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‘ Content

Introduction
o Motivation (Top-down approach)
o Advantages (Bottom-up approach)
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Moore’s Law

Doubling the number of transistors per integrated circiut every 18-24 months.
(Electronics, Vol. 38, Number 8, 1965)
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‘ Transistor Scaling
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Top-down Approach

Any object of few nm in size shows discrete
guantum energy levels

Inorganic clusters will slightly differ in the
number of atoms they consist of
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Top-down Approach

Any object of few nm in size shows discrete
guantum energy levels

Inorganic clusters will slightly differ in the
number of atoms they consist of

= Scatter of quantum energy levels
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Bottom-up Approach
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Bottom-up Approach

Mimicking nature’s bottom-up processes
results in several advantages:

Molecules are several orders of magnitude smaller than
present feature size
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Bottom-up Approach

Mimicking nature’s bottom-up processes
results in several advantages:

Molecules are several orders of magnitude smaller than
present feature size

Organic molecules of a given compound are absolutely
identical

Great amount of different materials (i.e. molecules)
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Bottom-up Approach

The goal: electronic properties of a device
may be adjusted by the design of the
chemical structure
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Bottom-up Approach

The goal: electronic properties of a device
may be adjusted by the design of the
chemical structure

Two different approaches, to be
distinguished:

o Single molecular systems

o Bulk molecular system (OLED, OTFT)
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‘ Content

= Electrodes and Contacts
o “Covalent bond” (SAM, Electromigration)
o Van-der-Waals interaction (LB-film)
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'SAM — Self Assembled Monolayer

generally = =
> 8§ carbons van der Waals
interaction between
side chains
S
* silane-OH
» thiol-gold

« phosphate-TiO,

Anchoring Group
(interacts with surface)
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SAM — “Covalent bond”

Required:
good stability and loose enough
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SAM — “Covalent bond”

Required:
good stability and loose enough

Best investigated:
thiol group (S-H group) on the molecule
+

Au-Substrate
(strength of ~1.8 eV)
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‘ Thiol-Au Interface

Rosa Di Felice, J. Chem. Phys., Vol. 120, No. 10, 2004
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Frequently used molecules for SAMs
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‘ Van - der - Waals Interaction:
Langmuir-Blodgett (L.LB)-tilms

ﬂ&/ k\"ﬂ?&iﬂi /M? vater = Spreading of organic

Flectrode solution of the molecule

= Evaporation of organic
solvent
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‘ Van - der - Waals Interaction:
Langmuir-Blodgett (ILB)-films

ﬂ&/ k\"ﬂ?&iﬂi /M: = e = Spreading of organic

Blectrode solution of the molecule

| = Evaporation of organic
HAWHZA“Z %ZH Water solvent
e

= Formation of a packed
monolayer by compression
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Van - der - Waals Interaction:
Langmuir-Blodgett (ILB)-films
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‘ Electromigration Technique

—> fewnm <—

= Addressing a single molecule ‘ 3
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‘ Electromigration Technique

—> fewnm e—

‘
= Addressing a single molecule ‘

= High-resolution lithography is not enough
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‘ Electromigration Technique

—> fewnm e—

’ ‘
= Addressing a single molecule ‘

= High-resolution lithography is not enough

= Breaking up a hyphenation point by applying electric
current (Electromigration)

» Resulting electrodes with 1 - 3 nm gap

rk et al., Nature 417, 722 (2002.

Molecular Electronics, Daniel P. , JASS *05



‘ Content

= Functions of Single Molecules
o Molecular Wires
o Electron Transport
o Insulators
o Diodes
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‘ Electron Transport Mechanism

—> fewnm <—

e =
| |—g

Organic molecules as “electrical wires”
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Benzene

H = htyckogen
C = carbon Benzene
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Hybridisation

Ex: Carbon (C).

Electronic configuration ‘ Hvbrid confieuration

in the ground state ’ e
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' sp2-Hybridisation
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' sp2-Hybridisation

Benzene
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' sp2-Hybridisation




‘ Conjugated Oligomers as
Semiconductors
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Conjugated Oligomers as

Semiconductors

Energy band
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N = number of double bonds

As N increases, the n bonding electron
wavefunctions will tend to delocalise
along the whole length of the chain.
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Conjugated polymers are 1-dimensional
(in the polymer chain direction)
semiconductors.

Molecular Electronics, Daniel P. , JASS *05



Electron Transport

Coherent electron motion — on resonance

o Coherent: Absence of dissipative Effects
(inelastic scattering)

o Resonance: Metal Fermi level is resonant with an unoccupied
molecular orbital
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Electron Transport

Coherent electron motion — on resonance

o Coherent: Absence of dissipative Effects
(inelastic scattering)

o Resonance: Metal Fermi level is resonant with an unoccupied
molecular orbital

Landauer Approach
o Molecule is considered as a scatterer for the electron
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Electron Transport

Coherent electron motion — on resonance

o Coherent: Absence of dissipative Effects
(inelastic scattering)

o Resonance: Metal Fermi level is resonant with an unoccupied

molecular orbital

Landauer Approach

o Molecule is considered as a scatterer for the electron
o Current is related to the transmission probability

o Conductance g is given by:

g:

eZ

T

T(EF);

T(E) = exp —%T[zmwa(x%a)]“dx
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‘ Insulators

= Alkanes: /\/\J[’\4W insulating, but flexible

n
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Insulators

Alkanes: /\/\/MW insulating, but flexible

n

T -System: not flexible, but conducting
n
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Insulators

Alkanes: /\/\/MW insulating, but flexible

n

T -System: not flexible, but conducting
n
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‘ Molecular Doping
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Diodes

Energy 4
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Diodes
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Content

Molecular Electronic Devices

o Monomolecular Film Devices
(Diodes, Switches, Memories)

o Single Molecule FET
o Organic Light Emitting Diode (OLED)
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Diodes - Experiment
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Switches and Storage
Elements

= Classes of molecules,
which are stable in two
different states (bistable)
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Switches and Storage
Elements

Classes of molecules,
which are stable in two
different states (bistable)

Classified by:

o stimulus that triggers the
switch
(light, pH value, electrical
potential)
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Switches and Storage
Elements

Classes of molecules,
which are stable in two
different states (bistable)

Classified by:

o stimulus that triggers the
switch
(light, pH value, electrical
potential)

o property or function that
Is switched
(structural feature,
current transport)
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‘Switches and Storage Elements -
Example
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| Catenane as memory device

dioxynaphtalene
TTF
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Rotaxane as Crossbar-Memory

Young Chen et al., Appl. Phys. Lett., Vol. 82, No. 10
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Rotaxane as Crossbar-Memory - Fabrication

a)  Deposition of Rotaxane by
LB-technique
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‘ Rotaxane as Crossbar-Memory - Fabrication

a)  Deposition of Rotaxane by
LB-technique

n  Evaporation of Ti protective
layer
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‘ Rotaxane as Crossbar-Memory - Fabrication

a)  Deposition of Rotaxane by
LB-technique

n  Evaporation of Ti protective
layer

c) Evaporation of top electrode
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‘ Rotaxane as Crossbar-Memory - Fabrication

b)

Deposition of Rotaxane by
LB-technique

Evaporation of Ti protective
layer

Evaporation of top electrode

Anisotropic RIE down to the
SiO,
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Rotaxane as Crossbar-Memory - Data

Current (LA)

100

Voltage (V)
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Single Molecule FET
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H. Park et al., Natwe 417, 722 (2002.
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‘ Organic Light Emitting Diode
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‘ OLED - Principle

Single organic layer
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OLED - Principle

Anode
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OLED - Principle
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OLED - Structure and Materials
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OLED - Ettect of Dopants

Energy (eV)

Vacuum Level

1PB

24

Alg DCM Alg

3.1

54

57

3.1

5.3

3.1

57

0
Y

[y

T

—— Alg,

\

\ ——1% DCM |

1,0 —
2 08
g
D 4
g 0,6
E 0,4
| AL < 7
4.2 % o2
8 ]
o
= 0,0 -
400
C(CN)
2 N\ H‘\ /O,,N(CHa)z
N\ e

Molecular Electronics, Daniel P. , JASS *05

500

600
Wavelength (nm)

700




Summary and Outlook

Bottom-up approach in order to overcome the
physical limitations of the Top-down approach
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Summary and Outlook

Bottom-up approach in order to overcome the
physical limitations of the Top-down approach

Molecular film devices are already
commercialised (OLED)

Single molecule devices are still under
Investigation

In order to use the ultimate density of logic and
memory functions of molecules, problems like
their addressability, reproducibility and reliability

have to be solved
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‘ Thiol-Au Interface

Rosa Di Felice, J. Chem. Phys., Vol. 120, No. 10, 2004
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Catenane in a crossbat memory

Paper: Yong Chen:
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