
2

Convolutional Codes
Victor Tomashevich, Advisor: Pavol Hanus

I. INTRODUCTION

The difference between block codes and convolutional codes is the encoding principle. In the block
codes, the information bits are followed by the parity bits. In convolutional codes the information bits
are spread along the sequence. That means that the convolutional codes map information to code bits
not block wise, but sequentially convolve the sequence of information bits according to some rule.
The code is defined by the circuit, which consists of different number of shift registers allowing
building different codes in terms of complexity.
Consider the following circuit (all registers are initially zero):

Fig.1. Encoding circuit of rate ½ code

The code bits),,()1(
1

)1(
0 xx and),,()2(

1
)2(

0 xx are obtained as follows:

ii ux )1(and 1
)2(

 iii uux (1)

Then the codewords are generated:

),,()),(),((10
)2(

1
)1(

1
)2(

0
)1(

0  xxxxxxx  (2)

A convolutional encoder encodes K information bits to N > K code bits in each time step. It is
obvious, that for this particular code 1K and 2N , giving the code a rate 2/1R . The encoding
procedure is not memoryless, as the code bits depend on the information bits encoded at past time
steps. This is another big difference from block codes, as the block codes are memoryless.
The fact that the convolutional codes have memory allows them to operate well, when K and N are
pretty small. The block codes have to have long block lengths (e.g., Reed-Solomon code used in CD
drives has 2048N), because they are memoryless and their performance improves with block
length.

II. CONVOLUTIONAL CODES

A. Properties of convolutional codes [1]
 The convolutional code is linear: any linear combination of code bit sequences is

again a valid code bit sequence. We can therefore specify the distance properties of
the code by investigating only the weights of non-zero sequences.

 The encoding mapping xu  is bijective, i.e., each code bit sequence uniquely
corresponds to an information bit sequence.

 Code bits generated at time step i are affected by information bits up to M time steps
Miii  ,2,1 back in time, i.e., M is the maximal delay of information bits in

the encoder.
 The code memory is the minimal number of shift registers required to construct an

encoding circuit for the code. The code memory is at most KM  .
 The constraint length is the overall number of information bits affecting code bits

generated at time step i : KMKKM )1(

iu ix

3

 A convolutional code is systematic if the N code bits generated at time step i
contain the K information bits

Let us consider some examples:

B. Descriptions of convolutional codes
There are multiple ways to describe convolutional codes, the main are [1]:

 Trellis
 Matrix description

First, we consider the description using a trellis. Trellis is a directed graph with at most S nodes,
where S is the vector representing all the possible states of the shift registers at each time step i . In all
the examples the rate 2/1R code described in Fig.1. is used.

As described in [1], we can define a convolutional code, using a generator matrix that describes the
encoding function xu  :

Gux  (3)
where

iu
ix

)1(
iu

)2(
iu

)1(
ix

)2(
ix

)3(
ix

Fig.2. This rate 2/1R code has delay 1M ,
memory 1, constraint length 2, and is systematic

Fig.3. This rate 3/2R code has

delay 1M , memory 2, constraint length 4, and
is not systematic

0 0

1

0

1

0s 1s 2s0|00

1|11

0|00

1|10

0|01 1|11

We get the trellis section by considering the
operation of the encoding circuit:

 The trellis section has KM 2 nodes for each
time step.

 It is obvious that 1 ii us , and the codeword

is obtained by ii ux )1(and iii sux )2(.

 The branches are labeled with ii xu | . So we

input a new information bit iu and it is

written into the shift register, thus ii us 1 ,

and we get a codeword ix , generated with

this transition.
 The trellis is growing exponentially with M .

4





























M

M

M

GGGG

GGGG

GGGG

G
210

210

210

 (4)

The)(NK  submatrices MmG m ,,1,0,  , with elements from)2(GF specify how an

information bit block miu  , delayed m time steps, affects the code bit block ix :




 
M

m
mmii iGux

0

, (5)

For this code (in Fig.1.) we need to specify two submatrices, 0G and as the memory of this code

is 1M , also 1G . The size of the submatrices must be)(NK  , and as we have a rate 2/1R
code, both submatrices will be of size 21 .

The matrix 0G governs how iu affects),()2()1(
iii xxx  : as iu affects the first bit of the codeword as

well as the second bit of the codeword the matrix 0G =  11 .

The matrix 1G governs how 1iu affects ix : as 1iu affects only the second bit of the codeword but

not the first one the matrix 1G =  10 .

For 3 information bit long sequence),,(210 uuuu  using (3) we get

Guuuxxxxxx ),,())(),(),((210
)2(

2
)1(

2
)2(

1
)1(

1
)2(

0
)1(

0 (6)

As we have 3 information bits at the input and we consider 3 time steps the generator matrix G must

be 33 . The generator matrix is obtained considering the operation of the encoding circuit:

0u

)()2(
0

)1(
0 xx

At time 0t we input 0u , as there is

nothing in the register both code bits are
affected by 0u . The generator matrix at this

time step is:


















11

G

0u

1u

)()2(
1

)1(
1 xx

At time 1t we input 1u . As 0u is stored at

the register it affects only the second bit of
the code word, 1u affects both bits of the
codeword. The generator matrix at this time
step is:
















 11

0111

G

5

C. Puncturing of convolutional codes
The idea of puncturing is to delete some bits in the code bit sequence according to a fixed rule. In
general the puncturing of a rate NK / code is defined using N puncturing vectors. Each table
contains p bits, where p is the puncturing period. If a bit is 1 then the corresponding code bit is not

deleted, if the bit is 0, the corresponding code bit is deleted. The N puncturing vectors are combined
in a pN  puncturing matrix P .

Consider code in Fig.1. , without puncturing, the information bit sequence)0,1,1,0,0(u generates

the (unpunctured) code bit sequence)01,01,11,00,00(NPx . The sequence NPx is punctured using a

puncturing matrix:











1001

0111
1P

The puncturing period is 4. Using 1P , 3 out of 4 code bits)1(
ix and 2 out of 4 code bits)2(

ix of the

mother codes are used, the others are deleted. The rate of the punctured code is thus
5/4)23/()44(2/1 R and u is encoded to)01,1,1,0,00(XXXx  =)01,1,1,0,00(

The performance of the punctured code is worse than the performance of the mother code. The
advantage of using puncturing is that all punctured codes can be decoded by a decoder that is able to
decode the mother code, so only one decoder is needed. Using different puncturing schemes one can
adapt to the channel, using the channel state information, send more redundancy, if the channel quality
is bad and send less redundancy/more information if the channel quality is better.

D. Decoding of convolutional codes
The very popular decoding algorithm for convolutional codes, used in GSM standard for instance, is
the Viterbi algorithm. It uses the Maximum likelihood decoding principle. The Viterbi algorithm
consists of the following steps for each time index [1]:

1. For all S state nodes at time step :1/,,1,0,  NLjj 

 Compute the metrics for each path of the trellis ending in the state node. The metric
at the next state node is obtained by adding the path metric to the metric at the
previous corresponding state node. The path metric is obtained by the following
formula, : jjjjj yxyx 2211  (7)

where x is the sent bit, y is the received bit

 If the two paths merge, choose the one with the largest metric, the other one is
discarded. If the metrics are equal, the survivor path is chosen by some fixed rule.

1u

2u

)()2(
2

)1(
2 xx

At time 2t we input 2u . As 1u is stored at
the register it affects only second bit of the
generated codeword, 2u affects both bits of

the codeword and 0u doesn’t affect anything

as it was already deleted from the register.
Finally we obtain the whole generator
matrix:


















11

0111

0111

G

6

2. If the algorithm processed d trellis sections or more, choose the path with the largest metric,
go back through the trellis and output the code bit sequence and the information bit sequence.
The parameter d is the decision delay of the algorithm and specifies how many received
symbols have to be processed until the first block of decoded bits is available. As a rule of
thumb, the decision delay is often set to M5 .

Let us consider a following encoding circuit:

In Fig.4. the corresponding trellis is depicted:

Fig. 4. Trellis of convolutional code

The encoded sequence)11,11,11,11,11,11,11(x (BPSK-modulated bits
considered). In the received sequence there are some errors introduced. Fig.5. and Fig.6. show that
hard-decision Viterbi algorithm is performing well in case of single errors.

+1+1 +1+1+1+1+1+1+1+1+1+1-1+1

+1+1

0 -2

+2

0

0

-2

+2

0

-2

0

0

0

+2

-2

+2

j=0 j=6j=5j=4j=3j=2j=1 j=7

+2

-4

+8+6+4

+12+10+8+6

+20+2

+4+2

-2

0 +6

+6

+4+20+2

+4+2+4+2

jû +1 +1 +1 +1 +1 +1 +1 - No error

Fig. 5. Performance of Viterbi algorithm in case of one single error
+1+1 +1+1+1+1+1+1+1+1+1-1-1+1

+1+1

0

+2

-2

+2

0

0

0

0

-2

+2

+2

0

-2

+2

-2

+2

-2

-2

+2

-2

+2

-2

0

0

0

0

0

0

0

0

0
0

0
0

0
0

0
0

-2-2-2-2
+2+20 +2 +2

j=0 j=6j=5j=4j=3j=2j=1 j=7

+2

-4

+6+4+2

+10+8+6+4

+4+2+2

+2+2

-2

0 +4

+4

+2+4+20

+6+4+2+4

jû +1 +1 +1 +1 +1 +1 +1 - No error

ju

jx2

js1 js2

+ 1 + 1 + 1 + 1

- 1 - 1

- 1 + 1

+ 1 - 1 + 1 - 1

- 1 + 1

- 1 - 1
jj ss 21 , jj xx 21 , 1211 ,  jj ss

+ 1 / + 1 + 1

- 1 / - 1 - 1

+ 1 / + 1 + 1

- 1 / - 1 + 1

- 1 / - 1 + 1

+ 1 / + 1 - 1

+ 1 / + 1 - 1

- 1 / - 1 - 1

jx1

7

Fig. 6. Performance of Viterbi algorithm in case of two single errors

Fig.7. shows that the performance of hard-decision Viterbi algorithm degrades significantly in case of
burst errors.

+1+1 +1+1+1+1+1+1+1+1-1+1-1-1

+1+1

0

+2

-2

+2

0

0

+2

-2

-2

+2

-2

0

+2

-2

+2

0

0

-2

+2

-2

+2

-2

0

0

0

0

0

0

0

0

0
0

0
0

0
0

0
0

-2-2-2-2
+2+20 +2 +2

j=0 j=6j=5j=4j=3j=2j=1 j=7

+2

-2

+8+6+8

+12+10+8+2

+20+4

00

-2

-2 +6

+10

+8+2+4+6

+8+6+8+2

jû +1 -1 -1 +1 +1 +1 +1 - 2 decoding errors

Fig. 7. Performance of the Viterbi algorithm in case of error bursts

Fig.8. shows that the application of the soft-decisions Viterbi algorithm improves the situation as the
errors are corrected.

jjjjjj
m
j ylxylx 222111

)(

+1+1 +1+1+1+1+1+1+1+1-1+1-1-1

+1+1

0

+4

-2.5

+2.5

-1.5

+1.5

+1

-1

-2.5

+2.5

-2.5

-1.5

+2.5

-2.5
+2.5

0

0

-4

+4

-4

+4

-4

0

0

0

0

0

0

-1.5

+1.5

0
0

0
0

0
0

-1.5

+1.5

-4-4-4-2.5

+4+2.5+1.5 +4 +4

j=0 j=6j=5j=4j=3j=2j=1 j=7

+2.5

-2.5

+9.5+7.5+8.5

+17.5+13.5+9.5+5.5

+0.50+3.5

+3+1.5

-2.5

-2.5 +7.5

+12.5

+8.5+0.5+3.5+6

+8.5+7.5
+8.5+1

G B G GG GG GB G G BB B

 2 0.5 2 2 2 2 2 2 2 0.5 0.5 2 0.5 0.5






5.0

2
jl

“Good” channel
jl - channel state information

“Bad” channel

Fig. 8. Performance of the soft-decision Viterbi algorithm in case of error bursts

III. CONCLUSION

Convolutional codes are very easy to implement. Convolutional codes use smaller codewords in
comparison to block codes, achieving the same quality. Puncturing techniques can be easily applied to
convolutional codes. This allows generating a set of punctured codes out of one mother code. The
advantage is that to decode them all only one decoder is needed and adaptive coding scheme can be
thus implemented. One of the most important decoding algorithms is the Viterbi algorithm that uses
the principle of maximum likelihood decoding. The Viterbi decoding uses hard decisions is therefore
very vulnerable to error bursts. Using Soft instead of Hard decisions for Viterbi decoding improves the
performance.

REFERENCES

[1] M. Tuechler and J. Hagenauer. “Channel coding” lecture script, Munich University of
Technology, pp. 111-162, 2003

