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Abstract: The Self-Organizing Map (SOM) is an unsupervised neural network algorithm that projects high- 
dimensional data onto a two-dimensional map. The projection preserves the topology of the data so that similar 
data items will be mapped to nearby locations on the map. Despite the popular use of  the  algorithm  for  
clustering  and  information  visualisation,  a  system  has  been  lacking  that combines the fast execution of the 
algorithm with powerful visualisation of the maps and effective tools for their interactive analysis.  
Powerful methods for interactive exploration and search from collections of free-form textual documents are 
needed to manage the ever-increasing flood of digital information. In this article we present a method, SOM, for 
automatic organization of full-text document collections using the self-organizing map (SOM) algorithm. The 
document collection is ordered onto a map in an unsupervised manner utilizing statistical information of short 
word contexts. The resulting ordered map where similar documents lie near each other thus presents a general 
view of the document space. With the aid of a suitable (SVG) interface, documents in interesting areas of the 
map can be browsed.  
 
 
 

  

1 Introduction 

Over the past decade, academic as well as commercial informations have been growing at 
exceptional rates. Gaining new knowledge from such databases is difficult, costly and time-
consuming if done manually. It may even be impossible when the data exceeds certain limits of size 
and complexity. As  a  result,  the  automated  analysis  and  visualisation  of massive multi-
dimensional  datasets  has been the focus of much scientific research during the last years. The 
principal objective is to find regularities and relationships in the data, thereby gaining access to 
hidden and potentially useful knowledge. 

Artificial Neural Networks are a promising part of this broad field. Inspired by advances in 
biomedical research, they form a class of algorithms that aim to simulate the neural structures of the 
brain. The Self-Organizing Map (SOM) is a fairly well-known neural network and indeed one of the 
most popular unsupervised learning algorithms. Since its invention by Finnish Professor Teuvo 
Kohonen in the early 1980s, more than 4000 research articles have been published on the algorithm, 
its visualization and applications.  The maps comprehensively visualise natural groupings and 
relationships in the data and have been successfully applied in a broad spectrum of research areas 
ranging from speech recognition to financial analysis.   

The Self-Organizing Map performs a non-linear projection of multidimensional data onto a two-
dimensional display. The mapping is topology-preserving, meaning that the more alike two data 
samples are in the input space, the closer they will appear together on the final map. This allows the 
user to identify ‘clusters’, i.e.  large  groupings  of  a  certain  type  of  input  pattern.  Further 
examination may then reveal what features the members of a cluster have in common.   



2 Background 

Data Mining is a broad area of research concerning the “extraction of implicit, previously unknown 
and potentially useful information from data” [Witten and Frank (1999)]. Increasingly powerful 
computer hardware has made it possible to explore and investigate databases whose complexity, 
dimensionality and amount of data exceed the  limits  in  which  manual  analysis  is possible. The 
purpose is to reveal patterns, relationships or regularities that allow us to gain new knowledge and 
insight on the data.  

 Machine Learning provides the technical basis for Data Mining and the Self-Organizing Map 
(SOM) is one of the many algorithms used in this context. More precisely, the SOM belongs to the 
class of Neural Network algorithms. This is a group of algorithms based on analogies to the neural 
structures of the brain. The SOM in particular was inspired by an interesting phenomenon: As 
physicians have discovered, some areas of brain tissue can be ordered according to an input signal 
[Kohonen (1982)]. Basically, the SOM is a computer program simulating this biological ordering 
process. Applied to electronic datasets, the algorithm is capable of producing a map that shows 
similar input data items appearing close to each other. An example of this is shown in Figure 1 
below, taken from [Vesanto (1999)].   

 

Figure 1: An example of a trained map showing groups of similar data items 

There are numerous applications involving the SOM algorithm but the most widespread use is the 
identification and visualisation of natural groupings in the data. This process of finding similar items 
is generally referred to as clustering.  

2.1 Artificial Neural Networks 

Advances in biological research have offered an initial understanding of the natural thinking 
mechanisms that make it possible for humans to learn from previous experience. It appears that the 
fundamental processing elements of the brain are the neurons, a vast number of special, 
interconnected cells. These cells communicate via electrochemical pathways and allow the brain to 
store information as patterns.     

Inspired by the examinations of the structures of the brain, Artificial Neural Networks are computer 
simulations of ‘brain-like’ systems of interconnected processing units. The processing units are often 
referred to as nodes and typically viewed as being analogous to the neurons of the human brain. Real 
neural networks - in contrast to their artificial counterparts - are not binary, not synchronous and not 
stable systems. But the very basic behaviour of the artificial processing units is similar to the one of 
the biological neurons: First, the unit receives signals from a number of other nodes in the network.  
The  sum  of  these  signals  determines  the  unit’s  internal  level  of  activity. Secondly, the 
combined signal is passed on to other nodes through a weighted connection.   



The  pattern  of  connectivity  of  an  Artificial  Neural  Network  (i.e.  The combination of weights 
associated with each connection) determines the system’s response to an input stimulus. Given a 
certain pattern of weights, an input x leads to a predictable output y. In this sense, the artificial 
neural network acts similar to a conventional computer program.  In strong contrast to the 
conventional program, however, the neural network does not require a step by step procedure to 
perform a desired task. Instead, the network can be taught to do the task.  This is the so-called 
training process.   

At the beginning of the training process, the weights associated with the node connections will 
typically be set to random values.  This corresponds to the network knowing nothing.  As the 
training process proceeds, the weights will converge to values allowing them to perform useful 
computation. We can thus say that the network commences knowing nothing and moves on to gain 
some real knowledge. This is referred to as learning.   

The learning process can be competitive, meaning that during each training step the particular node 
is determined that is already closest to the input signal. The node is rewarded by being allowed to 
adapt even further to the input - in other words: to learn more. If the map receives feedback from the 
database or outside intervention from the user is necessary, the learning phase is said to be 
supervised. It is called unsupervised, if the algorithm learns about the data merely by inspecting it. 

2.2 The Self-Organizing Map 

2.2.1 Introduction 

The  Self-Organizing  Map  belongs  to  the  class  of  unsupervised  and  competitive  learning 
algorithms.  It  is  a  sheet-like  neural  network,  with  nodes  arranged  as  a  regular,  usually  two-
dimensional grid. As explained in the previous section on Neural Networks, we usually think of the 
node connections as being associated with a vector of weights. In the case of Self-Organizing Maps,  
it  is  easier  to  think  of  each  node  as  being  directly  associated with  a weight vector.  

See Figure  2  below  for  an  illustrative  representation  of  a  4  by  3  map  with  3-dimensional  
weight vectors. 

 

Figure 2: Each map node is associated with a vector of weights 

The items in the input data set are assumed to be in a vector format. If n is the dimension of the input 
space, then every node on the map grid holds an n-dimensional vector of weights.   



mi =[ mi1 , mi2 , mi3 , . , min ]          (Equation 2)    
  
The basic principle of the Self-Organizing Map is to adjust these weight vectors until the map 
represents .a picture. of the input data set. Since the number of map nodes is significantly smaller 
than the number of items in the dataset, it is needless to say that it is impossible to represent every 
input item from the data space on the map. Rather, the objective is to achieve a configuration in 
which  the  distribution  of  the  data  is  reflected  and  the  most  important  metric  relationships  
are preserved. In particular, we are interested in obtaining a correlation between the similarity of 
items in the dataset and the distance of their most alike representatives on the map. In other words, 
items that are similar in the input space should map to nearby nodes on the grid.  

2.2.2 The Algorithm 

The algorithm proceeds iteratively. On each training step a data sample x from the input space is 
selected. The learning process is competitive, meaning that we determine a winning unit c on the 
map whose weight vector mc is most similar to the input sample x.    

  ||x-wc||=minI||x-wI ||         

The weight vector mc of the best matching unit is modified to match the sample x even closer. As an 
extension to standard competitive learning, the nodes surrounding the best matching unit are adapted 
as well. Their weight vectors mi are also .moved towards. the sample x. The update rule may be 
formulated as:  

wj(t +1) = wj(t) + m(t) lw(x)(j,t) [x - wj(t)] 

where  lw(x)(j,t) is the ‘degree of neighbourhood’ of node j w.r.t. the winning   
 node w(x) at time t, m(t) is the learning rate at time t, 

the term in square brackets represents the ‘difference’ between the  input vector and the weight 
vector (usually Euclidean distance). 

2.2.3 The choice of parameters 

The maps produced with the SOM algorithm are very much influenced by our choice of  
parameters. This includes   
♦  the map width and height,  
♦  the number of iterations,  
♦  the size the initial radius and  
♦  the initial value of the learning rate.  
  
The are no strict guidelines for choosing any of these parameters. A process of .trial and error. is  
necessary to determine a set of values that are suitable for the dataset at hand. As a rule of thumb,  
it has been suggested [Kohonen et al (1996)] to use rectangular (but non-quadratic) maps, say, of  
size 15 by 10 and to use an initial radius equal to the height of the map. For the value of the initial  
learning rate factor a value of 0.05 has been suggested.  
  
In the following diagrams, we have assumed   
♦  Total number of iterations: 10000  
♦  Initial Radius: 10  
♦  Initial Learning Rate: 0.05  
  
Figure 3 shows how the learning rate and the radius decrease linearly as the number of  cycles  
increases. The learning rate goes down to 0 but the radius is at least one.  



 
Figure 3: Learning Rate and Radius decrease monotonically 

 
 

2.2.4 Initialization of the map   

Three different techniques are commonly used to initialize the map. The first approach is to use 
random values, completely independent of the training data set.  This corresponds to the map 
knowing nothing about the input data. It is a simple but rather poor way of initializing the map 
because it requires quite a number of additional training cycles until the map can be said to be at 
least roughly representative of the training data.   
  
The second approach is to use random samples from the input training data. The advantage is that  
the initial weight vectors already lie in  the same space as the training data. When the training  
commences, the map is already in a state in which it represents at least a subset of the input data  
items.  This  obviously  reduces  the  number  of  training  iterations  needed  and  hence  lowers  the  
computational cost. Nevertheless, the choice of input samples used for the initialization is random  
and the number of map nodes is very small compared to the number of training data items. The  
initial  map  is  hence  not  likely  to  be  truly  representative  of  the  given  dataset.  One  may  
easily imagine a scenario where by pure coincidence a large number of outliers have been chosen 
which have little in common with the majority of data items. Similarly, the initial samples may not 
reflect the existence of outliers at all.   
  
The third approach to map initialization tries to reflect the distribution of the data more faithfully.  
This is not easy to achieve since the map is usually only two-dimensional while the dataset is often  
of a  much  higher  dimensionality.  One  may  consider  in  abstract  terms  how  a  
multidimensional  dataset can be best  characterized using a reduced number of dimensions. 
Supposing we were to chose only one dimension to describe the dataset, which one should we chose? 
Clearly, if there is one dimension which always holds values very close to its mean, then it would be 
relatively easy to predict the values of this dimension. In other words, the information content of this 
dimension would be low. On the contrary, the dimension showing the strongest variation is of the 
greatest interest.   
 

2.2.5 Available software implementations   

Despite  the  popularity  of  the  algorithm,  relatively  little  work  has  been  carried  out  in  terms  
of  software implementations. Apart from the many tools with purely educational purposes there are  
really only two software packages available that achieve a professional standard and are accepted  
in the academic community. Both of  these have been published by the work group around SOM- 
inventor Teuvo Kohonen at the University of Helsinki, Finland.  
  
The first one of the two packages is SOM_PAK [Kohonen (1996)] which dates back to 1996. The  
software is a text-only implementation written in ANSI C. It runs very fast but is inconvenient to  



handle and includes hardly any visualisation support.   
  
The other package is the SOM Toolbox [Vesanto et al (1999)]. The Toolbox is a software library  
for  Matlab.  It  is  strong  in  terms  of  map  visualisation  but  performs  rather  poorly  due  to  its  
integration into the Matlab environment. According to the authors of the Toolbox, release 1 of the  
software required 23 times as much time to perform the same map training task as the SOM_PAK  
tool. It also misses effective features for the analysis of the maps and cannot visualise an ongoing  
training process. The  Toolbox provides some graphical  user interface components but their  
handling is cumbersome and the use of the command line functions is strongly recommended by  
the authors of the Toolbox. Continued work on the software has led to a second release in 1999.  
By 2002, however, most of the departmental staff that has been involved with the Toolbox has left  
the University of Helsinki so further development of the package is uncertain.    
  

2.2.6 Example of self-organizing maps 

To illustrate the self-organizing result with a concrete model simulation, consider the data given in 
Table. Each column is a schematic description of an animal, based on the Presence (=1) or absence 
(=0) of some of the 13 different attributes given on the left. Some attributes, such as “feathers”    and 
“2 legs” and correlated, indicating more significant differences than the other attributes, but we shall 
not take this correlation into account in learning in any way. In the following, we will take each 
column for the input vector of the animal indicated at the top .The animal name itself does not 
belong to the vector but instead specifies the label of the animal in the calibration of the map. 
The members of the data set were presented iteratively and in a random order to a SOM of 10*10 
neurons subject to the adaptation process described above. The initial connection strengths between 
the neurons and their n=29 input lines were chosen to be small random values, i.e.  No prior order 
was imposed. However, after a total of 2000 presentations, each neuron became more or less 
responsive to one of the occurring attribute combinations and simultaneously to one of the 16 animal 
names, too. Thus we obtain the map shown in Figure 4.It is very apparent that the spatial order of the 
response has captured the essential “family relationships” among the animals. Cells responding to, 
e.g. “birds” occupy the left part of the lattice, “hunters” such as “tiger”, ”lion” and “cat” are 
clustered toward the right, and more “peaceful” species such as “zebra” , “horse” and “cow” are 
situated in the upper middle. Within each cluster, a further grouping according to similarity is 
discernible.

 

is 

has 

likes 

 Dove Hen Duck Goose Owl Hawk Eagle Fox Dog Wolf Cat Tiger Lion Horse Zebra Cow
Small 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 

Medium 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 
Big 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

2 legs 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
4 legs 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 
Hair 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

Hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
Mane 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 

Feathers 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
Hunt 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 
Run 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 
Fly 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 

Swim 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
 

to 



 

 

2.2.7 Visualizing Self-Organizing Maps 

Extracting the visual information provided by the Self Organizing Map is a central concept of this 
paper. The choice of visualization technique, however, is far from straightforward.    

Visualizing a SOM is challenging because the input data is usually of a high dimensionality. By 
projecting the input space to a two-dimensional grid we can express the similarity of two samples as  
the  distance  between  them.  But  while  simplicity  is  gained  by  reducing  dimensionality, 
information  is  effectively  lost  when  the  data  item  is  simply  represented  by  a  dot.  The  mere 
position on the map cannot sufficiently embody the complexity of an n-dimensional vector.    

The  problem  of  visualising  multivariate  data  is,  of  course,  not  a  new  one.  Information 
Representation is a mature area of research and  numerous approaches of displaying 
multidimensional  multivariate  data  have  been  proposed.  [Wong and Bergeron  (1997)]  The 
following paragraphs briefly review a number of these methods.    

One  of  the  simplest  ways  of  coping  with  higher  dimensions,  is  to  use  a  two-dimensional 
coordinate plane and to incorporate further axes for each additional dimension, as shown in Figure 5. 
A vector can then be plotted as a curve connecting the axes. The intercept at axis i corresponds to the 
value of the multidimensional object in dimension i. 

 

Figure 5: Visualising high-dimensional data using parallel coordinates 
 



The  parallel  coordinates  method  has  two  advantages:  Firstly,  it  is  very  useful  in  determining 
relationships  between  dimensions,  say,  of  the  form  “Whenever  d2 is  high, then d4  is  low”. 
Secondly, the method scales well (i.e. linearly) with the number of dimensions, since we only need 
to add a further axis for each additional dimension. It is also possible to display a large number of 
objects in a single parallel coordinate’s diagram. It is however not ideally suited for displaying a 
large  number  of  objects  in  separate  diagrams.  So for Self-Organizing  Maps,  a  more  compact 
representation is favourable that allows us to plot a diagram for each node on the map. [Honkela 
(1997)] has suggested an iconified version which is shown in Figure 6.   

 

Figure 6: Honkela.s suggestion for visualizing multidimensional data 
 

A large number of visualization techniques map each dimension of the input space onto a certain  
feature of the icon. This idea is perhaps best illustrated by introducing Chernoff.s Faces [Chernoff  
(1973)]. This rather peculiar way of graphically displaying multidimensional uses simple, cartoon- 
like faces (see Figure 7). Each dimension of the input vectors is assigned to a facial characteristic,  
e.g.  nose  size,  eye  spacing,  mouth  width,  etc.  The  method  draws  upon  the  human  ability  to  
recognize small differences in facial characteristics and to digest many of these characteristics at  
once.  

 
Figure 7: Chernoff.s faces 

 

2.3 Scalable Vector Graphics 

Scalable Vector Graphics (SVG) is an XML markup language for describing two-dimensional vector 
graphics, both static and animated. It is an open standard created by the World Wide Web 
Consortium, which is also responsible for standards like HTML and XHTML. 

SVG allows three types of graphic objects: 

♦ vector graphic shapes (e.g. paths consisting of straight lines and curves, and areas bounded 
by them)  

♦ raster graphics images / digital images  



♦ text 

 

Figure 8: Example of SVG 
 

Graphical objects can be grouped, styled, transformed and composited into previously rendered 
objects. Text can be in any XML namespace suitable to the application, which enhances 
searchability and accessibility of the SVG graphics. The feature set includes nested transformations, 
clipping paths, alpha masks, filter effects, template objects and extensibility. 

SVG drawings can be dynamic and interactive. The Document Object Model (DOM) for SVG, 
which includes the full XML DOM, allows straightforward and efficient vector graphics animation 
via ECMAScript or SMIL. A rich set of event handlers such as onmouseover and onclick can be 
assigned to any SVG graphical object. Because of its compatibility and leveraging of other Web 
standards, features like scripting can be done on SVG elements and other XML elements from 
different namespaces simultaneously within the same web page.  

3 Software model for Information Visualization of SOM 

The objective is to  build a generic system based on the Self-Organizing Map algorithm.  The system 
must be capable  of generating and visualising maps, thus displaying the cluster relationships hidden 
in the data.  

The task can roughly be broken down into the following steps:  

-  reading in a training data file   

-  initialising a new map or loading an old one  

-  training the map by running the algorithm   

-  writing the results to a file  

-  translating the map into a graphical display such that the cluster structure of the data becomes  
visible  and  the  relationships  between  the  different  dimensions  are  made explicit  

-  enabling the user to retrieve information on selected map nodes or regions  

-  offering the user to trace which input items correspond to a selected map region and enabling him 
to save these to a file for further processing 

It is desirable to distinguish the algorithm from the visualization as clearly as possible. The 
anticipated System Structure is shown below. 



 

  

The overall System architecture is shown below. 
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4 Conclusion 

SOM is a highly useful multivariate visualization method that allows the multidimensional data to be 
displayed as a 2-dimensional map. This is the main advantage of SOM. The map units clustering 
makes it easy to observe similarities in the data. Through our experiment, we demonstrated that the 
possibility of quick observation of relationship between component (feature) and the class as well as 
the relationship among different component (feature) of the dataset from the visualization of a 
dataset. SOM is also capable of handling several types of classification problems while providing a 
useful, interactive, and intelligible summary of the data. 

However, SOM also has some disadvantages. For example, adjacent map units point to adjacent 
input data vector, so sometimes distortions are possible because high dimensional topography can 
not always be represented in 2D. To avoid such phenomenon, training rate and the neighborhood 
radius should not be reduced too quickly. Hence, SOM usually need many iterations of training. And 
SOM also does not provide an estimation of such map distortion. 



Alternatives to the SOM have been developed in order to overcome the theoretical problems and to 
enable probabilistic analysis. Examples of these include the Generative Topographic Mapping and 
the approach taken by Utsugi. Both of these approaches explicitly include a generative density 
model, which is a constrained Gaussian mixture model. Model selection can then be based on 
maximum likelihood or Bayesian evidence or some other well defined criterion. 
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Nevertheless, SOM still have many practical applications in pattern recognition, speech analysis, 
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