 there are no 7-digits ’5’ and ’6’ in l
2 the k-th digit of l equals 0 ⇐⇒ the k-th digit of m equals 0
3 and 2 more (for (k + 1) and (k + n))
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Arithmetical restatement: Reformulations

We can view m as
∑6

i=1 imi so that mi =
∑

µ(k)=i 7
k .

Now we need 2 more definitions.

b ∈ Z+ is Bool if its 7-digits are either 0 or 1.
Boolean numbers a and b are said to be orthogonal (a⊥b) if
they never have ’1’ in the same position.
We introduce cij =

∑
µ(k)=i ,λ(k)=j 7k

and know that Bool(cij), cij⊥ci ′j ′ if 〈i , j〉 6= 〈i ′, j ′〉.
mi =

∑4
j=1 cij , lj =

∑6
i=1 cij

Now conditions on 4-coloring are following (not counting
those we’ve already seen):

1 7cij⊥cij′ , j 6= j ′

2 7cij⊥ci ′j , i 6= i ′

3 7ncij⊥cij′ , j 6= j ′

4 7ncij⊥ci ′j , i 6= i ′
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Arithmetical restatement: Reformulations

Theorem

(E. E. Kummer)
A prime number p comes into the factorization of the binomial
coefficient (

a + b
a

)
with the exponent equal to the number of carries performed while
computing sum a + b in base-p positional notation.

(Exercise)
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Arithmetical restatement: Reformulations

The first corollary:
All 7-digits of a are less or equal to 3 iff(

2a
a

)
6≡ 0 mod 7.

The second corollary:

Bool(a) ⇐⇒
(

2a
a

) (
4a
2a

)
6≡ 0 mod 7.

The third corollary:

Bool(a)&Bool(b) ⇒[
a⊥b ⇐⇒

(
2(a + b)
a + b

) (
4(a + b)
2(a + b)

)
6≡ 0 mod 7

]
.
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Arithmetical restatement: Reformulations

The last corollary:

Bool(a)&Bool(b) ⇒
[
a⊥b ⇐⇒

(
4(a + b)
2(a + b)

)
6≡ 0 mod 7

]
.

The last reformulation:
∀n,m ∈ Z+ ∃cij ∈ Z+, i ∈ {1, . . . , 6}, j ∈ {1, . . . , 4}:
none of 986 binomial coefficients is divisible by 7:(

2cij

cij

)
,

(
4cij

2cij

)
,

(
4(ci ′j ′ + ci ′′j ′′)
2(ci ′j ′ + ci ′′j ′′)

)
, 〈i ′, j ′〉 6= 〈i ′′, j ′′〉,

(
4(7cij + cij ′)
2(7cij + cij ′)

)
, j 6= j ′,

(
4(7cij + ci ′j)
2(7cij + ci ′j)

)
, i 6= i ′,
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Arithmetical restatement: Reformulations

The last reformulation cont.:
∀n,m ∈ Z+ ∃cij ∈ Z+, i ∈ {1, . . . , 6}, j ∈ {1, . . . , 4}:
none of 986 binomial coefficients is divisible by 7:(

4(7ncij + cij ′)
2(7ncij + cij ′)

)
, j 6= j ′,

(
4(7ncij + ci ′j)
2(7ncij + ci ′j)

)
, i 6= i ′,

(
m
C

)
,

(
C
m

)
,

where C =
6∑

i=1

 4∑
j=1

cij

 .
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The Tutte polynomial: definitions

Let G = (V ,E ) be a (multi)graph (may have loops and multiple
edges).
We define 2 operations:

1 cut : G − e, where e ∈ E (delete the edge e)

2 fuse : G \ e, where e ∈ E (delete the edge e and join vertices
incident to e)
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The Tutte polynomial: definitions

k(G ) is a number of components in G .

Then we introduce 2 terms:

1 rank of graph (V ,E ) is r(G ) = |V | − k(G )

2 nullity of graph (V ,E ) is n(G ) = |E | − |V |+ k(G )

For any spanning subgraph F we write k〈F 〉, r〈F 〉, n〈F 〉. Then

S(G ; x , y) =
∑

F⊂E(G)

x r〈E〉−r〈F 〉yn〈F 〉 =
∑

F⊂E(G)

xk〈F 〉−k〈E〉yn〈F 〉

is called rank-generating polynomial.
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The Tutte polynomial: theorem 1

Theorem

S(G ; x , y) =


(x + 1)S(G − e; x , y), e is a bridge,
(y + 1)S(G − e; x , y) e is a loop,
S(G − e; x , y) + S(G \ e; x , y), otherwise.

Furthermore, S(En; x , y) = 1 for an empty graph En with n
vertices.

This can be easily proved if we form two groups of F ’s (subsets of
E (G )): those which include e (the edge to be eliminated) and
those which do not — and investigate simple properties of rank
and nullity.
(Exercise)
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The Tutte polynomial: main definition

The Tutte polynomial is defined as follows:

TG (x , y) = S(G ; x − 1, y − 1) =
∑

F⊂E(G)

(x − 1)r〈E〉−r〈F 〉(y − 1)n〈F 〉

Of course the appropriate statement holds:

TG (x , y) =


xTG−e(x , y), e is a bridge,
yTG−e(x , y) e is a loop,
TG−e(x , y) + TG\e(x , y), otherwise.
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The Tutte polynomial: theorem 2

Theorem

There is a unique map U from the set of multigraphs to the ring of
polynomials over Z of variables x , y , α, σ, τ such that
U(En) = U(En; x , y , α, σ, τ) = αn and

U(G ) =


xUG−e(x , y), e is a bridge,
yUG−e(x , y) e is a loop,
σUG−e(x , y) + τUG\e(x , y), otherwise.

Furthermore,

U(G ) = αk(G)σn(G)τ r(G)TG (αx/τ, y/σ).
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The Tutte polynomial: theorem 2, proof sketch

U(G ) is a polynomial of σ and τ because
degxTG (x , y) = r(G ), degyTG (x , y) = n(G ).

The uniqueness of U is implied by constructive definition.

It can be checked simply that U(En) = αn and recurrent equalities
hold for U(G ) = αk(G)σn(G)τ r(G)TG (αx/τ, y/σ).
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The Tutte polynomial: corollary

Definition

If pG (x) is the number of proper colorings of vertices of graph G in
x colors then pG (x) is called the chromatic function of G .

Corollary

pG (x) = (−1)r(G)xk(G)TG (1− x , 0)

So the chromatic function is actually the chromatic polynomial.
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The Tutte polynomial: corollary, proof sketch

pEn(x) = xn

and ∀e ∈ E (G )

pG (x) =


x−1
x pG−e(x), e is a bridge,

0 e is a loop,
pG−e(x)− pG\e(x), otherwise.

⇒ pG (x) = U(G ;
x − 1

x
, 0, x , 1,−1) = xk(G)(−1)r(G)TG (1− x , 0)
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List of exercises

1 Colorings of 3-valent graph,

M(G )(ν(e1), . . . , ν(e3n)) = ±33n,

proper sign is +

2 Let P(x1, . . . , xn) be polynomial in n variables over Z, for
1 ≤ i ≤ n the degree of P in xi doesn’t exceed di ,
Si ⊂ Z : |Si | = di + 1.
If ∀(x1, . . . , xn) ∈ S1 × . . .× Sn P(x1, . . . , xn) = 0 then P ≡ 0.

3 If undirected graph G with vertices V = {v1, . . . , vn} has
orientation D satisfying EE (D) 6= EO(D),
d1 ≥ . . . ≥ dn is ordered sequence of outdegrees of its vertices
then ∀k : 0 ≤ k < n G has an independent set of size at least⌈

n−k
dk+1+1

⌉
.
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List of exercises

4 (Kummer theorem)
A prime number p comes into the factorization of the

binomial coefficient

(
a + b

a

)
with the exponent equal to

the number of carries performed while computing sum a + b
in base-p positional notation.

5

S(G ; x , y) =


(x + 1)S(G − e; x , y), e is a bridge,
(y + 1)S(G − e; x , y) e is a loop,
S(G − e; x , y) + S(G \ e; x , y), otherwise.

6

pG (x) =


x−1
x pG−e(x), e is a bridge,

0 e is a loop,
pG−e(x)− pG\e(x), otherwise.
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Thank you for your attention!
Danke für Ihre Aufmerksamkeit!

Any questions?
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