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Moore’s Law
Doubling the number of transistors per integrated circiut every 18-24 months. 
(Electronics, Vol. 38, Number 8, 1965)
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Transistor Scaling
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Any object of few nm in size shows discrete 
quantum energy levels
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number of atoms they consist of 
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Top-down Approach

Any object of few nm in size shows discrete 
quantum energy levels
Inorganic clusters will slightly differ in the 
number of atoms they consist of 

Scatter of quantum energy levels
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Bottom-up Approach

Mimicking nature’s bottom-up processes 
results in several advantages:

Molecules are several orders of magnitude smaller than 
present feature size
Organic molecules of a given compound are absolutely 
identical
Great amount of different materials (i.e. molecules)
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Bottom-up Approach

The goal: electronic properties of a device 
may be adjusted by the design of the 
chemical structure
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Bottom-up Approach

The goal: electronic properties of a device 
may be adjusted by the design of the 
chemical structure 
Two different approaches, to be 
distinguished:

Single molecular systems
Bulk molecular system (OLED, OTFT)
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SAM – Self Assembled Monolayer
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SAM – “Covalent bond”

Required:
good stability and loose enough
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SAM – “Covalent bond”

Required:
good stability and loose enough

Best investigated:
thiol group (S-H group) on the molecule 
+
Au-Substrate
(strength of ~1.8 eV)
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Thiol-Au Interface

Rosa Di Felice, J. Chem. Phys., Vol. 120, No. 10, 2004
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Frequently used molecules for SAMs
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Van - der - Waals Interaction: 
Langmuir-Blodgett (LB)-films 

Spreading of organic 
solution of the molecule
Evaporation of organic 
solvent 
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Van - der - Waals Interaction: 
Langmuir-Blodgett (LB)-films 

Spreading of organic 
solution of the molecule
Evaporation of organic 
solvent 
Formation of a packed 
monolayer by compression
Lifting of the electrode
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Electromigration Technique

Addressing a single molecule
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Electromigration Technique

Addressing a single molecule
High-resolution lithography is not enough
Breaking up a hyphenation point by applying electric
current (Electromigration)
Resulting electrodes with 1 - 3 nm gap
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Electron Transport Mechanism

Organic molecules as “electrical wires”



Molecular Electronics, Daniel P. , JASS ’05

Benzene 
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Hybridisation
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sp2-Hybridisation
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sp2-Hybridisation
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sp2-Hybridisation
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Conjugated Oligomers as 
Semiconductors
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Conjugated Oligomers as 
Semiconductors
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Electron Transport

Coherent electron motion – on resonance
Coherent: Absence of dissipative Effects
(inelastic scattering)
Resonance: Metal Fermi level is resonant with an unoccupied 
molecular orbital
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Electron Transport

Coherent electron motion – on resonance
Coherent: Absence of dissipative Effects
(inelastic scattering)
Resonance: Metal Fermi level is resonant with an unoccupied 
molecular orbital

Landauer Approach
Molecule is considered as a scatterer for the electron
Current is related to the transmission probability
Conductance g is given by:
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Insulators

Alkanes: insulating, but flexible
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Insulators

Alkanes: insulating, but flexible

-System: not flexible, but conducting

Perpendicular    -System:

insulating and not flexible

π

π
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Molecular Doping
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Diodes
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Diodes - Experiment
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Switches and Storage
Elements

Classes of molecules, 
which are stable in two 
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Switches and Storage
Elements

Classes of molecules, 
which are stable in two 
different states (bistable)
Classified by:

stimulus that triggers the 
switch
(light, pH value, electrical 
potential)
property or function that 
is switched
(structural feature, 
current transport)
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Switches and Storage Elements -
Example
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Catenane as memory device

dioxynaphtalene

TTF
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Rotaxane as Crossbar-Memory

Young Chen et al., Appl. Phys. Lett., Vol. 82, No. 10
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Rotaxane as Crossbar-Memory - Fabrication

a) Deposition of Rotaxane by
LB-technique
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Rotaxane as Crossbar-Memory - Fabrication

a) Deposition of Rotaxane by
LB-technique

b) Evaporation of Ti protective
layer

c) Evaporation of top electrode
d) Anisotropic RIE down to the

SiO2



Molecular Electronics, Daniel P. , JASS ’05

Rotaxane as Crossbar-Memory - Data
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Single Molecule FET



Molecular Electronics, Daniel P. , JASS ’05

Organic Light Emitting Diode
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OLED - Principle
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OLED - Structure and Materials
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OLED - Effect of Dopants
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Bottom-up approach in order to overcome the 
physical limitations of the Top-down approach
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Summary and Outlook

Bottom-up approach in order to overcome the 
physical limitations of the Top-down approach
Molecular film devices are already 
commercialised (OLED) 
Single molecule devices are still under 
investigation  
In order to use the ultimate density of logic and 
memory functions of molecules, problems like 
their addressability, reproducibility and reliability 
have to be solved
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Thiol-Au Interface

Rosa Di Felice, J. Chem. Phys., Vol. 120, No. 10, 2004
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Catenane in a crossbar memory

Paper: Yong Chen: 
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