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Abstract – Turbo codes which performs very close to channel capacity in channel coding can be also used 
to obtain very efficient source coding schemes. In this paper lossless turbo compression algorithm has been 
presented. Turbo source coding can be very efficiently used in combination with channel coding applying the 
concept of incremental and decremental redundancy algorithm. Performance of turbo compression can be 
analyzed by modified ten Brick’s EXIT charts.  

I. INTRODUCTION AND BACKGROUND 
The theory of data compression was first formulated by Claude E. Shannon in his monumental 

work “A Mathematical Theory of Communication”, in 1948. He, as a first, stated the basics of source 
coding and established a fundamental limit to lossless data compression. This limit is called entropy 
rate and it is defined by the statistical distribution of information source. Since the time of invention of 
this limit, engineers are trying to achieve it by applying different compression schemes. 

After the invention of “Turbo Codes” in 1993 by C. Berrou and A. Glavieux, a new channel coding 
technique was introduced. Since channel coding and source coding are dual problems, the same 
principle was successfully applied to data compression of binary memoryless sources [1], [2], [3].  

The secret of turbo principle lies in the use of a feedback loop which allows iterative decoding. 
This is used in channel coding to correct the errors after transmission over a noisy channel. In source 
coding scenario we don’t have any channel but in order to decrease the redundancy of encoded data 
the bits are heavily punctured depending on the desired compression rate. In order to guarantee 
lossless compression, we use algorithm of decremental redundancy. The redundancy of data is 
removed step-by-step as long as the decoder can guarantee perfect reconstruction. This approach is 
dual to incremental redundancy presented in hybrid automatic repeat request (ARQ Type II) scheme 
with forward error correction (FEC), where additional parity bits are gradually transmitted through a 
noisy channel until the decoder can correct all errors. 

In order to achieve a very efficient scheme of communication, both techniques turbo source coding 
and turbo channel coding can be applied together using combined decremental and incremental 
redundancy [4], [5].  

The issue of making the best compression scheme can be investigated by applying ten Brink’s 
EXIT chart analysis to select the most efficient component codes and puncturing matrices to compress 
discrete memoryless source. 

II.  TURBO COMPRESSION PRINCIPLE, IT’S ANALYSIS AND APPLICATIONS 

A. Problem statement 
The goal of data compression is to represent an information source as accurately as possible using 

the fewest number of bits. It means that by applying any source coding schemes we are trying to 
decrease the redundancy as much as possible. In this paper we are assuming lossless compression, thus 
perfect reconstruction of the compressed data is guaranteed. 

Let U be a discrete memoryless source emitting independent and identically distributed symbols 
from alphabet { }LU ,...,2,1= characterized by probability mass function ~ p(u). According to 
Shannon, the optimal compression rate for the source U is given by the entropy 
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In order to achieve this rate the turbo compression encoding is done as follows. Source encoder for 
source U takes a block of N symbols N

N UUUU ,...,, 21=  and encodes it to a binary codeword 
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K
K XXXX ,...,, 21= with { }1,0∈iX , { }1,1 +−∈iX  respectively. Let us assume binary source which 

can be easily constructed by simple bit mapping of every symbol to a binary codeword of length 
⎡ ⎤Ll 2log=  as shown in Fig.1. This codeword is passed through a turbo encoder and finally the 

encoded sequence is punctured to achieve the desired compression rate. 

 
Fig. 1. Encoder for turbo coding 

To fulfill the requirements of good lossless data compression schemes we have to guarantee perfect 
reconstruction of compressed data and design turbo code and puncturing matrix in order to be able to 
reach the entropy of the source. The design process can be very well analyzed by using ten Brick’s 
EXIT charts described below. 

B. Source encoding 
As proposed in [1] the source encoder uses turbo code to compress the source data. The turbo codes 

are well known to be good channel codes as they perform very close to channel capacity. Applied to 
source coding scenario it is assumed to perform very close to source entropy rate, which is 
fundamental limit stated by Shannon in his source coding theorem. It tells us that the source block 

NU can be perfectly reconstructed from the sequence KX with the length )(UNHK ≅ for N 
sufficiently large. 

Let us assume a binary source used to encode the data in parallel concatenation scheme as shown in 
Fig. 2, and pass the sequence NU and interleaved sequence ( )NU∏  through rate 1 convolutional 
codes (or scrambles) to generate the parity sequences NP1  and NP2 . The parity bits are than heavily 

punctured to obtain the desired compression rate
N
KR = .  Since we are assuming a binary source 

(L=2), by knowing the source bits statistics a priori (probabilities p(u=0) and p(u=1)), we can discard 
the information bits and take into consideration only parity sequences. 

 
Fig. 2. Parallel concatenation of convolution codes CC (R=1) with interleaver 

If the chosen puncturing scheme is taken in random manner, we can compare it to “Binary Erasure 
Channel” (BEC). The channel is specified by erasure probability which can be adjusted to achieve 
required compression rate. We can then consider turbo compression as transmitting encoded bits over 
BEC. If the proportion of erased bits holds the equation (2) then the codeword length is )(UNHK ≅ , 
and we compressed our sequence close to entropy 
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C. Source decoding 
The compressed source is decoded by using turbo decoder, depicted in fig. 3. The decoder uses soft 

decision decoding that means it describes the input by using L-values (log-likelihood ratios). For 
source U with { }1,1 +−=u  the L – value is defined as follows 
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Turbo decoder uses two independent component decoders with feedback loop as shown in Fig. 3. 

 
Fig. 3. Parallel turbo source decoder 

Since the parity sequence 2/
2

2/
1  , KK PP  are assumed to be transmitted over BEC, the input values 

LP1 and LP2 take on values ∞±  (if 1+=u or 1−=u ) or 0 (if u bit is erased). In the case of non-
uniform binary source ( puP =+= )1( and puP −=−= 1)1( ) with entropy )()( pHUH b= , each 
decoder has additional input vector LP called “source a priori knowledge” where each element of the 
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The input values Lp1 and Lp2 are passed through a posteriori probability decoder (APP Decoder 1) 
with soft input and soft output (SISO). From decoded sequence LD1 we calculate extrinsic information 

PADE LLLL −−=
111

. This information called “learnt a priori knowledge” is then interleaved and used 
as a priori information LA1 for the other decoder. The same process is performed with APP Decoder 2. 
The algorithm is in iterative way repeated until convergence is achieved. Interleaver and deinterleaver 
( -1 ,ΠΠ ) introduced in the scheme remove the dependencies between bits in decoded sequences.  

D. Decremental redundancy 
For lossless data compression the convergence of the above algorithm has to be guaranteed. It means 
that we can puncture only so many bits that can be corrected. This is done by testing the decodability 
of the compressed source. As shown in fig. 4 the decoder is puncturing the sequence step by step and 
after each step it verifies the integrity of reconstructed source sequence. The disadvantage of this 
scheme is that the decoder has to be present also during encoding process.  

 
Fig. 4. Lossless compression of a source block 

 
Fig. 5. Puncturing scheme for decremental redundancy 
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The principle of decremental redundancy is shown in Fig.5. As proposed in [1] each of the parity 
sequences NP1  and NP2 of length N are first line by line stored in a matrix NNN CC =× . Every 

column of the matrix is indexed by { }CC NNi ,...,2/,..,1∈  and called parity segment. In order to 
spread out the erased bits in a block we interleave the parity bits before puncturing them.  The 
redundancy of the source is removed by eliminating parity segments sequentially (parallel for NP1  and 

NP2 matrices) as long as the sequence is perfectly decodable. Together we have 2xN parity bits, since 
the parity sequences NP1  and NP2 are length of N. To be able to achieve any compression we have to 
discard at least half of the parity segments.  

To be able to reconstruct the data, at the decoding side the decoder has to know the block length, 
the random puncturing matrix, interleaver, index i of the last punctured segment and a priori 
knowledge LP , if the source is not uniformly distributed. All these information are provided except the 
index i, which has to be encoded in the compressed sequence. Assuming that half of the parity 
segments have to be eliminated, the maximum number of bits needed to encode the index is equal to 
⎡ ⎤)2/(log2 CN . The algorithm of decremental redundancy can be summarized into following steps: 

1) Let 2/Nci =  
2) Encode the source block with a turbo encoder and store the output block. 
3) Puncture the encoded block using i parity segments. 
4) Decode the compressed block. 
5) Check for errors. If the encoded block is error free, let 1−= ii and go back to step 3. 
6) Let 1+= ii . Repeat 3, include a binary codeword corresponding to index i and stop. 
A simple example of performance of decremental redundancy algorithm comparing to Lempel-Ziv 

coding and entropy is shown in Fig. 6. It can be seen that for the same block length (10000 bits) the 
turbo source  

 
Fig. 6. Average compression rate for decremental redundancy algorithm compared to Lempel-Ziv and entropy. 

coding algorithm achieves lower compression rates between source probabilities  0.07 and 0.32 which 
corresponds to source entropy ranges 0.38 and 0.9. At source probability of 0.2 the distance to entropy 
is halved comparing to Lempel-Ziv coding. 

E. Decremental and incremental redundancy in joint source-channel coding 
Shannon's separation theorem states that source coding (compression) and channel coding (error 

protection) can be performed separately and sequentially, while maintaining optimality. However, this 
is true only in the case of asymptotically long block lengths of data. In many practical applications, the 
conditions of the Shannon's separation theorem neither hold, nor can be used as a good approximation. 
Thus, considerable interest has developed in various schemes of joint source-channel coding. One of 
these schemes uses decremental and incremental redundancy algorithm mentioned above. As in [4] the 
Fig. 6 shows us how this algorithm is applied.  
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Fig. 7. Transmission of compressed data 

The transmitter is our turbo source encoder, which compresses the source data. As integrity test a 
cyclic redundancy check word (CRC) is added to every transmitted block. Afterwards sequence NU  
(containing CRC) is encoded as described in section B. 

If the channel is noisy, additional parity bits have to be added to sequence KX in order to decode 
the data error free (incremental redundancy). Let L be the number of additional parity bits added to 
encoded sequence to compensate channel errors. Than the compressed data LKX + including the 
punctured source sequence, CRC and index of puncturing matrix are transmitted over a noisy channel. 
The receiver receives sequence LKY + and checks the integrity of received data with CRC. If test is not 
successful, encoder increases the index of puncturing matrix and sends the new sequence again. This 
process is repeated until positive acknowledgement (ACK) is received.  

Note, that for this kind of joint source-channel coding, we need the state channel information to 
simulate the channel in encoder. 

F. Algorithm analysis using EXIT charts 
One of the ways how to analyze the convergence and thus obtain the desired compression rate is to 

use slightly modified version of EXIT charts [1]. Exit charts use mutual information to parameterize 
the L-values being exchanged within the source decoder. They were first applied to analyze the turbo 
decoder for channel coding, observing the mutual information between channel input U and channel 
output Y. Let’s assume binary source U with { }1,1 +−=u  and puP =+= )1( . If Y represents the 
channel output than the mutual information between random variable U and Y is  
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For ergodic sources this can be simplified to 
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where the expectation is taken over all possible observations. This mutual information measure is now 
used to analyze turbo decoder by observing ( ) 11

; EE ILUI = , ( ) 22
; AA ILUI = , ( ) 11

; EE ILUI = , 

( ) 11
; AA ILUI = . To construct the EXIT charts we have to characterize the component decoders of 

turbo decoder and determine functions )( 111 AE IfI =  , )( 222 AE IfI = . The procedure to obtain 
characteristic curves is described in Fig.7. From the figure we can see that LA is generated by passing 
the source U through an “a priori channel” assumed to be BEC. The output of APP decoder is 
generated based on the L-values LP of the punctured parity bits and a priori sequence LA. From the 
output sequence we can determine the extrinsic information LE and by applying equation (5) calculate 
the mutual information IE as well as the mutual information IA. We start plotting the EXIT chart by 
noting that IE1=IA2, IE2=IA1 and then continue to plot )( 111 AE IfI = and its mirrored 
version )( 222 AE IfI = . If there exists a tunnel between these two curves than the sequence can be 
successfully decompressed. As shown in Fig. 8 we can adjust the erasure probability of the puncturing 
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scheme and see if the specified compression rate is acceptable and thus the decompression is 
successful. 

 
Fig. 8. Determining characteristic curves of 

component decoders 

 

 
Fig. 9. EXIT chart for binary source H(U)=0.469, N 

= 9.104 ; parallel     concatenation of two 
convolution codes with polynomials [7,5] 

 

III. CONCLUSIONS 
The compression algorithm presented in this paper uses turbo coding principle. Based on the fact 

that source coding and channel coding are dual schemes, turbo codes can be applied in source coding 
scenario as shown in [1]. Lossless compression is guaranteed by using decremental redundancy 
algorithm which performs very close to entropy rate. This algorithm can be very efficiently used 
together with incremental redundancy in joint-source channel coding [4]. The convergence of turbo 
source decoder can be analyzed by using a modified EXIT charts. This analysis can help to optimize 
component codes and puncturing rates to be able to compress data close to entropy of the source. 
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