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Abstract

In this paper we observe the problem of counting graph colorings using polynomials. Several reformulations of The Four
Color Conjecture are considered (among them algebraic, probabilistic and arithmetic). In the last section Tutte polynomials
are mentioned.

1. Introduction

The problem considered is coloring countries on an island (or, which is equivalent because of homeomorphism, on a
sphere). Countries are planar regions. In casgroper coloring 2 neighboring countries have different colors. We call
arbitrary assignment of colors, not necessarily propagring.

Boundaries should be Jordan curves, i.e. continuous images of segments. This condition implies that there would not be
infinitely many countries neighboring to each other.

If we consider countries as vertices of graph and connect neighboring countries by an edge, then we can reformulate the
problem in terms of coloring the graph. Now vertices of this graph should be colored in a proper way, so that 2 adjacent
vertices have different colors.

The problem can easily be reduced to the casg-eélent graph It's because we can surround a vertex with valency
greater than 3 with a neighborhood so that in the resulting graph each vertex gets valency of three.

The last term to be introduced here idire graph its vertices correspond to edges of initial graph, two vertices are
connected by edge if and only if 2 corresponding edges of initial graph are incidental.

In 1852 Guthrie proposetihe Four Color Conjecturé¢4CQC). It claims that every map can be colored in 4 colors. There
were many attempts to prove the 4CC, and in 1976 Appel and Haken gave their proof that can be called "computer-to-
computer” one. It means that the proof was produced by machine and cannot be checked by a human due to its complexity.

Mathematicians are searching for reformulations of the 4CC, that can lead to proofs which can be checked by human
beings. To such reformulations our paper is devoted. And polynomials became the main instrument of counting colorings.

2. Algebraic methods of counting graph colorings

[9]
Let's denote number of proper colorings of graglin p colors byxa(p).
Consider following polynomials:

Np(yvz):p—l—ypilz—ypi%ﬂ—...—yz’kl

Mep)= [ Nplaw o)
(v,v)EE



Variables correspond here to objects we are going to color, i.e. vertices.
OperatorR, replaces the exponent of each variabjeby its value modulg: xfp“ —

Zj.
Theorem 2.1 For any graphG = (V, E), [V|=m, |[E|=n VpeN
XG(p) = pmin(RPMp(G)xOv ) 0)
Proof of the theorem

PolynomialR, M, (G) can be uniquely determined by choosing appropriéteralues of set of variables (due to interpo-
lation process).

Letco =1,¢1 = w,...,c,—1 = wP~! be colors (where is the primitive root of 1 of degreg).
p:V —C={co,...,cp—1}is acoloring of the graply.
Using interpolation theorem we get:

RpMp(G) = Z(RI)MP(G))(N(Ul)v oo () Py

(the sum is taken through ail™ colorings),

m

P, = [1 Solwr nlor)),

k=1

r —C
Sp(x,cq) = H
Cqg—C
0<i<p—1,1#q
Intuitive sense of the interpolation formula can be explained in such maniirer:

r —C
Sp(x,cq) = H p—

0<i<p-1,1q 1

takes values frorcy, . .

., Cp—1}, S0S,(x,¢q) = 1forz = ¢, andS,(x,¢,) = 0 for x = ¢;, 1 # ¢q. Therefore the value of
R,M,(G) on some coloring, if we look at the right-hand side of the equality, is computed correctly.

For arguments frond” (the set of colors) values dff,,(G) andX, M, (G) are the same, so we have

123

R, M, (G) = 3 My(G)(p(v1), ., v)) P

Ny(y,y)=p—1—9y" —...—yP =0,
P _ P )
Np(y,z) =p— VTP ify # 2,

SoM,(G)(p(v1), ..., u(vm)) = p™ for a proper coloring,
elseM,(G)(p(v1), ..., pu(vm)) = 0. We came to

RpMp(G) = p" Z P
1
where sum is taken through; (p) proper colorings.

Substitutinge; = ... = x,, = 0:
m
PM(O7 e 70) = H Sp(oau(vk))7
k=1
—C] 1 1
Sp(oa Cq) = H — = H Cq H — 1
Cq— 1 1-w
0<i<p—1,l#q 0<I<p—1,l#q a 1<i<p-1

S0.5,(0,¢,) = S,(0) is independent of,,.



(RpMp(G))(Ov e 0) = pnsp(o)mXG(p)

If we substitute any specific graph (e d; that has 1 vertex and 0 edges) we §gt0):
m=1, n=0,R,M,(K1))(0,...,0) =1 (void product — no vertices in the grapt)x, (p) = p.
ThereforeS,(0) = p~! andxc(p) = p™ " (R, M, (G))(0, ..., 0).

Colorings of 3-valent graphs

Let G be a planar 3-valent graph (each vertex has 3 adjacent vertices). 3-valentigghbe represented 85 =
{{€irs€j1s€k1)s - -5 (€ign» €jans Ean ) } (21 Vertices 3n edges; each triple represents 3 vertices that are adjacent to this one).
Ac(p) is the number of (proper) colorings of edges’bin p colors.

L(zp, g, ) = (xp — xg)(¥g — 1) (T — )
2n

M(G) =[] L@, @y, wn,)

=1

R3 M (G)( )= P

3 Tiy...,Tgn) = Cd,ooydsn 1 -+ T3
d1 ~~~~~ d3ne{07172}

Variables in the formulas above correspond to edges.
Theorem 2.2 For any planar 3-valent grapld
Ac(3) = (RsM(G))(0,...,0) =co,...0-

Proof.
Here coloring is defined as: E — {1,w,w?} wherew = =113 the primitive cubic root of 1.
By interpolation theorem:

R3M(G) = > M(G)(v(er), ..., v(esn)) Py,

3n
P, =[] Ss(a, v(ex)),

k=1

summation is taken through " colorings, but really through proper ones because

M(G)(v(er), ... v(esn)) =

= H(V(eiz) - V(ejz»(y(ejl) - V(ekz>)<y(ekz) - V(eiz))
=1

equals 0 ifv is not a proper coloring.
If the coloringv is proper
then there are, w, w? betweenv(e,), v(e,), v(e,),
soL(v(e,),vieq),vie,)) = +i3V/3,
andM (G)(v(ey),...,v(esn)) = £33". The proper sign is-, as can be proven by induction an
ThenRs M (G) =3°"%" P,
here are\;(3) summands, according to the number of proper colorings.
(RsM(G))(0,...,0) = 3%"(595(0))*" A (3) = Ac(3) (S3(0) = £ — see previous theorem).



3. Counting graph colorings in terms of orientations

5, 1, 2]
G=WV,E), f:V = Z.
G is f-choosablef VS : V — 2% |S(v)| = f(v) Vv
there exists a proper coloring V' — Z such that/v ¢(v) € S(v).

G is k-choosable(k € Z) if f = k —i.e., for every vertex for any set &fpotential colors there exists a proper coloring.
Minimal & for which G is k-choosable is referred to ashoice numberof G.

Let x(G), x'(G) be chromatic numbers @f and line graph of resp., and clf), ch'(G) choice numbers.

Obviously for any graplG holds ch(G) > x(G). If G is k-choosable then it i&-colorable: it's enough to tak§ =
{1,...,k} Y.

There exist graphs with c6{) > x(G) — see the figure wherg(G) = 2, butG is not 2-choosable. But there is a conjecture

Figure 1. S(u;) = S(v;) ={1,2,3}\ {i}

claiming thatvG ch(G) = X/ (G).
We consider oriented graphs (digraphs) and introduce some concepts.
Eulerian graph: for each vertex its indegree equals its outdegree.
Even (odd) graph: a graph with even (odd) number of edges.
EE(D): a number of even Eulerian subgraphs of graph
EO(D): anumber of odd Eulerian subgraphs of grdph
d},(v): outdegree of vertexin D.

Theorem 3.1 D = (V, E) being a digraph|V| = n, d; = d},(v;),
fiy=d;+1Vie{1,...,n}, EE(D)+# EO(D)=
D is f-choosable.

Proof of the theorem

Lemma 3.1 Let P(xy,...,z,) be polynomial im variables overZ, for 1 < i < n the degree of in z; doesn't exceed;,
fV(z1,...,2,) €S1 X...x S, P(z1,...,2,) =0thenP = 0.

(Proof by induction.)
Graph polynomial of undirected grapl::

falzy, ... xy) = H (x; — xj)

i<j,v;v;EE

Monomials of that polynomial are in natural correspondence with orientatioGs(cgcall that orientation is a choice of
the direction of an edge, and here we choose one variable from each pair of brackets).
We call edgev;v; decreasingif < > j. Orientation isevenif it has even number of decreasing edges, els®dth
DE(dy,...,d,)andDO(dy,...,d,) are sets of even and odd orientations;
here non-negative numbefscorrespond to outdegrees of vertices. Then evidently holds



Lemma 3.2
fowr,...,z)= > (DE(dy,...,dn)| — |DO(ds,....dy))) [] 2"
dyiye..,dn>0 i

Let us further takeD,, Do € DE(dy,...,d,) UDO(dy,...,d,).
D; & D, denotes set of edges iy that have the opposite direction ipy.
MappingD; — D; @ D- is a bijection betwee® E'(dy, . .. ,d,,) UDO(ds, . .., d,) and set of Eulerian subgraphsiof.
If D, is even then it maps even orientations to even subgraphs and odd ones to odd ones.
If D, is odd then it maps even to odd and odd to even.
Thus we get
IDE(ds, ..., dy)| — |DO(ds, ..., dy)|| = [EE(Dy) — EO(D))|

(it's the coefficient of the monomidl] xf in fa).
Recall the statement of the theorem. Suppose there is no such coloring.
ThenV(z1,...,2,) € S1 X ... xS, fa(z1,...,z,) =0, whereS; = {1,...,d; + 1}.
Let QZ(J’7) be

SES;

d;
Qi(x;) = H (x; —s) = x?ﬁl — Zqijxg.
j=0

If 2; € S; thenz %+t = S g,
We are going to replace ifi; each occurrence af{"',fi > d;, by a linear combination of smaller powers (using the above
equality). So we get polynomigt;.

Y(x1,. .. @n) € S1 X ... X Sp fa(z1,...,x,) = 0 and by first Lemmafe = 0. But coefficient of[[/_, z% in fq is
nonzero, and it remains the samefin due to homogeneity of;. We come to a contradiction. The proof is done.

4. Probabilistic restatement of Four Color Conjecture

[8, 7]

G is a 3-valent biconnected undirected graph withvertices,3n edges.
Its undirected line grapl; has3n vertices (each of degree 4) afd edges. We assign the same probability to eactfof
orientations that can be attachedHg.

Consider 2 orientations/, and F/..

Orientations have the sarparity if they differ in direction of even number of edges.

OrientationsF,, F/. areequivalent modulo 3if for every vertex its outdegree iR/, equals modulo 3 its outdegree in
F.

EventAq: 2 randomly chosen orientations have the same parity.
EventB¢: 2 randomly chosen orientations are equivalent modulo 3.

Theorem 4.1 For any biconnected planar 3-valent graghhaving2n vertices

27 " ) Xg(4)
4096 4 -

P (BalAc) — P(Be) = (

So 4CC is equivalent to the statement
that there is a positive correlation betweép and Bg.

It can be proved by considering 2 graph polynomials:
M’ =Tl,,c,er, (@i — ;) (hereLg is a set of edges df),
M"=T1] x2).

2 _
eie;ELG (xz J



5. Arithmetical restatement of Four Color Conjecture

[6]

The Main Theorem

Theorem 5.1 3p, ¢ € N, 4gq linear functionsAy(m,c1,...,¢p), Be(m,c1,...,¢p),Cr(m,c1,...,¢p), Di(m,c1,...,¢p),
k € {1,...,q} such that 4CC is equivalent to the following statement:

Vm,n 3ei,...,¢p E(n,m,c1,...,¢p) #0 mod 7,

_( Ap(m,cr,...,cp) + T"Bi(m,c1,...,¢p)
E(n,m,cr,... 6p) = ( Cr(m,c1,...,¢p) + 7" Di(myc1,...,¢p) )

The complex representation &fs in the form of binomial coefficients comes from computation and has nothing to do

with a practical value of the Main Theorem. It just claims that, havif(g, m, c1, ..., cp), we can take&(m,n) whose
values are never divisible by 7,
arbitrary integer-valued function8(n, m, c1, . .., ¢,), and

Z...ZE(mm,ch...,cp)F(n,mmh...,cp) = G(m,n)
C1 Cp

implies the 4CC.
We are to come to the main theorem from original 4CC step by step using reformulations.

o Firstly, we will color not countries but their capitals (2 capitals are connected by road iff countries are neighbors).

e Then we introducénternal andexternal (as a whole +anked) edges ¢ = (V, E;, Fx)). Ends of internal edge
should have the same color, ends of external edge should be colored differently. Now the 4CC sounds as follows:
If a planar graph with ranked edges can be colored in some number of colors (more precisely in 6 colors — it's always
possible) then it can be colored in 4 colors.

e Then we say: we have a graph with vertic&9 ¢olored somehow and edges)(
2 colorings areequivalentif they induce the same division @ in 2 groups (internal and external).
For every coloring we are searching for the equivalent one consisting of 4 colors.

e The next term to introduce &piral graph.
It has infinitely many vertices.
2 verticesi, j are connected by edge |ff— j| = 1or|i — j| = n.
We color this construct in colors frof0, . .., 6} so that finitely many vertices have color greater than 0. 4-coloxing
for a given coloringu is made paying attention to 3 properties:
1L ANE)=0 < puk)=0
2. Mk)=XMk+1) <= ulk)=pk+1)
3. AMk) =AMk +n) <= ulk)=plk+n)
On the picture you can see an example of spiral graph,awith8.
The structure is introduced in order to simplify the presentation of a graph. Now we can consider only graphs with
relatively regular structure (such as spiral) instead of arbitrary planar graph induced by countries, capitals and roads.

¢ We can represent our colorings as a natural numbleage-7 notation m = Y27, p(k)7%, 1 =Y 7o ) A(k)7".
Our requirements ta imply that:

1. there are no 7-digits '5’ and '6’ ih
2. thek-th digit of l equals) <= thek-th digit of m equals 0
3. the(k + 1)-th digit equals thé:-th digit at the same time for bothandm



Figure 2. Spiral graph

4. the(k + n)-th digit equals thé:-th digit at the same time for bottandm

e We can viewn astZl im; so thatm; = >y, 7k,
Now we need 2 more definitions.
b € Z, isBool if its 7-digits are either O or 1.
Boolean numbers andb are said to berthogonal (a_Ld) if they never have '1’ in the same position.
H _ k
We introduce;; = Zu(k):i)\(k):?‘ 7
and know that Boolf;;), ¢;; Lc;j if (i, j) # (i, 57).
6 4
mi =) Cigy Ly = 2o Cij
Now conditions on 4-coloring are following (not counting those we've already seen):
1. Teijleiy, j#5
2. 7CijLCi/j, 7 75 7
3. TMeijley, j#7'
4. 7nCijJ_Ci/j, ) 7£ 7:’
To perform the last step, we need some algebraic facts.

Theorem 5.2 (E. E. Kummer)
A prime numbep comes into the factorization of the binomial coefficient

a+b
a
with the exponent equal to the number of carries performed while computing subrin basep positional notation.

There are several corollaries that simply follow the theorem:
The first corollary:
All 7-digits of a are less or equal to 3 if and only if

(2@)5_&0 mod 7.

a

The second corollary:

a

Bool(a) <= ( 2a ) ( ;Z ) £0 mod 7.



The third corollary:

Bool(a)&Bool(b) =
{aj_b — < QSfbb) > < 3812 > £0 mod 7] :

Bool(a)&Bool(b) = [aLb — < 3812 ) £0 mod 7] .

The last corollary:

The last reformulation is implied by corollaries and leads to the Main Theorem.
The last reformulation:

Vn,m € Zy 3¢ € Ly, i€ {1,...,6},5 € {1,...,4}:

none of 986 binomial coefficients is divisible by 7:

() Cazn ) (ot ) w2 )
(Teis + cijr) 4(Tcij + cirj) L
( <m§+c§>> 77 ( 2(7cty + o) )7A
4(7"¢cij + cijr) (T"cij + ciry) o
(2(71] ]/)>J7é] ( (nCz;JrCzj))’l#Z’

(&) (n)

6. The Tutte polynomial

[3, 4]
Let G = (V, E) be a (multi)graph (it may have loops and multiple edges). On such a graph one can perform following
operations:

1. cut: G — e, wheree € E (delete the edge)
2. fuse: G'\ e, wheree € E (delete the edge and join vertices incident te)

If k(@) is a number of components & = (V, E) thenrank of graphG is r(G) = |V| — k(G), andnullity of graphG is
n(G) = |E| - V| + k(G).
For any subgrapl’ we write k(F'), r(F"), n(F'). Then

S(G, x,y) — Z xT<E)—'r(F>yn<F) — Z xk-(F)—k(E>yn<F)

FCE(G) FCE(G)
is calledrank-generating polynomial
Theorem 6.1
(x+1)S(G —e;z,y), e is a bridge,
S(G;x,y) (y+1)S(G —e;x,y), e is a loop,
S(G —e;z,y) + S(G\ e;z,y), otherwise.

Furthermore,S(E,,; z,y) = 1 for an empty graph,, with n vertices.



This can be easily proved if we form two groupsios (subsets ofZ(G)): those which include (the edge to be elimi-
nated) and those which do not — and investigate simple properties of rank and nullity.

The Tutte polynomials defined as follows:

To(w,y) = S(Gz—Ly—1)= Y  (z— 1) F7Ey 1)
FCE(G)

Of course the appropriate statement holds:

2Ta—e(7,y), e is a bridge,
Te(r,y) = YTa—c(z,y), e is a loop,
Ta—e(r,y) +Tee(z,y), otherwise.

Theorem 6.2 There is a unique mafy from the set of multigraphs to the ring of polynomials ofef variablese, y, o, o, 7
such that
U(En) =U(Ey;7,y,a,0,7) = o™ and

2UGg—c(,y), e is a bridge,
U(G) = yUG*E(:L‘7 y)7 eisa IOOp7
oUg—e(7,y) + TUq\c(x,y), otherwise.

Furthermore,
U(G) = oMD" E O T (a7, y /) 0).

Proof sketch:

U(G) is a polynomial ofc andr becauseleg,T¢(z,y) = r(G), deg,Ta(x,y) = n(G). The uniqueness ¥ is
implied by constructive definition. It can be checked simply #Haf,,) = o™ and recurrent equalities hold féf(G) =
DO (T (ax /T,y /0).

Definition 6.1 If ps(x) is the number of proper colorings of vertices of graghin = colors thenpg(x) is called the
chromatic functionof G.

Corollary 6.1
pa(z) = (—I)T(G)xk(G)Tg(l —x,0)

So the chromatic function is actually tkhromatic polynomial
Proof sketch:

pE, () =z
andVe € E(G)
=Lpa_e(z), e is a bridge,
pa(z) =4 0, e is a loop,
PG—c(T) — Pa\e(x), otherwise.
Therefore .
pa(z) = U(G; ——,0,z,1,-1) = 2FD (1) T5(1 — 2,0).
€T

With the aid of the Tutte polynomial, one can calculate a variety of number characteristics concerning graphs, among them
number of spanning trees.
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