Molecular Electronics

Daniel Pedone, Jass '05

Content

- Introduction
- Electrodes and Contacts
- Functions of Single Molecules
- Molecular Electronic Devices
- Summary and Outlook

Content

Introduction

- Motivation (Top-down approach)
- Advantages (Bottom-up approach)
- Electrodes and Contacts
- Functions of Single Molecules
- Molecular Electronic Devices
- Summary and Outlook

Moore's Law

Doubling the number of transistors per integrated circiut every 18-24 months. (Electronics, Vol. 38, Number 8, 1965)

Molecular Electronics, Daniel P., JASS '05

Transistor Scaling

Molecular Electronics, Daniel P., JASS '05

Top-down Approach

- Any object of few nm in size shows discrete quantum energy levels
- Inorganic clusters will slightly differ in the number of atoms they consist of

Top-down Approach

- Any object of few nm in size shows discrete quantum energy levels
- Inorganic clusters will slightly differ in the number of atoms they consist of

→ Scatter of quantum energy levels

 Mimicking nature's bottom-up processes results in several advantages:

> Molecules are several orders of magnitude smaller than present feature size

Mimicking nature's bottom-up processes results in several advantages:

- Molecules are several orders of magnitude smaller than present feature size
- Organic molecules of a given compound are absolutely identical

Mimicking nature's bottom-up processes results in several advantages:

- Molecules are several orders of magnitude smaller than present feature size
- Organic molecules of a given compound are absolutely identical
- Great amount of different materials (i.e. molecules)

The goal: electronic properties of a device may be adjusted by the design of the chemical structure

- The goal: electronic properties of a device may be adjusted by the design of the chemical structure
- Two different approaches, to be distinguished:
 - Single molecular systems
 - Bulk molecular system (OLED, OTFT)

Content

Introduction

- Electrodes and Contacts
 - "Covalent bond" (SAM, Electromigration)
 - Van-der-Waals interaction (LB-film)
- Functions of Single Molecules
- Molecular Electronic Devices
- Summary and Outlook

SAM – Self Assembled Monolayer

SAM – "Covalent bond"

Required: good stability and loose enough

SAM – "Covalent bond"

- Required: good stability and loose enough
- Best investigated: thiol group (S-H group) on the molecule + Au-Substrate (strength of ~1.8 eV)

Thiol-Au Interface

Rosa Di Felice, J. Chem. Phys., Vol. 120, No. 10, 2004

Molecular Electronics, Daniel P., JASS '05

Frequently used molecules for SAMs

Van - der - Waals Interaction: Langmuir-Blodgett (LB)-films

- Spreading of organic solution of the molecule
- Evaporation of organic solvent

Van - der - Waals Interaction: Langmuir-Blodgett (LB)-films

- Spreading of organic solution of the molecule
- Evaporation of organic solvent
- Formation of a packed monolayer by compression

Van - der - Waals Interaction: Langmuir-Blodgett (LB)-films

- Spreading of organic solution of the molecule
- Evaporation of organic solvent
- Formation of a packed monolayer by compression
- Lifting of the electrode

Electromigration Technique

- → few nm ← gold gold gold
- Addressing a single molecule

Electromigration Technique

- Addressing a single molecule
- High-resolution lithography is not enough

Electromigration Technique

Addressing a single molecule

few nm <

- High-resolution lithography is not enough
- Breaking up a hyphenation point by applying electric current (Electromigration)
- Resulting electrodes with 1 3 nm gap

H. Park et al., Nature 417, 722 (2002.

Content

- Introduction
- Electrodes and Contacts
- Functions of Single Molecules
 - Molecular Wires
 - Electron Transport
 - Insulators
 - Diodes
- Molecular Electronic Devices
- Summary and Outlook

Electron Transport Mechanism

Organic molecules as "electrical wires"

Molecular Electronics, Daniel P., JASS '05

Benzene

Hybridisation

sp²-Hybridisation

sp²-Hybridisation

sp²-Hybridisation

Conjugated Oligomers as Semiconductors

Conjugated Oligomers as Semiconductors

As N increases, the π bonding electron wavefunctions will tend to delocalise along the whole length of the chain.

Conjugated polymers are 1-dimensional (in the polymer chain direction) semiconductors.

Electron Transport

Coherent electron motion – on resonance

- Coherent: Absence of dissipative Effects (inelastic scattering)
- Resonance: Metal Fermi level is resonant with an unoccupied molecular orbital

Electron Transport

Coherent electron motion – on resonance

- Coherent: Absence of dissipative Effects (inelastic scattering)
- Resonance: Metal Fermi level is resonant with an unoccupied molecular orbital
- Landauer Approach
 - Molecule is considered as a scatterer for the electron
Electron Transport

Coherent electron motion – on resonance

- Coherent: Absence of dissipative Effects (inelastic scattering)
- Resonance: Metal Fermi level is resonant with an unoccupied molecular orbital
- Landauer Approach
 - Molecule is considered as a scatterer for the electron
 - Current is related to the transmission probability
 - Conductance g is given by:

$$g = \frac{e^2}{\pi \hbar} T(E_F); \qquad T(E) = \exp\left[-\frac{4\pi}{\hbar} \int_{s_1}^{s_2} [2m(V_B(x) - E_x)]^{1/2} dx\right]$$

Insulators

insulating, but flexible

Insulators

Alkanes:

insulating, but flexible

• π -System:

not flexible, but conducting

Insulators

insulating, but flexible

• π -System:

not flexible, but conducting

Perpendicular π -System:

insulating and not flexible

Molecular Doping

		Mono-		Experimental	Results of SCF Molec Orb. Calc'ns**			
		substituted Benzene	Structure	Ionization	STO 3-21G Basis		STO 6-31G Basis†	
	-	Delizente		Potential (IP)*	E _{HONO}	ELUNO	E _{HONO}	ELUNO
Increasing IP	Donor Substituents (X)	Methoxy- benzene C ₆ H ₅ -OCH ₃		8.20 eV	-8.93 eV	3.86 eV	-8.75 eV	3.85 eV
		Methyl- benzene C ₈ H ₅ -CH ₃		8.83 eV	-8.88 eV	4.15 eV	-8.69 eV	4.09 eV
	Substituents (Y)	Benzene C _s H _e	\bigcirc	9.24 eV	-9.20 eV	4.02 eV	-8.98 eV	4.00 eV
		Trifluoromethyl- Benzene C ₆ H ₅ -CF ₃		9.69 eV	-9.98 eV	2.73 eV	-9.69 eV	2.87 eV
	Acceptor Sul	Benzonitrile C ₀ H ₅ -CN		9.73 eV	-9.71 eV	2.33 eV	-9.58 eV	2.27 eV

Diodes

Content

- Introduction
- Electrodes and Contacts
- Functions of Single Molecules
- Molecular Electronic Devices
 - Monomolecular Film Devices (Diodes, Switches, Memories)
 - Single Molecule FET
 - Organic Light Emitting Diode (OLED)
- Summary and Outlook

Diodes - Experiment

Switches and Storage Elements

 Classes of molecules, which are stable in two different states (bistable)

Switches and Storage Elements

- Classes of molecules, which are stable in two different states (bistable)
- Classified by:
 - stimulus that triggers the switch (light, pH value, electrical potential)

Switches and Storage Elements

- Classes of molecules, which are stable in two different states (bistable)
- Classified by:
 - stimulus that triggers the switch (light, pH value, electrical potential)
 - property or function that is switched (structural feature, current transport)

Switches and Storage Elements -Example

Catenane as memory device

Rotaxane as Crossbar-Memory

Young Chen et al., Appl. Phys. Lett., Vol. 82, No. 10

a) Deposition of Rotaxane by LB-technique

- a) Deposition of Rotaxane by LB-technique
 b) Evaporation of Ti protective
 - Evaporation of Ti protective layer

- a) Deposition of Rotaxane by LB-technique
- b) Evaporation of Ti protective layer
- c) Evaporation of top electrode

- a) Deposition of Rotaxane by LB-technique
- b) Evaporation of Ti protective layer
- c) Evaporation of top electrode
- d) Anisotropic RIE down to the SiO₂

Rotaxane as Crossbar-Memory - Data

Single Molecule FET

H. Park et al., Nature 417, 722 (2002.

Organic Light Emitting Diode

OLED - Principle

OLED - Principle

OLED - Principle

OLED - Structure and Materials

OLED - Effect of Dopants

Wavelength (nm)

 Bottom-up approach in order to overcome the physical limitations of the Top-down approach

- Bottom-up approach in order to overcome the physical limitations of the Top-down approach
- Molecular film devices are already commercialised (OLED)

- Bottom-up approach in order to overcome the physical limitations of the Top-down approach
- Molecular film devices are already commercialised (OLED)
- Single molecule devices are still under investigation

- Bottom-up approach in order to overcome the physical limitations of the Top-down approach
- Molecular film devices are already commercialised (OLED)
- Single molecule devices are still under investigation
- In order to use the ultimate density of logic and memory functions of molecules, problems like their addressability, reproducibility and reliability have to be solved

Literature

- General information: Nanoelectronics and Information Technology, Rainer Waser (Ed.), Wiley-VCH Handbook of Nanotechnology, Bhushan (Ed.), Springer Molecular Nanoelectronics, Mark A. Reed et al., ASP
- Chemisorption: Mark H. Dishner et al., Langmuir, Vol. 13, 2318-2322, 1997 Rosa Di Felice, J. Chem. Phys., Vol. 120, No. 10, 2004
- Electronic Transport: Adi Salomon et al., Adv. Mater., Vol. 15, No.22, 2003 Yoram Selzer et al., Nano Letters, Vol. 5, No.1, 61-65, 2005
- SET: Jiwoong Park et al., Nature, Vol. 417, 13 June 2003
- Molecular Switch: Yong Chen et al., Appl. Phys. Lett., Vol. 82, No.10, 2003
- OLED: Molecular Nanoelectronics, Chapter 12, Mark A. Reed et al., ASP

Thiol-Au Interface

Rosa Di Felice, J. Chem. Phys., Vol. 120, No. 10, 2004

Catenane in a crossbar memory

Paper: Yong Chen: