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Introduction

The LC-curcuit: a model from the book
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e Resistance R

e Induction coil L

e Capacitor C



The corresponding system of equations is
I

0= —— j=2"

C

U is the voltage at the capacitor

I is the current through the coil



The solution is (for small resistance)
Up wo

I(t) = == . e sin(wet)
0 We

e Decay constant a = %

e Characteristic angular frequency wg = 7Io

e Angular frequency we = \/|w§ — a?|

e Characteristic resistance Rg = \/g



Observation:

C = 40uF + 5%



Interpretation

e \We cannot be sure about the actual value for the capacity

e Even the given interval [38,42] is not 100% certain

e Since we cannot measure exactly, the value for the capacity
lies in the interval [C_,C4] with a likelihood corresponding
to that interval



—— Stochastic calculus is required!



Stochastic calculus
Stochastic variables

Variables, which are not given by their value, but by their density
function
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Gaussian normal distribution (left) and uniform distribution on
[0, 1]



Moments

e Expectation (first power moment)

Elx] = /mp(m)dw

e Variance (second centred moment)

Varlz] = /(a: — E[z])? p(z)dz



Functions in stochastic variables
If f:R— R a real function,
7(0) (real) random variable

—  f(7) also (real) random variable

Power moments are given by the density of 7, e.q.

BIf(D)] = [ f()dp(r)

Important: E[f(7)] # f(E[7])



Monte-Carlo Method

Idea: roll the dice for many times, and analyse the result.

E.g. in order to obtain the expected value E[f(7)]

e Realise 7 several times: ty1,to,...,tx, SO that t; are approxi-
mately p-distributed (usually with a random generator)

e Take the N samples f(t1), f(t2),..., f(tN)

e Calculate the mean f= % f(t;).
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Thus, Monte-Carlo is a method for calculating integrals.

Problem: N is too large



Stochastic processes

A stochastic process is function of time and chance

0 t

A stochastic process u(t) with 3 scenarios, one of them — its expectation
uo(t)
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Stochastic differential equation
Here:

A differential equation with random input parameters.
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Stochastic differential equation

Here:

A differential equation with random input parameters.

Random LC-curcuit

The same equations as in the book model, but the capacity and
resistance are normally distributed:

: 1
U=——, C ~ N|Cp,C
c [Co, C1]

R ~ N[Rg, Rq]
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Separation of chance and time
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The space of stochastic variables

e Consider © the vector space of (real) stochastic variables
with expectation O.

e © is a Hilbert space with the inner product

< &1,6 >= E[£160]

e Choose an orthogonal basis corresponding to the distribution
of input parameters!
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Gaussian distribution and Hermite decomposition

Since we assume that the input parameters are normally distrib-

uted, we have to choose a system orthogonal with respect to
2

the Gaussian weighting function w(z) = exp(—5-)

= Hermite polynomials H,(&), where £ ~ N[O, 1]

Ho(€) = 1, Hi(e) =¢,
Hy(e) = ¢2 -1, Hs(¢) =¢3 -3¢, ...
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Project a stochastic process on the Hermite polynomials!

O

z(t,0) = ) u;(t)H;(£(0))

1=0

T he coefficients u; are now deterministic functions of time! They
are given by

ElH; (&) (t,0)]

it = B e

— Another form of the Fourier decomposition
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Application to differential equations

Consider the ODE
r = f(x,t,0)

with appropriate initial conditions. Its solution is the stochastic
process x(t,0).
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e Write x as

P
x(t,0) = > u;(t)H;(€)
i=0
e Plug in:
P P
> ui(t)H;(6) = f() ui(t)H;(£),t,0)
i=0 i=0

e Galerkin condition vields

P P
<Z uz(t)Hl(f) - f(z uz(t)HZ(g)ata 0)) 1 Hk:(é-)a k=0,..., P
1=0

1=0
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e [ his results in the system

u, = E[HF (&) E

P

1=0



Stochastic LC-curcuit

Assume that R,L,C are functions of &, & ~ N[0,1]. Then the
approach is

P P

U(t,0) = ) ui(t)H; (&), I(t,0) = ) vi(t)H;(€).

i=0 i=0
Doing the same steps as before we obtain
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P

2 = L [ H (Ot S (O H () e
IHROIP e = = [ ~HMO ey 3 viOHi() e e
| (&) i, =
1 Sizoui()H; (&) — R(€) Nilqui(®)Hi(§) &
Vel L0 L(€) ¢

with initial conditions ug(0) = Up, vg9(0) = I, u;(0) = v;(0) =0
for + > 0.
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Comparison with Monte-Carlo

e Decay constant a = 4+

e Characteristic angular frequency wg = 7Io

e Angular frequency we = \/|w8 — a?|

e Characteristic resistance Rg = \/%

LLet the capacity be normally distributed !



In terms of Hermite decompostion this means

C'= Cp+ C1&

where C is the expected value and C; is the standard deviation

Intuition:

e A change in frequency

e No change in damping
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The stochastic LC-equations solved with Hermite decomposition
(left) and with Monte-Carlo, 10000 samples (right)



Letting L vary we obtain
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Conclusions:

e Physical systems may show a behaviour different from the
one predicted by deterministic models

e For stochastic differential equations spectral methods such
as Hermite decompostion are often an efficient approach,
competing with Monte-Carlo in accuracy
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