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Abstract

We present an algorithm for numerical solution of differential equations
with random input parameters using the approximation by orthogonal
polynomials.

1 Introduction

When doing mathematical modeling in science and technique, one usually as-
sumes that all input parameters like physical and material constants are known
exactly. But this is not quite true. Since no measurement can be done with
an infinite precision, we can be sure up to a certain degree about the range in
which the values lie.

This means that when doing an experiment we observe some behaviour of the
system corresponding to a set of parameters. They are all fixed numbers, but
those numbers are not known exactly. So we write down a model, we predict a
behaviour of the system, and in the experiment we observe a different behaviour.
Then we say, if the difference is not large, that the experiment corroborates the
model, and blame the measurement errors for the deviations. But what we
observe in reality is just another possible behaviour, corresponding to the true
values, and not to the ones we plugged in the model.

To overcome this obstacle we need the stochastic calculus. Here we assume
the input data to be random variables. Those are variables without a fixed
value, but with a value lying in the given range with some certain probability.

1.1 Example: the LC-circuit

We consider the LC-circuit from the Figure 1 as an example. Here the current I
through the coil and the voltage U at the capacitor obey the following differential
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Figure 1: A damped LC-circuit with a capacitor C, induction coil L and resis-
tance R

equations:

U̇ = − I

C
İ =

U −RI

L
(1)

The solution of this system is for a small resistance

I(t) =
U0

R0
· ω0

ωe
· e−at sin(ωet) (2)

with

• Decay constant a = R
2L

• Characteristic angular frequency ω0 = 1√
LC

• Angular frequency ωe =
√
|ω2

0 − a2|

• Characteristic resistance R0 =
√

L
C .

The system will always behave corresponding to the laws (1). The only
problem is - we do not know the exact values. As we can see on the Figure 2,

Figure 2: A capacitor
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electronic components usually have a value lying in a certain range. And even
this is not sure - there are always some manufacturing errors! Hence we should
find a way to plug in this information into the Model 1 and solve the resulting
system.

2 Stochastic calculus - a crash course

As first we introduce stochastic (or random) variables. Unlike ”usual” determin-
istic variables, their values are not numbers, but probability distributions. The
density of a distribution shows the probability of finding the value in some cer-
tain range. As an example we look at the densities of two typical distributions:
the uniform distribution and the Gaussian distribution.

Figure 3: The uniform distribution (right) and the Gaussian distribution (left)

The uniform distribution on [−1, 1] implies, that the values between −1 and
1 are taken with equal probability. In the Gaussian distribution any value is
possible, but the values far from the expectation become very improbable. Both
distributions are symmetric.

Moments Stochastic variables are characterized by real numbers called power
moments and their centered moments. The most important ones are

• Expectation (first power moment) E[x] =
∫

x ρ(x)dx.

• Variance (second centered moment) V ar[x] =
∫

(x− E[x])2 ρ(x)dx.

The expectation describes the mean value after a high number of experiments.
The variance describes the deviation from the mean value. Another useful
moment is the third centered moment - the asymmetry or skewness. As the
name suggests, it describes how the maximum of the density function deviates
from the expected value.

Functions of stochastic variables The next important concept are func-
tions in stochastic variables. If namely f : R → R is real valued function and τ
is a random variable, then we can plug in τ in f . What comes out is another
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Figure 4: A stochastic process u(t, θ) with 3 scenarios, one of them – its expec-
tation u0(t)

random variable. We denote this new variable by f(τ). We do not need the
density function of f(τ) if we know the distribution of τ , e.g.

E[f(τ)] =
∫

R
f(τ)dρ(τ). (3)

Caution! In general for non-linear f E[f(τ)] 6= f(E[τ ]). This means that
when dealing with a non-linear model even symmetric deviations in the input
will lead to a different expected value in the output.

Stochastic processes Consider a process x = g(t), where t and x represent
time and state respectively. If x is now given by a random variable at each time
point t we call it stochastic process. We write in this case x = x(t, θ). One can
also see such a process as a function of time and chance.

Differential equations with random input parameters Now we arrive
at the final destination - differential equations with random input parameters.
The solutions are again well-defined as solutions of initial value problems, but
they are now stochastic processes.

Returning to the LC-circuit, we may obtain the following system:

U̇ = − I

C
, C ∼ N [C0, C1] (4)

İ =
U −RI

L
, R ∼ N [R0, R1] (5)

Here and later N [A,B] implies a Gaussian distribution with expectation A and
variance B.

Our goal is now to construct an algorithm for numerical solution of equations
of this type. There are two reasonable demands on such an algorithm.

1. The costs for the solution of the stochastic model should lie in the same
range as for the deterministic problem.

2. The result should still mirror the physical properties.
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3 Separation of space and time

After a theoretical preparation we will see how to decompose a stochastic process
in a time component and a chance component. The idea of separating the
components of the problem is quite new for stochastic processes. But when
dealing with with non-stationary partial differential equations one of the tools
is to split up the model into space and time.

Assumptions For simplicity we assume that only one of the parameters is
stochastic and the rest is fixed. Moreover we assume the problem to be well-
posed, and so the solution depends continuously on the input parameters. Our
last assumption is that the input parameter is Gaussian.

Consider the ODE
ẏ = F (y, t, ξ) (6)

where ξ is a random Gausssian variable with E[ξ] = 0 and V ar[ξ] = 1. If the
input parameter a has expectation a0 and variance a2

1, we can write it as

a = a0 + a1ξ. (7)

Continuous dependence means that we can write the solution of(6) as y =
y(t, ξ). This is a special stochastic process, where y is differentiable in t and
continuous in ξ.

Vector spaces Consider the vector space Ξ of random variables with a finite
variance which are functions of ξ. It is isomorphic to the space L2

ρ of square-
integrable functions with respect to the weighting function ρ - the density of ξ.
In our case is

ρ(θ) =
1√
2π

exp(−x2

2
) (8)

In the space Ξ choose the subspace Ξ0 of variables with expectation 0. Now Ξ0

is a Hilbert space with the inner product

< ξ1, ξ2 >= E[ξ1ξ2]. (9)

Orthogonal polynomials From here we go the standard way of numerical
mathematics - we choose an orthogonal basis in this space and represent the
problem in this basis. Without any information about the problem we choose
the orthogonal polynomials, which are in this case Hermite polynomials.

The Hermite-polynomials are

H0(ξ) = 1, H1(ξ) = ξ, (10)

H2(ξ) = ξ2 − 1, H3(ξ) = ξ3 − 3ξ, . . . (11)

In general they are given by a recurrence relation

H0(ξ) = 1; H1(ξ) = ξ; Hk+1(ξ) = ξHk(ξ)− kHk−1(ξ). (12)
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When working in Ξ0 we have to start with H1 due to E[Hi(ξ) = 0].
The crucial property of Hermite polynomials is orthogonality. For i 6= j

holds

< Hi(ξ),Hj(ξ) >= E[Hi(ξ)Hj(ξ)] =
∫

R
Hi(ξ)Hj(ξ)

1√
2π

exp(−ξ2

2
)dξ = 0.

(13)
For this reason we can expect superconvergence when approximating with them.

Hermite decomposition Finally we obtain the desired tool. Consider a
stochastic variable x = x(ξ) ∈ Ξ, and assume x to be a continuous function.
Then x− E[x] = x̃ ∈ Ξ0. We can write x as

x(ξ) = E[x] + x̃ = E[x] +
∞∑

i=1

ciHi(ξ), ci ∈ R. (14)

Subtracting E[x] and calculating the scalar product with Hk(ξ) on both sides
we obtain immediately a formula for the coefficients due to orthogonality:

< x̃(ξ),Hk(ξ) >=<
∞∑

i=1

ciHi(ξ),Hk(ξ) >

=
∞∑

i=1

ci < Hi(ξ),Hk(ξ) >= ck < Hk(ξ),Hk(ξ) > (15)

ck =
E[x(ξ)Hk(ξ)]

E[Hk(ξ)Hk(ξ)]
. (16)

It makes sense to define c0 = E[x] and write x(ξ) =
∑∞

i=0 ciHi(ξ). The for-
mula (16) holds true for k = 0 too.

From the coefficients it is rather easy to compute the moments. The expected
value is per definition the first coefficient; the variance is

V ar[x] = V ar[x̃] = E[x̃2] = E[

( ∞∑
i=1

ciHi(ξ)

)2

] = E[
∞∑

i=1

∞∑
j=1

cicjHi(ξ)Hj(ξ)]

=
∞∑

i=1

∞∑
j=1

cicj E[Hi(ξ)Hj(ξ)] =
∞∑

i=1

c2
i E[Hi(ξ)Hi(ξ)]. (17)

Further moments can be calculated in a similar manner. Note that E[Hi(ξ)Hi(ξ)]
are fixed numbers (equal i!).

Consider now y(t, ξ) as above. At each fixed time point t we can make the
decomposition (14-16), and hence everywhere:

y(t, ξ) =
∞∑

i=0

ui(t)Hi(ξ) (18)
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where ui(t) are deterministic functions of time. They are given by

uk(t) =
E[y(t, ξ)Hk(ξ)]
E[Hk(ξ)Hk(ξ)]

. (19)

This decomposition is called Hermite decomposition and is the central result
of this section. It has been used for stochastic finite elements and, recently for
stochastic ODE’s.

Application to differential equations We return to the differential equa-
tion

ẏ = F (y, t, ξ) (20)

As we have learned, we can write y(t, ξ) =
∑∞

i=0 ui(t)Hi(ξ). Since we cannot
calculate infinitely many coefficients, we have to truncate the series:

y(t, ξ) =
P∑

i=0

ui(t)Hi(ξ). (21)

Apply to (20):
P∑

i=0

u̇iHi(ξ) = f(t,
P∑

i=0

ui(t)Hi(ξ), ξ). (22)

Taking on both sides the scalar product with Hk(ξ), k = 0, . . . , P leads to a
system with P + 1 unknowns and the same number of differential equations.
The left side becomes

<
P∑

i=0

u̇iHi(ξ),Hk(ξ) >=
P∑

i=0

u̇i < Hi(ξ),Hk(ξ) >= u̇k < Hk(ξ),Hk(ξ) > .

(23)
On the right side we cannot simplify without knowing the structure of F . Now
we obtain the following system:

E[Hk(ξ)Hk(ξ)]u̇k = E[F (y, t, ξ)Hk(ξ)], k = 0, . . . P (24)

This is a purely deterministic system of equations. It seems to be expensive
because of the integrals we have to calculate on the right hand side. But usually
the structure of F allows us to simplify those calculation. Even if not, we can
use the same quadrature rule to all P + 1 integrals (coming from the P + 1
equations) and the costs remain low in terms of F -evaluations.

We may expect superconvergence since the Galerkin condition is satisfied:
the truncation error is orthogonal to the approximation space (can be checked
easily).
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4 Example

We consider again the LC-circuit

U̇ = − I

C
İ =

U −RI

L

where C = C(ξ), e.g. C = C0 + C1ξ. The approach is

U(t, θ) ≈
P∑

i=0

ui(t)Hi(ξ), I(t, θ) ≈
P∑

i=0

vi(t)Hi(ξ). (25)

Plug in (24) yields for U

< Hk(ξ),Hk(ξ) > u̇k = E[−Hk(ξ),
1

C(ξ)

P∑
i=0

vi(t)Hi(ξ)]

=
1√
2π

∫
R
−Hk(ξ)

1
C(ξ)

P∑
i=0

vi(t)Hi(ξ) e−
ξ2

2 dξ (26)

and similarly for I

< Hk(ξ),Hk(ξ) > v̇k =

1√
2π

∫
R

Hk(ξ)
∑P

i=0 ui(t)Hi(ξ)−R
∑P

i=0 vi(t)Hi(ξ)
L

e−
ξ2

2 dξ (27)

Since k goes from 0 to P we obtain 2(P + 1) differential equations for 2(P + 1)
unknown coefficients u0, v0, u1, v1, . . . , uP , vP . The initial values are u0(0) =
U0, v0(0) = I0 and uk(0) = vk(0) = 0 k = 1, . . . , P .

5 Results

Recall that the angular frequency depends on the capacity, but the decay con-
stant does not. We compare the solution deterministic model with the expecta-
tion of the solution of the stochastic model with a random Gaussian capacity.
Since the decay does not depend on C we expect a change in frequency with the
same amplitude. What we should observe is a ”phase shift” at later time points.
On the Figure 5 we can see on the left the total behaviour in the determinis-
tic and stochastic case; on the left we zoom to see that the amplitudes agree
while the frequencies differ. The diagrams are not smooth due to the plotting
properties and not because of a rough solution.

The solution was obtained with P = 6 and hardly differs from the solution
with P = 5. The computational time was approximately 5 minutes while the
deterministic problem takes less then 1 minute.
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Figure 5: The deterministic (blue) and stochastic expectation (green) of the
voltage in an LC-circuit (left) and a fragment showing phase difference (right).
The capacity is stochastic

Figure 6: The deterministic (blue) and stochastic expectation (green) of the
voltage in an LC-circuit (left). The induction is stochastic
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Random Induction If we assume Induction to be stochastic then we expect
an impact on the decay behaviour too. We can observe it on the Figure 6. At
this point we can emphasize once again the importance of stochastic models.
Suppose we want to maintain some certain voltage by repeating impulses after
some time T , and calculate this time T taking the exact values. At the diagram
we can see, that if the value of the induction is not certain, then the voltage
will go below the limit before the calculated time point T .

Comparison with Monte-Carlo The standard tool for problems with ran-
dom input parameters is Monte-Carlo which is well known for its slow conver-
gence. On the Figure 7 we can see the deterministic solution (green) and the

Figure 7: The deterministic (blue) and stochastic expectation calculated with
Monte-Carlo (red) of the voltage in an LC-circuit (left). The capacity is sto-
chastic

Monte-Carlo solution (red) using 20000 samples. The computation time is in
the range of two hours, the result shows a clearly stronger decay and contradicts
to the physical independence of the decay on capacity. Hence the convergence
is not reached.

6 Summary and outline

Summary We have seen that deterministic models are always accompanied
by stochastic ones, which arise whenever we plug in random variables instead
of fixed values. And often those stochastic models are more appropriate to de-
scribe for instance the outcome of repeated experiments. We have specialized on
models with ordinary differential equations and, using some functional analy-
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sis we have constructed an efficient algorithm, which obviously conserves some
physical properties and converges fast.

About the work The author worked at the topic during his work placement
at Siemens AG. He had to analyze this new approach to the problem. Many
examples he has studied may not be published in this paper as well as some
new insights.
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