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Abstract

In this paper we observe the problem of counting graph colorings using polynomials. Several reformulations of The Four
Color Conjecture are considered (among them algebraic, probabilistic and arithmetic). In the last section Tutte polynomials
are mentioned.

1. Introduction

The problem considered is coloring countries on an island (or, which is equivalent because of homeomorphism, on a
sphere). Countries are planar regions. In case ofproper coloring, 2 neighboring countries have different colors. We call
arbitrary assignment of colors, not necessarily proper,coloring.

Boundaries should be Jordan curves, i.e. continuous images of segments. This condition implies that there would not be
infinitely many countries neighboring to each other.

If we consider countries as vertices of graph and connect neighboring countries by an edge, then we can reformulate the
problem in terms of coloring the graph. Now vertices of this graph should be colored in a proper way, so that 2 adjacent
vertices have different colors.

The problem can easily be reduced to the case of3-valent graph. It’s because we can surround a vertex with valency
greater than 3 with a neighborhood so that in the resulting graph each vertex gets valency of three.

The last term to be introduced here is aline graph: its vertices correspond to edges of initial graph, two vertices are
connected by edge if and only if 2 corresponding edges of initial graph are incidental.

In 1852 Guthrie proposedThe Four Color Conjecture(4CC). It claims that every map can be colored in 4 colors. There
were many attempts to prove the 4CC, and in 1976 Appel and Haken gave their proof that can be called ”computer-to-
computer” one. It means that the proof was produced by machine and cannot be checked by a human due to its complexity.

Mathematicians are searching for reformulations of the 4CC, that can lead to proofs which can be checked by human
beings. To such reformulations our paper is devoted. And polynomials became the main instrument of counting colorings.

2. Algebraic methods of counting graph colorings

[9]
Let’s denote number of proper colorings of graphG in p colors byχG(p).

Consider following polynomials:

Np(y, z) = p− 1− yp−1z − yp−2z2 − . . .− yzp−1

MG(p) =
∏

(vk,vl)∈E

Np(xk, xl)



Variables correspond here to objects we are going to color, i.e. vertices.
OperatorRp replaces the exponent of each variablexp by its value modulop: x3p+1

i 7→ xi.

Theorem 2.1 For any graphG = (V,E), |V | = m, |E| = n ∀p ∈ N

χG(p) = pm−n(RpMp(G))(0, . . . , 0).

Proof of the theorem
PolynomialRpMp(G) can be uniquely determined by choosing appropriatepm values of set of variables (due to interpo-

lation process).
Let c0 = 1, c1 = ω, . . . , cp−1 = ωp−1 be colors (whereω is the primitive root of 1 of degreep).
µ : V → C = {c0, . . . , cp−1} is a coloring of the graphG.
Using interpolation theorem we get:

RpMp(G) =
∑

µ

(RpMp(G))(µ(v1), . . . , µ(vm))Pµ

(the sum is taken through allpm colorings),

Pµ =
m∏

k=1

Sp(xk, µ(vk)),

Sp(x, cq) =
∏

0≤l≤p−1, l 6=q

x− cl

cq − cl
.

Intuitive sense of the interpolation formula can be explained in such manner:x in

Sp(x, cq) =
∏

0≤l≤p−1, l 6=q

x− cl

cq − cl

takes values from{c0, . . . , cp−1}, soSp(x, cq) = 1 for x = cq andSp(x, cq) = 0 for x = cl, l 6= q. Therefore the value of
RpMp(G) on some coloring, if we look at the right-hand side of the equality, is computed correctly.

For arguments fromC (the set of colors) values ofMp(G) andRpMp(G) are the same, so we have

RpMp(G) =
∑

µ

Mp(G)(µ(v1), . . . , µ(vm))Pµ

Np(y, y) = p− 1− yp − . . .− yp = 0,

Np(y, z) = p− yp − zp

y − z
y = p if y 6= z,

SoMp(G)(µ(v1), . . . , µ(vm)) = pn for a proper coloring,
elseMp(G)(µ(v1), . . . , µ(vm)) = 0. We came to

RpMp(G) = pn
∑

µ

Pµ

where sum is taken throughχG(p) proper colorings.

Substitutingx1 = . . . = xm = 0:

Pµ(0, . . . , 0) =
m∏

k=1

Sp(0, µ(vk)),

Sp(0, cq) =
∏

0≤l≤p−1, l 6=q

−cl

cq − cl
=

∏
0≤l≤p−1, l 6=q

1
1− cq

cl

=
∏

1≤l≤p−1

1
1− ωl

SoSp(0, cq) = Sp(0) is independent ofcq.



(RpMp(G))(0, . . . , 0) = pnSp(0)mχG(p)

If we substitute any specific graph (e.g.K1 that has 1 vertex and 0 edges) we getSp(0):
m = 1, n = 0, RpMp(K1))(0, . . . , 0) = 1 (void product – no vertices in the graph),χK1(p) = p.
ThereforeSp(0) = p−1 andχG(p) = pm−n(RpMp(G))(0, . . . , 0).

Colorings of 3-valent graphs
Let G be a planar 3-valent graph (each vertex has 3 adjacent vertices). 3-valent graphT can be represented asT =

{〈ei1 , ej1 , ek1〉, . . . , 〈ei2n , ej2n , ek2n〉} (2n vertices,3n edges; each triple represents 3 vertices that are adjacent to this one).
λG(p) is the number of (proper) colorings of edges ofG in p colors.

L(xp, xq, xr) = (xp − xq)(xq − xr)(xr − xp)

M(G) =
2n∏
l=1

L(xil
, xjl

, xkl
)

R3M(G)(x1, . . . , x3n) =
∑

d1,...,d3n∈{0,1,2}

cd1,...,d3n
xd1

1 . . . xd3n
3n

Variables in the formulas above correspond to edges.

Theorem 2.2 For any planar 3-valent graphG

λG(3) = (R3M(G))(0, . . . , 0) = c0,...,0.

Proof.
Here coloring is defined asν : E → {1, ω, ω2} whereω = −1+i

√
3

2 , the primitive cubic root of 1.
By interpolation theorem:

R3M(G) =
∑

ν

M(G)(ν(e1), . . . , ν(e3n))Pν ,

Pν =
3n∏

k=1

S3(xk, ν(ek)),

summation is taken through all33n colorings, but really through proper ones because

M(G)(ν(e1), . . . , ν(e3n)) =

=
2n∏
l=1

(ν(eil
)− ν(ejl

))(ν(ejl
)− ν(ekl

))(ν(ekl
)− ν(eil

))

equals 0 ifν is not a proper coloring.
If the coloringν is proper

then there are1, ω, ω2 betweenν(ep), ν(eq), ν(er),
soL(ν(ep), ν(eq), ν(er)) = ±i3

√
3,

andM(G)(ν(e1), . . . , ν(e3n)) = ±33n. The proper sign is+, as can be proven by induction onn
ThenR3M(G) = 33n

∑
ν Pν ,

here areλG(3) summands, according to the number of proper colorings.
(R3M(G))(0, . . . , 0) = 33n(S3(0))3nλG(3) = λG(3) (S3(0) = 1

3 – see previous theorem).



3. Counting graph colorings in terms of orientations

[5, 1, 2]
G = (V,E), f : V → Z.
G is f -choosableif ∀S : V → 2Z, |S(v)| = f(v)∀v

there exists a proper coloringc : V → Z such that∀v c(v) ∈ S(v).

G is k-choosable(k ∈ Z) if f ≡ k – i.e., for every vertex for any set ofk potential colors there exists a proper coloring.
Minimal k for whichG is k-choosable is referred to as achoice numberof G.

Let χ(G), χ′(G) be chromatic numbers ofG and line graph ofG resp., and ch(G), ch′(G) choice numbers.
Obviously for any graphG holds ch(G) ≥ χ(G). If G is k-choosable then it isk-colorable: it’s enough to takeS =

{1, . . . , k} ∀v.
There exist graphs with ch(G) > χ(G) – see the figure whereχ(G) = 2, butG is not 2-choosable. But there is a conjecture

Figure 1. S(ui) = S(vi) = {1, 2, 3} \ {i}

claiming that∀G ch′(G) = χ′(G).
We consider oriented graphs (digraphs) and introduce some concepts.

Eulerian graph: for each vertex its indegree equals its outdegree.
Even (odd) graph: a graph with even (odd) number of edges.
EE(D): a number of even Eulerian subgraphs of graphD.
EO(D): a number of odd Eulerian subgraphs of graphD.
d+

D(v): outdegree of vertexv in D.

Theorem 3.1 D = (V,E) being a digraph,|V | = n, di = d+
D(vi),

f(i) = di + 1 ∀i ∈ {1, . . . , n}, EE(D) 6= EO(D) ⇒
D is f -choosable.

Proof of the theorem

Lemma 3.1 LetP (x1, . . . , xn) be polynomial inn variables overZ, for 1 ≤ i ≤ n the degree ofP in xi doesn’t exceeddi,
Si ⊂ Z : |Si| = di + 1.
If ∀(x1, . . . , xn) ∈ S1 × . . .× Sn P (x1, . . . , xn) = 0 thenP ≡ 0.

(Proof by induction.)
Graph polynomial of undirected graphG:

fG(x1, . . . , xn) =
∏

i<j,vivj∈E

(xi − xj)

Monomials of that polynomial are in natural correspondence with orientations ofG (recall that orientation is a choice of
the direction of an edge, and here we choose one variable from each pair of brackets).

We call edgevivj decreasingif i > j. Orientation isevenif it has even number of decreasing edges, else it’sodd.
DE(d1, . . . , dn) andDO(d1, . . . , dn) are sets of even and odd orientations;

here non-negative numbersdi correspond to outdegrees of vertices. Then evidently holds



Lemma 3.2

fG(x1, . . . , xn) =
∑

d1,...,dn≥0

(|DE(d1, . . . , dn)| − |DO(d1, . . . , dn)|)
n∏

i=1

xdi
i

Let us further takeD1, D2 ∈ DE(d1, . . . , dn) ∪DO(d1, . . . , dn).
D1 ⊕D2 denotes set of edges inD1 that have the opposite direction inD2.

MappingD2 7→ D1⊕D2 is a bijection betweenDE(d1, . . . , dn)∪DO(d1, . . . , dn) and set of Eulerian subgraphs ofD1.
If D1 is even then it maps even orientations to even subgraphs and odd ones to odd ones.

If D1 is odd then it maps even to odd and odd to even.
Thus we get

||DE(d1, . . . , dn)| − |DO(d1, . . . , dn)|| = |EE(D1)− EO(D1)|

(it’s the coefficient of the monomial
∏

xdi
i in fG).

Recall the statement of the theorem. Suppose there is no such coloring.
Then∀(x1, . . . , xn) ∈ S1 × . . .× Sn fG(x1, . . . , xn) = 0, whereSi = {1, . . . , di + 1}.
Let Qi(xi) be

Qi(xi) =
∏
s∈Si

(xi − s) = xdi+1
i −

di∑
j=0

qijx
j
i .

If xi ∈ Si thenxdi+1
i =

∑di

j=0 qijx
j
i .

We are going to replace infG each occurrence ofxfi

i , fi > di, by a linear combination of smaller powers (using the above
equality). So we get polynomial̃fG.
∀(x1, . . . , xn) ∈ S1 × . . . × Sn f̃G(x1, . . . , xn) = 0 and by first Lemmaf̃G ≡ 0. But coefficient of

∏n
i=1 xdi

i in fG is
nonzero, and it remains the same iñfG due to homogeneity offG. We come to a contradiction. The proof is done.

4. Probabilistic restatement of Four Color Conjecture

[8, 7]
G is a 3-valent biconnected undirected graph with2n vertices,3n edges.

Its undirected line graphFG has3n vertices (each of degree 4) and6n edges. We assign the same probability to each of26n

orientations that can be attached toFG.
Consider 2 orientationsF ′

G andF ′′
G.

Orientations have the sameparity if they differ in direction of even number of edges.
OrientationsF ′

G, F ′′
G areequivalent modulo 3 if for every vertex its outdegree inF ′

G equals modulo 3 its outdegree in
F ′′

G.
EventAG: 2 randomly chosen orientations have the same parity.

EventBG: 2 randomly chosen orientations are equivalent modulo 3.

Theorem 4.1 For any biconnected planar 3-valent graphG having2n vertices

P (BG|AG)− P (BG) =
(

27
4096

)n

· χG(4)
4

.

So 4CC is equivalent to the statement
that there is a positive correlation betweenAG andBG.

It can be proved by considering 2 graph polynomials:
M ′ =

∏
eiej∈LG

(xi − xj) (hereLG is a set of edges ofFG),

M ′′ =
∏

eiej∈LG
(x2

i − x2
j ).



5. Arithmetical restatement of Four Color Conjecture

[6]
The Main Theorem

Theorem 5.1 ∃p, q ∈ N, 4q linear functionsAk(m, c1, . . . , cp), Bk(m, c1, . . . , cp), Ck(m, c1, . . . , cp), Dk(m, c1, . . . , cp),
k ∈ {1, . . . , q} such that 4CC is equivalent to the following statement:

∀m,n ∃c1, . . . , cp E(n, m, c1, . . . , cp) 6≡ 0 mod 7,

E(n, m, c1, . . . , cp) =
(

Ak(m, c1, . . . , cp) + 7nBk(m, c1, . . . , cp)
Ck(m, c1, . . . , cp) + 7nDk(m, c1, . . . , cp)

)
.

The complex representation ofE’s in the form of binomial coefficients comes from computation and has nothing to do
with a practical value of the Main Theorem. It just claims that, havingE(n, m, c1, . . . , cp), we can takeG(m,n) whose
values are never divisible by 7,
arbitrary integer-valued functionsF (n, m, c1, . . . , cp), and∑

c1

. . .
∑
cp

E(n, m, c1, . . . , cp)F (n, m, c1, . . . , cp) = G(m,n)

implies the 4CC.
We are to come to the main theorem from original 4CC step by step using reformulations.

• Firstly, we will color not countries but their capitals (2 capitals are connected by road iff countries are neighbors).

• Then we introduceinternal andexternal (as a whole –ranked) edges (G = 〈V,EI , EX〉). Ends of internal edge
should have the same color, ends of external edge should be colored differently. Now the 4CC sounds as follows:
If a planar graph with ranked edges can be colored in some number of colors (more precisely in 6 colors – it’s always
possible) then it can be colored in 4 colors.

• Then we say: we have a graph with vertices (V ) colored somehow and edges (E).
2 colorings areequivalent if they induce the same division ofE in 2 groups (internal and external).
For every coloring we are searching for the equivalent one consisting of 4 colors.

• The next term to introduce isspiral graph.
It has infinitely many verticesk.
2 verticesi, j are connected by edge iff|i− j| = 1 or |i− j| = n.
We color this construct in colors from{0, . . . , 6} so that finitely many vertices have color greater than 0. 4-coloringλ
for a given coloringµ is made paying attention to 3 properties:

1. λ(k) = 0 ⇐⇒ µ(k) = 0

2. λ(k) = λ(k + 1) ⇐⇒ µ(k) = µ(k + 1)

3. λ(k) = λ(k + n) ⇐⇒ µ(k) = µ(k + n)

On the picture you can see an example of spiral graph, withn = 8.

The structure is introduced in order to simplify the presentation of a graph. Now we can consider only graphs with
relatively regular structure (such as spiral) instead of arbitrary planar graph induced by countries, capitals and roads.

• We can represent our colorings as a natural number inbase-7 notation: m =
∑∞

k=0 µ(k)7k, l =
∑∞

k=0 λ(k)7k.
Our requirements toλ imply that:

1. there are no 7-digits ’5’ and ’6’ inl

2. thek-th digit of l equals0 ⇐⇒ thek-th digit of m equals 0

3. the(k + 1)-th digit equals thek-th digit at the same time for bothl andm



Figure 2. Spiral graph

4. the(k + n)-th digit equals thek-th digit at the same time for bothl andm

• We can viewm as
∑6

i=1 imi so thatmi =
∑

µ(k)=i 7k.
Now we need 2 more definitions.
b ∈ Z+ is Bool if its 7-digits are either 0 or 1.
Boolean numbersa andb are said to beorthogonal (a⊥b) if they never have ’1’ in the same position.
We introducecij =

∑
µ(k)=i,λ(k)=j 7k

and know that Bool(cij), cij⊥ci′j′ if 〈i, j〉 6= 〈i′, j′〉.
mi =

∑6
j=1 cij , lj =

∑4
i=1 cij

Now conditions on 4-coloring are following (not counting those we’ve already seen):

1. 7cij⊥cij′ , j 6= j′

2. 7cij⊥ci′j , i 6= i′

3. 7ncij⊥cij′ , j 6= j′

4. 7ncij⊥ci′j , i 6= i′

To perform the last step, we need some algebraic facts.

Theorem 5.2 (E. E. Kummer)
A prime numberp comes into the factorization of the binomial coefficient(

a + b
a

)
with the exponent equal to the number of carries performed while computing suma + b in base-p positional notation.

There are several corollaries that simply follow the theorem:
The first corollary:

All 7-digits of a are less or equal to 3 if and only if(
2a
a

)
6≡ 0 mod 7.

The second corollary:

Bool(a) ⇐⇒
(

2a
a

) (
4a
2a

)
6≡ 0 mod 7.



The third corollary:

Bool(a)&Bool(b) ⇒[
a⊥b ⇐⇒

(
2(a + b)
a + b

) (
4(a + b)
2(a + b)

)
6≡ 0 mod 7

]
.

The last corollary:

Bool(a)&Bool(b) ⇒
[
a⊥b ⇐⇒

(
4(a + b)
2(a + b)

)
6≡ 0 mod 7

]
.

The last reformulation is implied by corollaries and leads to the Main Theorem.
The last reformulation:

∀n, m ∈ Z+ ∃cij ∈ Z+, i ∈ {1, . . . , 6}, j ∈ {1, . . . , 4}:
none of 986 binomial coefficients is divisible by 7:(

2cij

cij

)
,

(
4cij

2cij

)
,

(
4(ci′j′ + ci′′j′′)
2(ci′j′ + ci′′j′′)

)
, 〈i′, j′〉 6= 〈i′′, j′′〉,

(
4(7cij + cij′)
2(7cij + cij′)

)
, j 6= j′,

(
4(7cij + ci′j)
2(7cij + ci′j)

)
, i 6= i′,

(
4(7ncij + cij′)
2(7ncij + cij′)

)
, j 6= j′,

(
4(7ncij + ci′j)
2(7ncij + ci′j)

)
, i 6= i′,(

m
C

)
,

(
C
m

)
,

where C =
6∑

i=1

 4∑
j=1

cij

 .

6. The Tutte polynomial

[3, 4]
Let G = (V,E) be a (multi)graph (it may have loops and multiple edges). On such a graph one can perform following

operations:

1. cut : G− e, wheree ∈ E (delete the edgee)

2. fuse: G \ e, wheree ∈ E (delete the edgee and join vertices incident toe)

If k(G) is a number of components inG = (V,E) thenrank of graphG is r(G) = |V | − k(G), andnullity of graphG is
n(G) = |E| − |V |+ k(G).

For any subgraphF we writek〈F 〉, r〈F 〉, n〈F 〉. Then

S(G;x, y) =
∑

F⊂E(G)

xr〈E〉−r〈F 〉yn〈F 〉 =
∑

F⊂E(G)

xk〈F 〉−k〈E〉yn〈F 〉

is calledrank-generating polynomial.

Theorem 6.1

S(G;x, y) =

 (x + 1)S(G− e;x, y), e is a bridge,
(y + 1)S(G− e;x, y), e is a loop,
S(G− e;x, y) + S(G \ e;x, y), otherwise.

Furthermore,S(En;x, y) = 1 for an empty graphEn with n vertices.



This can be easily proved if we form two groups ofF ’s (subsets ofE(G)): those which includee (the edge to be elimi-
nated) and those which do not — and investigate simple properties of rank and nullity.

TheTutte polynomialis defined as follows:

TG(x, y) = S(G;x− 1, y − 1) =
∑

F⊂E(G)

(x− 1)r〈E〉−r〈F 〉(y − 1)n〈F 〉

Of course the appropriate statement holds:

TG(x, y) =

 xTG−e(x, y), e is a bridge,
yTG−e(x, y), e is a loop,
TG−e(x, y) + TG\e(x, y), otherwise.

Theorem 6.2 There is a unique mapU from the set of multigraphs to the ring of polynomials overZ of variablesx, y, α, σ, τ
such that
U(En) = U(En;x, y, α, σ, τ) = αn and

U(G) =

 xUG−e(x, y), e is a bridge,
yUG−e(x, y), e is a loop,
σUG−e(x, y) + τUG\e(x, y), otherwise.

Furthermore,
U(G) = αk(G)σn(G)τ r(G)TG(αx/τ, y/σ).

Proof sketch:
U(G) is a polynomial ofσ and τ becausedegxTG(x, y) = r(G), degyTG(x, y) = n(G). The uniqueness ofU is

implied by constructive definition. It can be checked simply thatU(En) = αn and recurrent equalities hold forU(G) =
αk(G)σn(G)τ r(G)TG(αx/τ, y/σ).

Definition 6.1 If pG(x) is the number of proper colorings of vertices of graphG in x colors thenpG(x) is called the
chromatic functionof G.

Corollary 6.1
pG(x) = (−1)r(G)xk(G)TG(1− x, 0)

So the chromatic function is actually thechromatic polynomial.
Proof sketch:

pEn
(x) = xn

and∀e ∈ E(G)

pG(x) =


x−1

x pG−e(x), e is a bridge,
0, e is a loop,
pG−e(x)− pG\e(x), otherwise.

Therefore

pG(x) = U(G;
x− 1

x
, 0, x, 1,−1) = xk(G)(−1)r(G)TG(1− x, 0).

With the aid of the Tutte polynomial, one can calculate a variety of number characteristics concerning graphs, among them
number of spanning trees.
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