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Introduction

m [ask
Fusion of different data sets

m Approaches
Simple
Stochastic approach
= No perfect model

m Disturbances
m Imperfect or incomplete data

&



Introduction
&

m Kalman Filter

Optimal linear recursive estimator

Incorporates all available information
m Knowledge about system and measurement device
m Statistical description of noise and error
= [nitial conditions

“prediction-correction-cycle”
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Simple, robust and popular
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Stochastic Basics A

m Probability and Random Variables
. possible outcomes favoring A
A) =
Pmbablhty PA) total number of possible outcomes

Random Variable X: Sample Space = Numbers
Cumm. distribution function F,(x) = p(-%,x]
Probabili;cy density function f, (x) = (;iXFX(x)
pxla.b] = [f, (x)dx

m Mean and Covariance

Mean E[X] = ip,-x,- E[X] = }xfx(x)dx
(discrete, continuous) I= Zoo
Variance Var(X) = E[(X - E[X])*] = E[X*] - E[X]*

Std. deviation oy =4Var(X)



Stochastic Basics

m Gaussian distribution

Popular for modelling random systems
Normally distributed X ~N(u,o)

Probability density function
1 _(X_M)2

fy(X) = - e

2710 —_—

m \White noise
Autocorrelation Ry (7) = E[X(t)X(t +7)]
White noise is uncorrelated, independent

a,ifo=0
R _ ’
x(T) {O . otherwise
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The Discrete Kalman Filter \

m Process and Measurement Models
Models x, = Ax, ,+Bu, +w,_,
z, =Hx, +v,
Noise  p(w)~N(0,Q)
p(v)~N(O,R)
m Origins of the Filter

state estlmates errors and covariances
X, X, €e.=X.-X/,e,=Xx,-X, P =E[e,e],P = E[eke ]

Computational origin  x, = x, + K(z, - Hx,)
Probabilistic origin ~ p(x, | ) ~ N(X,.P,)



The Discrete Kalman Filter \

m Discrete Kalman Filter Cycle
Time update x, = Ax,_, +Bu,
P = APk_1AT +Q
Measurement update K, =P H (HP;H" +R)™
X, =X, +K, (z, —-HX,)
P =(-KHWP;
Influence of Q and R

m Process noise covariance Q:
large — close track of changes in data

s Measurement noise covariance R:
large = measurements are considered not very accurate



P

The Discrete Kalman Filter

m Influence of Q and R

Q small, R large Q large, R small



The Discrete Kalman Filter \

m Assumptions

All underlying models are linear
s Often adequate
s More complete theory

Gaussian probability distribution
m “natural”
s Completely determined by p and o

White (independent) noise
m |[dentical to wideband noise in bandpass
m Mathematics are vastly simplified



The Discrete Kalman Filter \

m Optimality
Filter minimizes the estimated error covariance
Pk = E[ekel] = E[(Xk - )?k )(Xk - )?k )T]

Based on computation of Kalman gain K
X, =X, +K (z, —-HX;)=X; +K, ((Hx, +v,)-HX})

= P, = E[((/ - K H)(x, - X ) - K, v (I - K H)(x, - %) -Kv,)']
=(I-KH)Elece; Il -K H) + K Elv, v, K,
-(I-K.H)P; (I -K,H) +K,R.K,

diagonal of P contains mean squared errors = minimize trace

T
TP o(HP Y + 2K, (HPLHT +R)=0 =K = — k7
0K, HP,H™ +R




The Discrete Kalman Filter
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m Examples
1D voltage measurement
= Models
Xy = Xy Zp = Xy 1

= Noise covariances
Q=10" R=107
s Measurements
mean m = z~ N(m,0.1)

m Results
red=measurements
green=predicted states

Voltage

Iterations



The Discrete Kalman Filter \
m Examples

3D position measurement
s State vector x=(Xy,zZXY,2X,y,2)

: , -
= Models s %'I
x(t + At) = A(ADX(t) +w A=[0 | At
2 0 0
? =z(t+ At) = Hx(t)+v 1000000001
i H={010000000
m Filter cycle 001000000

Compute At since previous estimate
Compute state transition matrix A(At)
Do the prediction and correction steps

m Determination of Q and R



The Extended Kalman Filter

|
m Non-Linearity
Assumptions of the DKF do not always hold
EKF linearizes about the current mean and covariance

m EKF Models

Non-linear equations X« =Xttt Wis)  Zi = h(X,,v,)
Noise values unknown X, =f(x,_,u,_,0) Z, =h(x,,0)

Linearization

X, =X +Ax, -X,_)+Ww,, z =z +H(x, -X)+VWv,

: of | . of .
0X ow



The Extended Kalman Filter

Py

.

m Extended Kalman Filter Cycle
Time update

X, =f(X,_4,u,,0)

P-=AP_A +WQ W]
Measurement update

Ky = Pk_HIZ-(Hk’Dk_HIZ- "'VkRkaT )_1

)?k = )?I; +K,(z, —h()?,;,()))

—_ - " -
[ 3\
Time Update Measurement Update
-Predict’ ,Correct’
R 7
~— e



The Extended Kalman Filter
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m Example

3D position and orientation tracking with quaternions
m State vector x=(Xy,ZXY,2XV,21,.,r,.1,,1,,,0,0,,0;,0,,0,,0;)
X = (pT,pT”b'T’rT’a)T,a-)T )T
= Models
p\ |1 At %tz-/ b, .
Pel=10 I Al |pey| Tk =Ta®d,=r_,®e

Py 0 O / P

At'wk_1 +;At2 'a)k_1

z, =h(x)= ( P )
normalize(r)

m Filter cycle: equations as presented
Jacobians need to be computed



Kalman Filter Discussion

m Kalman Filter
stable, robust and popular optimal estimator

m DKF

(+) optimal linear estimator
applicable to many system processes
(-) three assumptions
m EKF
(+) faces non-linearity problem
(-) unreliable for non Gaussian distributions

&



Sensor Fusion with KFs A

m Discrete and Extended Kalman Filter
One Filter

= Multiple sensors summed up in a single filter
m Updates when enough information is gathered
x = UNC hybrid landmark-magnetic tracker

Separate Filters
m Separate filters for each sensor
= Optimal adjusting
m = Azuma: head location prediction



Sensor Fusion with KFs A

m Single Constraint at a Time (SCAAT)

Introduction
m Multiple seq. measurements for a single update

= Problems
Simultaneity assumption
System depends on sufficient data sets

SCAAT idea
m Single-constraint-at-a-time

Each measurement provides some information about
the current state

Incremental improvement of previous estimates



Sensor Fusion with KFs A

m  Single Constraint at a Time (SCAAT)

State vector and models

m State vector X =(X,V,2,%Y,2y,0,0,0,0)"

m Process model A(At):  x(t+At) = x(t)+ x(t)- At
X(t + At) = x(t)

m Measurement model <z, (t)=h, (x(t),b,,c,)+v_(t)

H, (x(t),b,,c,)li, /] = axi(j.)h(,(x(t),bt,ct )l

for each sensors o a corresponding measurement vector
b and c are tracker source and sensor parameters

m |deal SCAAT application
only a single source and sensor pair for each update |z, |=1



Sensor Fusion with KFs

&

m  Single Constraint at a Time (SCAAT)
Algorithm

Compute At since previous estimate

Predict state and error covariance

Predict measurement and compute Jacobian

z=h (x",b,c,) H=H_(x,b,c,)

Compute Kalman gain K=P H (HP"H" +R_(t))”
Correct state estimate and error covariance

~

X(t) =% +K(z,(t)-2) P(t)=(I-KH)P"

Discussion

SCAAT integrates individual (incomplete) measurements
Faster, more accurate, no simultaneity assumption



Sensor Fusion with KFs

m [he Federated Kalman Filter

Introduction

s Computational load problems in
multisensor systems

m Decentralization and reduced
rate at master filter

FKF idea

= Decentr. approach with local filter
and a master filter

m Local data compression through
pre-filtering

s Optimal or suboptimal accuracy
via selectable master filter rate
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Sensor Fusion with KFs A

m [he Federated Kalman Filter

Filter Structure
s Models x, =Ax,_,+Gw Z, =H. x+v;,
= Composite global filter [P, ..P,

X=[x..xy,]7 P-=

Py, --- Puy
. N
= Global cost index W = 2” (%, = x)I2-

m Globally optimal solution if local estimates are uncorrelated

X, =P [P'X, +..+ PjX,]
P =[P +.+P.]"

m Elimination of cross-correlations through upper bounds for
covariances Q and P: ¥, as bounding variable



Sensor Fusion with KFs A

m [he Federated Kalman Filter
Algorithm

= Set initial local covariances to y, x common system value
m Local filters process own measurements via locally optimal KF

m Master filter combines local filter solutions after each cycle
update via the equations

X, =P [P'%X, +..+PjX,]
P =[P +.+P,]"
m Master filter resets local filter states to master value and local
covariances to Y ; x master value
Discussion

= Highly fault tolerant, rate-reduced, decentralized filtering
approach



Conclusion
&

m Kalman Filter
DKF: optimal linear estimator with three assumptions
EKF: faces non-linear models, linearizes about p and o

m Sensor Fusion
KF - Direct fusion: easy and common

KF - Separate filters: faces complexity, ignores
possible correlations

SCAAT: integrates single measurements, more
accurate and faster

FKF: decentralized system with pre-filtering, high fault
tolerance and globally optimal/suboptimal estimation
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