An efficient algorithm for stochastic differential equations

Philipp Schapotschnikow Technische Universität München Siemens AG

June 8, 2005

Introduction

The LC-curcuit: a model from the book

- Resistance R
- Induction coil L
- Capacitor C

The corresponding system of equations is

$$\dot{U} = -\frac{I}{C} \qquad \qquad \dot{I} = \frac{U - RI}{L}$$

 \boldsymbol{U} is the voltage at the capacitor

 ${\it I}$ is the current through the coil

The solution is (for small resistance)

$$I(t) = \frac{U_0}{R_0} \cdot \frac{\omega_0}{\omega_e} \cdot e^{-at} \sin(\omega_e t)$$

• Decay constant
$$a = \frac{R}{2L}$$

- Characteristic angular frequency $\omega_0 = \frac{1}{\sqrt{LC}}$
- Angular frequency $\omega_e = \sqrt{|\omega_0^2 a^2|}$
- Characteristic resistance $R_0 = \sqrt{\frac{L}{C}}$

Observation:

$$C = 40\mu F \pm 5\%$$

Interpretation

- We cannot be sure about the actual value for the capacity
- Even the given interval [38,42] is not 100% certain
- Since we cannot measure exactly, the value for the capacity lies in the interval $[C_-, C_+]$ with a likelihood corresponding to that interval

\implies Stochastic calculus is required!

Stochastic calculus Stochastic variables

Variables, which are not given by their value, but by their density function

Gaussian normal distribution (left) and uniform distribution on $\left[0,1\right]$

Moments

• Expectation (first power moment)

$$E[x] = \int x \,\rho(x) dx$$

• Variance (second centred moment)

$$Var[x] = \int (x - E[x])^2 \rho(x) dx$$

Functions in stochastic variables

- If $f:\mathbb{R}\to\mathbb{R}$ a real function,
- $\tau(\theta)$ (real) random variable
- \rightarrow $f(\tau)$ also (real) random variable

Power moments are given by the density of τ , e.g.

$$E[f(\tau)] = \int_{\mathbb{R}} f(\tau) d\rho(\tau)$$

Important: $E[f(\tau)] \neq f(E[\tau])$

Monte-Carlo Method

Idea: roll the dice for many times, and analyse the result.

E.g. in order to obtain the expected value $E[f(\tau)]$

- Realise τ several times: t_1, t_2, \ldots, t_N , so that t_i are approximately ρ -distributed (usually with a random generator)
- Take the N samples $f(t_1), f(t_2), \ldots, f(t_N)$
- Calculate the mean $\overline{f} = \frac{1}{N} \sum f(t_i)$.

Thus, Monte-Carlo is a method for calculating integrals.

Problem: N is too large

Stochastic processes

A stochastic process is function of time and chance

A stochastic process u(t) with 3 scenarios, one of them – its expectation $u_0(t)$

Stochastic differential equation

Here:

A differential equation with random input parameters.

Stochastic differential equation

Here:

A differential equation with random input parameters.

Random LC-curcuit

The same equations as in the book model, but the capacity and resistance are normally distributed:

$$\dot{U} = -\frac{I}{C}, \qquad C \sim N[C_0, C_1]$$
$$\dot{I} = \frac{U - RI}{L}, \qquad R \sim N[R_0, R_1]$$

Separation of chance and time

The space of stochastic variables

- Consider Θ the vector space of (real) stochastic variables with expectation 0.
- $\bullet~\Theta$ is a Hilbert space with the inner product

 $<\xi_1,\xi_2>=E[\xi_1\xi_2]$

• Choose an orthogonal basis corresponding to the distribution of input parameters!

Gaussian distribution and Hermite decomposition

Since we assume that the input parameters are normally distributed, we have to choose a system orthogonal with respect to the Gaussian weighting function $w(x) = \exp(\frac{-x^2}{2})$

 \Rightarrow Hermite polynomials $H_n(\xi)$, where $\xi \sim N[0, 1]$

$$H_0(\xi) = 1, H_1(\xi) = \xi, H_2(\xi) = \xi^2 - 1, H_3(\xi) = \xi^3 - 3\xi, \dots$$

Project a stochastic process on the Hermite polynomials!

$$x(t,\theta) = \sum_{i=0}^{\infty} u_i(t) H_i(\xi(\theta))$$

The coefficients u_i are now deterministic functions of time! They are given by

$$u_i(t) = \frac{1}{E[H_i^2(\xi)]} E[H_i(\xi) x(t,\theta)]$$

 \rightarrow Another form of the Fourier decomposition

Application to differential equations

Consider the ODE

$$\dot{x} = f(x, t, \theta)$$

with appropriate initial conditions. Its solution is the stochastic process $x(t, \theta)$.

$$x(t,\theta) \approx \sum_{i=0}^{P} u_i(t) H_i(\xi)$$

• Plug in:

$$\sum_{i=0}^{P} \dot{u}_i(t) H_i(\xi) = f(\sum_{i=0}^{P} u_i(t) H_i(\xi), t, \theta)$$

• Galerkin condition yields

$$\left(\sum_{i=0}^{P} \dot{u}_i(t)H_i(\xi) - f(\sum_{i=0}^{P} u_i(t)H_i(\xi), t, \theta)\right) \perp H_k(\xi), \ k = 0, \dots, P$$

19

• This results in the system

$$\dot{u}_k = E[H_k^2(\xi)] E\left[H_k(\xi) f\left(\sum_{i=0}^P u_i(t)H_i(\xi), t, \theta\right)\right]$$

Stochastic LC-curcuit

Assume that R, L, C are functions of ξ , $\xi \sim N[0, 1]$. Then the approach is

$$U(t,\theta) \approx \sum_{i=0}^{P} u_i(t) H_i(\xi), \qquad I(t,\theta) \approx \sum_{i=0}^{P} v_i(t) H_i(\xi).$$

Doing the same steps as before we obtain

$$||H_k(\xi)||^2 \dot{u}_k = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} -H_k(\xi) \frac{1}{C(\xi)} \sum_{i=0}^P v_i(t) H_i(\xi) e^{-\frac{\xi^2}{2}} d\xi$$

$$\|H_k(\xi)\|^2 \dot{v}_k = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} H_k(\xi) \frac{\sum_{i=0}^P u_i(t) H_i(\xi) - R(\xi) \sum_{i=0}^P v_i(t) H_i(\xi)}{L(\xi)} e^{-\frac{\xi^2}{2}} d\xi$$

with initial conditions $u_0(0) = U_0$, $v_0(0) = I_0$, $u_i(0) = v_i(0) = 0$ for i > 0.

21

Comparison with Monte-Carlo

• Decay constant
$$a = \frac{R}{2L}$$

- Characteristic angular frequency $\omega_0 = \frac{1}{\sqrt{LC}}$
- Angular frequency $\omega_e = \sqrt{|\omega_0^2 a^2|}$
- Characteristic resistance $R_0 = \sqrt{\frac{L}{C}}$

Let the capacity be normally distributed !

In terms of Hermite decompostion this means

$$C = C_0 + C_1 \xi$$

where C_0 is the expected value and C_1 is the standard deviation

Intuition:

- A change in frequency
- No change in damping

The stochastic LC-equations solved with Hermite decomposition (left) and with Monte-Carlo, 10000 samples (right)

Conclusions:

- Physical systems may show a behaviour different from the one predicted by deterministic models
- For stochastic differential equations spectral methods such as Hermite decomposition are often an efficient approach, competing with Monte-Carlo in accuracy