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Abstract

The pages and hyperlinks of the World-Wide Web may be viewed as nodes and
arcs in a directed graph. This graph has about a billion nodes today, several billion
links, and appears to grow exponentially with time. Known facts about macroscopic
structure, diameter and in-degree and out-degree distributions of the graph are
reviewed. The PageRank as another way of characterizing structure of the Web
graph is considered. Power method, decomposition, and aggregation/disaggregation
method computing of PageRank are recalled.
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1 Introduction

The World-Wide Web has spawned a sharing and dissemination of information
on an unprecedented scale. Hundreds of millions - soon to be billions - of
individuals are creating, annotating, and exploiting hyperlinked content in a
distributed fashion. These individuals come from a variety of backgrounds and
have a variety of motives for creating the content. The pages and hyperlinks
of the World-Wide Web may be viewed as nodes and arcs in a directed graph.
There are many reasons for studying the evolution of this graph. We review
a number of measurements and properties of the graph, such macroscopic
structure, diameter and in-degree and out-degree distributions. The another
way to characterize structure of the Web graph is PageRank. PageRank is
the method of finding page authorities produced by the Web graph structure.
Power method, decomposition, and aggregation/disaggregation method are
recalled.



In Section 2 we review the Web graph and its characteristics. Basic termi-
nology of graph theory is placed. Macroscopic structure, diameter, and in-
out-degree distributions are described. In Section 3 we introduce Markov
theory needed for defining PageRak. In Section 4 we define PageRank and
place its properties. In Section 5 we consider decomposition of PageRank and
different special cases. In Section 6 we describe aggregation/disaggregation
method.

2 Web graph

2.1 Basic terminology of graph theory

The reader familiar with basic notions from graph theory may skip this primer.

Definition 1 (Directed graph) A directed graph G is a pair G = (V, E),
where V is a set of any nature, elements of which are called nodes, E is a set
of ordered pairs (u, v) called arcs.

Definition 2 (In-degree and out-degree) The out-degree of a node u is
the number of distinct arcs (u, v) ∈ E, and the in-degree is the number of
distinct arcs (v, u) ∈ E.

Definition 3 (Path) A path from node u to node v is a sequence of arcs
(u, u1), (u1, u2), . . . , (uk, v), where (u, u1), (ui, ui+1), (uk, v) ∈ E, ∀i = 1, k − 1.

Definition 4 (Strongly connected component) A strongly connected
component (strong component for brevity) of a graph G = (V, E) is a set of
nodes such that for any pair of nodes u and v in the set there is a path from
u to v.

Definition 5 (Diameter) A diameter of a graph G = (V, E) is the maxi-
mum over all ordered pairs (u, v) of the shortest path from u to v.

2.2 Definition of the Web graph

Lets define a directed graph corresponding to the Web. Pages represent nodes
and hyperlinks between pages represent arcs. Hence, we defined a directed
graph called the Web graph. There are many pages in the Web and, therefore,
the Web graph is large and has complex structure.
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Figure 1. The macroscopic structure of the Web.

2.3 Structure of the Web graph

The structure of the Web graph is considered in [5]. The web macroscopic
structure is represented on Figure 1. This connected web breaks naturally into
four pieces. The first piece is a central core, all of whose pages can reach one
another along directed hyperlinks – this ”giant strongly connected component”
(SCC) is at the heart of the web. The second and third pieces are called IN
and OUT. IN consists of pages that can reach the SCC, but cannot be reached
from it - possibly new sites that people have not yet discovered and linked to.
OUT consists of pages that are accessible from the SCC, but do not link
back to it, such as corporate websites that contain only internal links. Finally,
the TENDRILS contain pages that cannot reach the SCC, and cannot be
reached from the SCC. It is possible for a TENDRIL hanging off from IN to
be hooked into a TENDRIL leading into OUT, forming a TUBE – a passage
from a portion of IN to a portion of OUT without touching SCC.
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Figure 2. In-degree distribution.

2.4 Diameter of the Web graph

The diameter of SCC is at least 503, but is probably substantially more than
this: unless a short tube connects the most distant page of IN to the most
distant page of OUT without passing through the SCC, the maximum finite
shortest path length is likely to be close to 905.

2.5 In- and out-degree distributions

In- and out-degree distributions on the Web are distributed according to power
laws, e.g. the probability that a node has in-degree (out-degree) i is propor-
tional to (1

i
)x, for some positive x > 1. In the case of in-degree, the exponent

of the power law is around 2.1 (Figure 2), and, in the case of out-degree, the
exponent of the power law is 2.72.

3 Markov theory

We will consider a PageRank algorithms below and and we introduce Markov
theory in order to fix notation.
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3.1 Markov processes

Definition 6 (Markov process) An S-valued Markov process is an in-
finite sequence of random variables Xk = X0, X1, . . . ∈ S if S is finite and
the probability function P satisfies: P (Xk+1 = b|X0 = a0, . . . , Xk = ak) =
P (Xk+1 = b|Xk = ak) is the same for all k > 0.

Its transition function is ω(a, b) = P (Xk+1 = b|Xk = a).

Its initial distribution is σ(a) = P (X0 = a).

In the Stochastic processes literature, this is technically called a homogeneous,
discrete time, finite space Markov process. In applications of the theory, they
are often simply called Markov processes or Markov chains.

3.2 Convergence of Markov processes

In this section, we review the conditions under which limk→∞ P (Xk = a)
converges.

Most of the Markov processes we will discuss have a nice property called ergod-
icity. To define this, we need to define the period of a state and irreducibility
first. Intuitively, if the only way from a state back to itself is through a cycle,
then that state is periodic. If every state has the same period, then everything
moves ’in sync’, affecting its convergence properties.

Definition 7 (Period of state) Let {Xk} be an S-valued Markov process.
The period of a state a ∈ S is the largest d satisfying: (∀k, n ∈ N)

P (Xn+k = a|Xk = a) > 0 ⇒ d divides n

If d = 1, then the state a is aperiodic.

Definition 8 (Closed subset) Let {Xk} be an S-valued Markov process.
The subset S̃ ⊆ S is called closed subset if ∀a ∈ S̃, ∀b 6∈ S̃ ⇒ ω(a, b) = 0.

Definition 9 (Irreducible closed subset) Let {Xk} be an S-valued Markov
process. The subset S̃ ⊆ S is called irreducible closed subset iff S̃ is a
closed subset, and no proper subset of S̃ is closed subset.

Definition 10 (Irreducible Markov process) Let {Xk} be an S-valued Markov
process. The Markov process is called irreducible Markov process iff S is
a irreducible closed subset.
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Definition 11 (Ergodic Markov process) An ergodic Markov process is
a Markov process {Xk} that is both

• irreducible: every state is reachable from every other state.
• aperiodic: the greatest common divisor of the states periods is 1.

Lemma 1 (Ergodic Condition) An irreducible S-valued Markov process with
transition function ω that has ω(a, a) > 0 for some state a ∈ S is aperiodic,
and hence ergodic. Proof can be found in [6]

Theorem 1 (Ergodic Convergence) If {Xk} is an ergodic S-valued Markov
process, then the probability function converges for all a ∈ S:

lim
k→∞

P (Xk = a) = pa

Proof can be found in [2].

3.3 Transition matrix and stationary distribution

Lets the set of states is finite and n is the number of states. Let us number all
states, e.g. ∀ai ∈ S, i = 1, n. Now, the transition function ω can be rewritten
in form of transition matrix P , e.g.

Pij = ω(ai, aj),∀ai, aj ∈ S

Definition 12 (Row-stochastic matrix) An matrix P is called row stochas-
tic matrix iff Pe = e, where e is a vector of appropriate dimension whose
all entries equal one.

The transition matrix is a row-stochastic matrix.

Definition 13 (Ergodic matrix) An matrix P is called ergodic matrix iff
it is a transition matrix of the Markov process {Xk} and the Markov process
is ergodic.

Definition 14 (Probability distribution) An row vector π having dimen-
sion n is called probability distribution over a set of states S if πe = 1.

Definition 15 (Stationary probability distribution) An row vector π is
called stationary probability distribution over a set of states S if π is
probability distribution and

πP = π. (1)

As it follows from Theorem 1, ergodic transition matrix has unique stationary
distribution.
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3.4 Power method

One way to compute the stationary distribution of a Markov process is by ex-
plicitly computing the distribution using π(k+1) = π(k)P , until the distribution
converges. This leads us to the Power Method for computing the stationary
distribution of P .

function π(m) = PowerMethod(P, v, ε){
π(0) = v;

k = 1;

repeat

π(k) = π(k−1)P ;

δ = ‖π(k) − π(k−1)‖1;

k = k + 1;

until δ < ε;

},

where ‖π‖1 = πe, v is the first approximation, and ε is accuracy. The rate of

convergence of the power method is given by |λ2|
|λ1| , where λ1, λ2 are eigenvalues

of P , if all eigenvalues are ordered by modulus, [7,15]. If P is row-stochastic
matrix then λ1 = 1, 1 > |λ2| > |λ3| > . . . > |λn| > 0 [8].

4 Defining of PageRank

Lets consider how authors of the method, Brin and Page [14], define PageRank.
Lets A is a web page and T1, ..., Tm are pages linking to the page A. Lets l(A) is
the number of outgoing links from the page A. The parameter c is a damping
factor which can be set between 0 and 1 (typically 0.85). Assume that n is the
number of pages. Then PageRank of the page A, π(A), define as

π(A) =
(1− c)

n
+ c(π(T1)/l(T1) + . . . + π(Tm)/l(Tm)) (2)

If we number all page then we call the row vector π = (π1, . . . , πn), where πi is
the PageRank of i-th page, the PageRank vector. The vector is a distribution
of probability on the set of the pages. The PageRank of a page, as it conse-
quents from (2), depends from PageRank of pages refering to the page, hence,
computing of the PageRank is iterative process.

The PageRank vector is a stationary probability distribution of special formed
Markov process. Lets consider a surfer, who stochastic rambling over Internet.
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Assume that there are n web pages in Internet and the surfer is on i-th page
having ki outgoing links. Lets the surfer chooses either one of the outgoing link
of the i-th page with probability c or arbitrary page with probability (1− c).
Hence, we obtain Markov chain where pages are states and transition function
depends on outgoing links of pages. The Markov chain has finite number of
states, therefore, we can define transition matrix. Lets the matrix P define
with the rule: Pij = 0, if page i has not links to the page j, and Pij = 1/l(i),
if the page i has a link to the page j, and Pii = 0 in any case. If the page i has
no outgoing links then Pij = 1/n,∀j = 1, n. The P matrix is row-stochastic.
The transition matrix for the Markov chain is

G = cP + (1− c)1/nE, (3)

where E is a matrix whose all entries equal one. The matrix G is called a
Google matrix. A Google matrix is row-stochastic and ergodic. The PageRank
vector satisfies the equation

π = πG (4a)

πe = 1, (4b)

where e is a vector of appropriate dimension whose all entries equal one.
Equation (4b) is used for normalization of PageRank vector. One can find the
PageRank vector from (4) [4,11,13] as

π =
1− c

n
et(I − cP )−1, (5)

Because of there are the large number of web pages in the Internet ( Google
reports about 8 billions of pages), calculation of (I − cP )−1 is computa-
tion expensive. Different methods of approximative computation of PageRank
were developed. Power iteration method helps to find the PageRank vector.
PowerMethod(G, 1

n
et, ε). It is known that for a Google matrix |λ1(G)| = 1

and |λ2(G)| 6 c [8,11], so power method converges to stationary distribution
with rate c.

5 Decomposition

The PageRank vector is very long and it is good idea try to divide it on
several components and find each component separately and, after that, find
the whole PageRank vector. The matrix P is represented in block structure
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for the purpose.

P =



P11 P12 . . . P1N

P21 P22 . . . P2N

...
...

. . .
...

PN1 PN2 . . . PNN


, (6)

where N < n. The PageRank vector is

π = (π1, π2, . . . , πN), (7)

where πI is row vector with dim(πI) = nI and

N∑
I=1

nI = n

5.1 Block-diagonal case

Lets consider the case when the matrix P is block-diagonal [1], e.g.

P =



P1 0 . . . 0

0 P2 . . . 0
...

...
. . .

...

0 0 . . . PN


. (8)

For block I define the perturbed matrix

GI = cPI + (1− c)1/nIE, (9)

and let vector πI be the PageRank of PI such that

πI = πIGI (10a)

πIe = 1, (10b)

Theorem 2 The PageRank π is given by

π =
(

n1

n
π1,

n2

n
π2, . . . ,

nN

n
πN

)
(11)

Proof can be found in [1].

So, we can compute part of the PageRank vector independently and find
whole PageRank with formula (11). Each block in the matrix P represents
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disconnected component in the Web graph, but, as it was shown in Figure
1, there are the large number of pages in giant connected component, hense,
although the method lets decrease dimension of unknown vector but in small
degree only.

5.2 2× 2 case

Let us consider the case

P =

 P11 P12

P21 P22

 , π = (π1, π2)

where P11 and P22 are square. The equation (1) can be rewritten as

π(I − P ) = 0.

The partition of P was considered in [9]. Assume that P is irreducible. Hence,
I−P is an singular and irreducible, the non-trivial leading principal submatrix
I − P11 is non-singular [3]. Hence, we can factor I − P = LDU , where

L =

 I 0

−P21(I − P11)
−1 I

 , (12)

D =

 I − P11 0

0 I − S

 , (13)

U =

 I −(I − P11)
−1P12

0 I

 , (14)

and
S = P22 + P21(I − P11)

−1P12

The matrix S is the stochastic complement of P22 in P [12]. Since U is non-
singular we have π(I − P ) = 0 iff πLD = 0. Hence,

π2S = π2 π1 = π2P21(I − P11)
−1, (15)

which means that π2 is a stationary distribution for the smaller matrix S.
Since P is irreducible and stochastic, so is S. Hence, S has a unique stationary
distribution σ,

σS = σ, σe = 1

Therefore, we can determine π2 from the stationary distribution σ of S and
then π2 = ρσ where the factor ρ is responsible for the normalization πe = 1.
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Unfortunately, there are cases when |λ2(S)| > |λ2(P )|, so power method for
S converges slower then one for P . But if the partitioning is considered for a
Google matrix G there is such stochastic complement S that |λ2(S)| < |λ2(G)|
[9].

6 Aggregation/Disaggregation method

When power method is used for finding PageRank different components of the
PageRank vector can converges with different speed. And while the appropri-
ate accuracy is achieved for some components we have to continue computation
to reach a good accuracy for components converging slowly. It is useful if we
do as many iteration for each component of the PageRank vector as need to
achieve appropriate accuracy. Aggregation/disaggregation methods are based
on the idea. Partitioning of a Google matrix is used

G =



G11 G12 . . . G1N

G21 G22 . . . G2N

...
...

. . .
...

GN1 GN2 . . . GNN


. (16)

6.1 Blockrank method

Lets πi, i = 1, N, is a PageRank vector for Gii if Gii represents entire
Web, and if links to pages in other groups did not exist. The vector πi is
called local PageRank for i-th group, and found approximately with πi =
PowerMethod(Gii,

1
n
et, ε). Power method can converge with different speed

for different groups and we do as many iterations for each group as we need
to get appropriate accuracy. An aggregation matrix A is defined as

Aij = πiGije, (17)

where e is a vector of appropriate dimension whose all entries equal one. Lets ν
is a PageRank vector for the matrix A. Dimension of ν is equal to N . Now we
can approximate global PageRank vector as local PageRank vectors weighted
by ν, e.g.

π̃ = (ν1π1, . . . , νNπN), (18)

and use π̃ for power method with matrix G, π = PowerMethod(G, π̃, ε). The
approach was considered in [10].
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7 Conclusion

The World Wide Web is a very complex entity, and individuals find sophisti-
cated approaches to discover its properties.
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