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Problem StatementProblem Statement

 Tracking the stateTracking the state of a system as it evolves
over timetime

 We have: Sequentially arriving (noisy or
ambiguous) observationsobservations

 We want to know: Best possible estimateestimate of
the hidden variables
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MotivationMotivation

 The trend of addressing complex problems
continues

 Large number of applications require
evaluation of integrals

 Non-linear models

 Non-Gaussian noise
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HistoryHistory

 First attempts – simulations of growing polymers
 M. N. Rosenbluth and A.W. Rosenbluth, “Monte Carlo calculation of the average

extension of molecular chains,” Journal of Chemical Physics, vol. 23, no. 2, pp.
356–359, 1956.

 First application in signal processing - 1993
 N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to

nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings-F, vol. 140,
no. 2, pp. 107–113, 1993.

 Books
 A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo Methods in

Practice, Springer, 2001.
 B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman Filter: Particle Filters for

Tracking Applications, Artech House Publishers, 2004.

 Tutorials
 M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle

filters for online nonlinear/non-gaussian Bayesian tracking,” IEEE Transactions on
Signal Processing, vol. 50, no. 2, pp. 174–188, 2002.
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Application fieldsApplication fields

 Other applications
 Biology &Biochemistry
 Chemistry
 Economics & Business
 Geosciences
 Immunology
 Materials Science
 Pharmacology &

Toxicology
 Psychiatry/Psychology
 Social Sciences

 Signal processing

 Image processing and
 segmentation

 Model selection

 Tracking and navigation

 Communications

 Channel estimation

 Blind equalization

 Positioning in wireless
  networks
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Example: Robot LocalizationExample: Robot Localization

 Sensory model: never more than 1 mistake
 Motion model: may not execute action with small

probability
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Example: Robot LocalizationExample: Robot Localization
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Example: Robot LocalizationExample: Robot Localization
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Example: Robot LocalizationExample: Robot Localization
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Example: Robot LocalizationExample: Robot Localization
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Example: Robot LocalizationExample: Robot Localization
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Applications: ExampleApplications: Example

 Observations are the velocity
and turn information1)

 A car is equipped with an
electronic roadmap

 The initial position of a car is
available with 1km accuracy

 In the beginning, the
particles are spread evenly
on the roads

 As the car is moving the
particles concentrate at one
place

1) Gustafsson et al., “Particle Filters for Positioning, Navigation, and Tracking,” IEEE Transactions on SP, 2002
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FundamentalsFundamentals

 The Dynamic System Model
 states of a system and state transition

equation; measurement equation

 Bayesian Filter Approach
 estimation of the state; probabilistic

modelling; Bayesian filter

 Optimal and Suboptimal Solutions
 KF and Grid Filter; EKF, Particle Filter ...



June 05 JASS '05, St.Petersburg, AR Group 17

The Dynamic SystemThe Dynamic System

Modeling: State Transition or Evolution Equation

xk = fk(xk-1,uk-1,vk-1)

Where:
 f (·, ·, ·): evolution function (possible non-linear)
 xk, xk-1: current and previous state
 vk-1: state noise (usually not Gaussian)
 uk-1: known input

Note: state only depends on previous state, i.e. first
order Markov process
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The Dynamic SystemThe Dynamic System

Modeling: Measurement Equation

zk = hk(xk,uk,nk)

Where:
 h (·, ·, ·): measurement function (possible non-linear)
 Zk : measurement
 nk: measurement noise (usually not Gaussian)
 uk: known input

Remark:
 dimensionality of state, measurement, input, state noise, and

measurement noise can all be different!)
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The Dynamic SystemThe Dynamic System
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The Dynamic SystemThe Dynamic System
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The Dynamic SystemThe Dynamic System
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The Dynamic System
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The Dynamic System
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The Dynamic System
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Bayesian Filtering-Tracking ProblemBayesian Filtering-Tracking Problem

 Unknown State Vector x0:k= (x0, …, xk)
 Observation Vector      z1:k= (z1, …, zk)

 Find PDF p(x0:k | z1:k) … posterior distribution
 or p(xk | z1:k) … filtering distribution

 Prior Information given:

 p(x0 ) … prior on state distribution
 p(zk | xk) … sensor model
 p(xk | xk-1) … Markovian state-space 

     model
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Sequential UpdateSequential Update

 Storing all incoming measurements is
inconvenient

 Recursive filtering:
 Predict next state pdf from current

estimate
 Update the prediction using sequentially

arriving new measurements
 Optimal Bayesian solution: recursively

calculating exact posterior density
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Bayesian Filter ApproachBayesian Filter Approach

 Prediction Stage: Chapman-Kolmogorov equation

 Update Stage:

 BUT: This is optimal Bayesian Solution! For non-
Gaussian there is no determined analytical solution

 Remedy: Approximation with EKF and particle filter



June 05 JASS '05, St.Petersburg, AR Group 28

Bayesian Filter Approach

 Estimation Process
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Reminder: Kalman Filter (KF)Reminder: Kalman Filter (KF)

 Optimal solution for linear-Gaussian
case

 Assumptions:
 State model is known linear function of last

state and Gaussian noise signal

 Sensory model is known linear function of
state and Gaussian noise signal

 Posterior density is Gaussian
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Reminder: Limitations of KFReminder: Limitations of KF

 Assumptions are „too strong“. We often
find:
 Non-linear Models

 Non-Gaussian Noise or Posterior

 Multi-modal Distributions

 Extended Kalman Filter:
 local linearization of non-linear models

 still limited to Gaussian posterior!
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Particle FilterParticle Filter

 Different names:

 (Sequential)
Monte Carlo
filters

 Bootstrap filters

 Condensation

 Interacting
Particle
Approximations

 Survival of the
fittest
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Particle Filter

 The key idea:

 represent the required predictive or filtering
distribution by a set of random samples
(possibly with weights) and compute
estimates
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Particle FilterParticle Filter

 Two types of information required:
 Data

 Controls (e.g., robot motion commands) and
 Measurements (e.g., camera images).

 Probabilistic model of the system

 Data given by:
 The measurement at time t:  zt=(z1, z2, ..., zt)
 The control asserted in the time interval (t-1,t]: ut=(u1, u2, ..., ut)

 Remark:
 Superscript:denote all events leading up to time t
 Subscript: event at time t
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Probabilistic model of the systemProbabilistic model of the system

 Particle filters, like any member of the family of Bayes
filters such as KF, EKF, estimate the posterior
distribution of the state of the dynamical system
conditioned on the data p(xt

 | zt,ut)

 Three probability distributions are required:
A measurement model, p(zt

 | xt)
A control model, p(xt

 | ut ,xt-1)
An initial state distribution, p(x0)

 Represent the distribution using weighted samples
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Particle FilterParticle Filter

 Definition:

A set of random samples {X0:t
i,w0:t

i} drawn from a
distribution q(x0:t|z1:t) is said to be properly weighted
with respect to p(x0:t|z1:t) if for any integrable function
g() the following holds:
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Particle FilterParticle Filter

 Random Measure {x0:k
i,wk

i}, i=1...Ns

 Posterior PDF p(x0:k | z1:k)
 Set of support points {x0:k

i, i=1...Ns}

 Assosiated weights {wk
i, i=1...Ns}

 Then, pdf p() can be approximated by properly
weighted samples (so called particles):

=> discrete weighted approximation to the true
posterior p(x0:k | z1:k)
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Importance SamplingImportance Sampling

 Suppose p(x)~π(x), π(x) can be evaluated

 Let xi ~ q(x), i=1..Ns, samples
 q(x) - Importance Density

 Weighted approximation to density p():

    where                       normalized weight of the i-th
particle
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Degeneracy ProblemDegeneracy Problem

 After a few iterations, all but one particle will have
negligible weight

 Measure for degeneracy:

 Effective sample size

 Small Neff indicates severe degeneracy

 Brute force solution: Use very large N
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Particle Filtering MethodsParticle Filtering Methods

 SIS-Method
 Sequential Importance Sampling

(Implementation of a recursive Bayesian
filter wirh monte-carlo simulations)

 Other derived methods
 Sequential Importance Resampling- SIR

 Auxiliary SIR

 Regularized Particle Filter
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SIS Particle Filter: AlgorithmSIS Particle Filter: Algorithm

Where wi
k
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SISSIS

 State space
representation

 Bayesian filtering

 Monte-Carlo
sampling

 Importance
sampling

State space 
model

Solution Problem

Estimate 
posterior

Difficult to 
draw samples

Integrals are 
not tractable

Monte Carlo 
Sampling

Importance
Sampling
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Basic Particle Filter - SchematicBasic Particle Filter - Schematic
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SISSIS

 Degeneracy problem!

 Solutios:
 Good choise of importance density (critical point!)

 Resampling
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SIR Particle Filter: AlgorithmSIR Particle Filter: Algorithm
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SIR Particle Filter: AlgorithmSIR Particle Filter: Algorithm
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Tracking PeopleTracking People

 Use of particle filters neccesary

 Two components:
 Motion model (strong or weak)

 Likelihood model (almost alwaus the most
dificult part)
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AdvantagesAdvantages

+ Ability to represent arbitrary densities

+ Adaptive focusing on probable regions
of state-space

+ Dealing with non-Gaussian noise

+ The framework allows for including
multiple models (tracking maneuvering
targets)
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DisadvantagesDisadvantages

- High computational complexity
- It is difficult to determine optimal number

of particles
- Number of particles increase with

increasing model dimension
- Potential problems: degeneracy and loss

of diversity
- The choice of importance density is

crucial
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DisadvantagesDisadvantages

Number of particles grows exponentially with dimensionality of state space!
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SummarySummary

 Particle Filters is an evolving and active topic, with
good potential to handle “hard” estimation problems,
involving non-linearity and multi-modal distributions.

 In general, the scheme is computationally expensive
as the number of “particles” N needs to be large for
precise results.

 Additional work required: optimizing the choice of N,
and related error bounds.
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