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Introduction

The LC-curcuit: a model from the book

• Resistance R

• Induction coil L

• Capacitor C
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The corresponding system of equations is

U̇ = −
I

C
İ =

U −RI

L

U is the voltage at the capacitor

I is the current through the coil
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The solution is (for small resistance)

I(t) =
U0

R0
·
ω0

ωe
· e−at sin(ωet)

• Decay constant a = R
2L

• Characteristic angular frequency ω0 = 1√
LC

• Angular frequency ωe =
√
|ω2

0 − a2|

• Characteristic resistance R0 =
√

L
C
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Observation:

C = 40µF ± 5%
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Interpretation

• We cannot be sure about the actual value for the capacity

• Even the given interval [38,42] is not 100% certain

• Since we cannot measure exactly, the value for the capacity

lies in the interval [C−, C+] with a likelihood corresponding

to that interval
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=⇒ Stochastic calculus is required!
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Stochastic calculus
Stochastic variables

Variables, which are not given by their value, but by their density
function

Gaussian normal distribution (left) and uniform distribution on
[0,1]
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Moments

• Expectation (first power moment)

E[x] =
∫

x ρ(x)dx

• Variance (second centred moment)

V ar[x] =
∫

(x− E[x])2 ρ(x)dx

8



Functions in stochastic variables

If f : R → R a real function,

τ(θ) (real) random variable

→ f(τ) also (real) random variable

Power moments are given by the density of τ , e.g.

E[f(τ)] =
∫
R

f(τ)dρ(τ)

Important: E[f(τ)] 6= f(E[τ ])
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Monte-Carlo Method

Idea: roll the dice for many times, and analyse the result.

E.g. in order to obtain the expected value E[f(τ)]

• Realise τ several times: t1, t2, . . . , tN , so that ti are approxi-

mately ρ-distributed (usually with a random generator)

• Take the N samples f(t1), f(t2), . . . , f(tN)

• Calculate the mean f̄ = 1
N

∑
f(ti).
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Thus, Monte-Carlo is a method for calculating integrals.

Problem: N is too large



Stochastic processes

A stochastic process is function of time and chance

A stochastic process u(t) with 3 scenarios, one of them – its expectation
u0(t)
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Stochastic differential equation

Here:

A differential equation with random input parameters.
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Stochastic differential equation

Here:

A differential equation with random input parameters.

Random LC-curcuit

The same equations as in the book model, but the capacity and

resistance are normally distributed:

U̇ = −
I

C
, C ∼ N [C0, C1]

İ =
U −RI

L
, R ∼ N [R0, R1]

13



Separation of chance and time
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The space of stochastic variables

• Consider Θ the vector space of (real) stochastic variables

with expectation 0.

• Θ is a Hilbert space with the inner product

< ξ1, ξ2 >= E[ξ1ξ2]

• Choose an orthogonal basis corresponding to the distribution

of input parameters!
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Gaussian distribution and Hermite decomposition

Since we assume that the input parameters are normally distrib-

uted, we have to choose a system orthogonal with respect to

the Gaussian weighting function w(x) = exp(−x2

2 )

⇒ Hermite polynomials Hn(ξ), where ξ ∼ N [0,1]

H0(ξ) = 1, H1(ξ) = ξ,

H2(ξ) = ξ2 − 1, H3(ξ) = ξ3 − 3ξ, . . .
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Project a stochastic process on the Hermite polynomials!

x(t, θ) =
∞∑

i=0

ui(t)Hi(ξ(θ))

The coefficients ui are now deterministic functions of time! They

are given by

ui(t) =
1

E[H2
i (ξ)]

E[Hi(ξ)x(t, θ)]

→ Another form of the Fourier decomposition

17



Application to differential equations

Consider the ODE

ẋ = f(x, t, θ)

with appropriate initial conditions. Its solution is the stochastic

process x(t, θ).

18



• Write x as

x(t, θ) ≈
P∑

i=0

ui(t)Hi(ξ)

• Plug in:

P∑
i=0

u̇i(t)Hi(ξ) = f(
P∑

i=0

ui(t)Hi(ξ), t, θ)

• Galerkin condition yields(
P∑

i=0

u̇i(t)Hi(ξ)− f(
P∑

i=0

ui(t)Hi(ξ), t, θ)

)
⊥ Hk(ξ), k = 0, . . . , P
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• This results in the system

u̇k = E[H2
k (ξ)]E

[
Hk(ξ) f

(
P∑

i=0

ui(t)Hi(ξ), t, θ

)]



Stochastic LC-curcuit

Assume that R, L, C are functions of ξ, ξ ∼ N [0,1]. Then the

approach is

U(t, θ) ≈
P∑

i=0

ui(t)Hi(ξ), I(t, θ) ≈
P∑

i=0

vi(t)Hi(ξ).

Doing the same steps as before we obtain
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‖Hk(ξ)‖2 u̇k =
1√
2π

∫
R
−Hk(ξ)

1

C(ξ)

P∑
i=0

vi(t)Hi(ξ) e−
ξ2

2 dξ

‖Hk(ξ)‖2 v̇k =

1√
2π

∫
R

Hk(ξ)

∑P
i=0 ui(t)Hi(ξ)−R(ξ)

∑P
i=0 vi(t)Hi(ξ)

L(ξ)
e−

ξ2

2 dξ

with initial conditions u0(0) = U0, v0(0) = I0, ui(0) = vi(0) = 0

for i > 0.

21



Comparison with Monte-Carlo

• Decay constant a = R
2L

• Characteristic angular frequency ω0 = 1√
LC

• Angular frequency ωe =
√
|ω2

0 − a2|

• Characteristic resistance R0 =
√

L
C

Let the capacity be normally distributed !



In terms of Hermite decompostion this means

C = C0 + C1ξ

where C0 is the expected value and C1 is the standard deviation

Intuition:

• A change in frequency

• No change in damping
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The stochastic LC-equations solved with Hermite decomposition

(left) and with Monte-Carlo, 10000 samples (right)



Letting L vary we obtain
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Conclusions:

• Physical systems may show a behaviour different from the

one predicted by deterministic models

• For stochastic differential equations spectral methods such

as Hermite decompostion are often an efficient approach,

competing with Monte-Carlo in accuracy
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