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Abstract

In this work we present conservative FE-elements which were introduced by Cornelia
Blanke in her diploma thesis 2004 [Bla04] .

The usual way to solve a partial differential equation (PDE) with the finite element method
(FEM) is to derive the weak formulation and discretize it with the functions in a suitable
choosen finite-dimensional function space. For reasons of simplicity one mostley uses linear
or bilinear elements for the function space. This choice of the function space isn’t always
suitable, because the laws of conservation aren’t fulfilled. This may lead to instabilities and
unphysical results.

In this paper we present this new type of FE-elements which were invented by Cornelia
Blanke. With a more physical approach to solve e.g. the Navier-Stokes-Equation with FEM
we get the so-called conservative FE-elements. Particularly the laws of conservation for mass
and energy in incompressible fluids are fulfilled by construction, which leads to an inherent
stability for this method.
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1 Motivation

It is common practice for mathematicians to regard the following properties of a numerical
method:

• Consistency
This means, that the error of the discretized system tend to zero if the mesh size goes
to zero. E.g. consistency means, that the local error tends to zero.

• Stability
It is usual to say that a method is stable if an error of the input data has only ”small”
effects on the solution (the mathematicans would say that there is a continuous relation
between the input error and the behaviour of the solution)

• Convergence
A method is said to be convergent if the global error of this method tends to zeros if the
mesh size tends to zero too. For many problems e.g. for elliptic PDEs holds the fact,
that a stable and consistent method is always convergent.

• Influence of the grid
The propertes of a good numerical method, e.g. the convergent rate or smoothness of
the solution, should be independent of mesh size and layout.

This point of view is often to narrow minded, because one looks only to the mathematical
aspect of a problem. Due to the fact, that the most used PDE have a physical meaning, it
would be more appropriate to consider the physical laws of the context.

• Physical laws
Many physical laws describe some kind of conservation. This means, that for instance
the energy in a closed system is constant, or that the mass won’t vanish or increase. But
also momentum is preserved. Unfortunately many kinds of ansatz functions don’t have
this porperty of conservation.

For instance the common way to practice FEM is to choose a square grid and to take
bilinear ansatz functions for the FEM method. We all know that this method is consistent
and it converges quite good. But the bilinear ansatz functions don’t preserve the energy or
the mass. So it can happen that during the computation the mass or the energy in the system
increases. But this is totally unrealistic. So you can get unphysical results.
Later on we will present you conservative ansatz function, but first we take a short look at
the Navier-Stokes-Equation to understand our problem in a better way.

2 The Navier-Stokes-Equation

In this paper we will discuss about incompressible viscous fluid. This means that the density
of the fluid is constant in time and space. Therefore we have three degrees of freedom in our
problem:

The pressure p and the velocity u. The velocity u has one component parallel to the x−axis
and one parallel to the y−axis. To be more precise we introduce the following notations:

u : Ω ⊂ R2 7→ R2

u(t, x1, x2) :=
(

u1(t, x1, x2)
u2(t, x1, x2)

)
=: u(x)

p : Ω ⊂ R2 7→ R
p(t, x1, x2) =: p(x)
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With the abbreviation ∂t for the derivation
∂

∂t
and ∂i for

∂

∂xi
we get the following notations

∂tu :=
(

∂tu1

∂tu2

)
∇ · u := div u = ∂1u1 + ∂2u2

∇p :=
(

∂1p

∂2p

)
∆u :=

(
∆u1

∆u2

)
=

(
∂2

1u1 + ∂2
2u1

∂2
1u2 + ∂2

2u2

)
(u · ∇)u :=

(
u · ∇u1

u · ∇u2

)

Now we are able to introduce the Navier-Stokes-Equation. It is:

∂tu + (u · ∇)u− 1
Re

∆u +∇p = f (1)

div u = 0 (2)

The equation (1) is called momentum equation and (2) is called continuity equation.
If we regard the equation (1) we will discover, that this equation deals with accelerations.

To get a better view of this we write down an equivalent form of (1):

∂tu = −(u · ∇)u +
1

Re
∆u−∇p− f

The left hand side gives us the total acceleration of a fluid particle. On the right hand side
we have several terms with different meanings.

• (u ·∇)u is called the convective term. This means transport of kinetic energy by moving
the fluid particle.

• 1
Re∆u is called the diffusion term. This is some kind of friction in the fluid. This means
that momentum is transported by friction to the particle around itself. Some people also
say that this effect is induced by the intermolecular momentum transport.

• ∇p is the pressure gradient. It represents the effect of forces which were induced by
pressure.

• f is the symbol for the outer forces. This can be for example be gravitational or electro-
magnetic effects.

The continuity equation (2) says that the mass is preserved if we have an incompressible
fluid. It is very useful to make this assumption in many cases, because the ühysics and the
computation became much easier. Furthermore even the air can be regarded as incompressible
if the velocity is less than 0.3 ·Mach.

3 Laws of Conservation

Now we will care about the laws of conservation. Especially we take a close look at the energy
conservation.

Due to the fact that we regard only with incompressible fluids we can define the energy by

Ekin =
∫

Ω

1
2
||u||2 dΩ =

∫
Ω

1
2
uiui dΩ

if we use the Einstein Summation.
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To be sure that we preserve energy, we must have

d

dt
Ekin ≤ 0.

How can we see this?
Let us just calculate

d

dt
Ekin.

d

dt
Ekin =

d

dt

∫
Ω

1
2
uiui dΩ =

∫
Ω

1
2
∂t(uiui) dΩ product rule=

∫
Ω

1
2
ui · ∂tui + ∂tui · ui dΩ

=
∫

Ω
ui · ∂tui dΩ

According to the momentum equation (1) we replace ∂tui by

−(uj∂j)ui +
1

Re
∂j∂jui − ∂ip.

In the next step we get

d

dt
Ekin =

∫
Ω

ui · ∂tui dΩ =
∫

Ω
ui · (−(uj∂j)ui +

1
Re

∂j∂jui − ∂ip) dΩ

= −
∫

Ω
uiuj∂jui dΩ +

1
Re

∫
Ω

ui∂j∂jui dΩ−
∫

Ω
ui∂ip dΩ

Using the relation ∂j(ujui) = uj · ∂jui + ∂juj · ui
∂juj=0

= uj · ∂jui we can simplify several
terms. For the first term we get

0 =
∮

∂Ω
uiuui d(∂Ω) Gauss=

∫
Ω

∂j(uiujui) dΩ
∫

Ω
ui · ∂j(ujui) dΩ +

∫
Ω

∂jui · (ujui) dΩ

=
∫

Ω
uiuj · ∂jui dΩ +

∫
Ω

∂jui · (ujui) dΩ = 2 ·
∫

Ω
uiuj · ∂jui dΩ

In the first ”=” sign we used the fact that we regard a closed system which has no net
flux. Therefore the first term vanishes.

In an analogous way we get for the last term

0 =
∮

∂Ω
pu d(∂Ω) Gauss=

∫
Ω

∂i(pui) dΩ =
∫

Ω
p · ∂iui dΩ +

∫
Ω

∂ip · ui dΩ

∂iui=0=
∫

Ω
∂ip · ui dΩ

Till now we have
d

dt
Ekin = −

∫
Ω

uiuj∂jui dΩ︸ ︷︷ ︸
=0

+
1

Re

∫
Ω

ui∂j∂jui dΩ−
∫

Ω
ui∂ip dΩ︸ ︷︷ ︸

=0

=
1

Re

∫
Ω

ui∂j∂jui dΩ Green’s rule= − 1
Re

∫
Ω

∂jui · ∂jui︸ ︷︷ ︸
≥0

dΩ ≤ 0.

We have seen that the continuity equation is the key for preserving energy in our system.
This leads us to the idea that we should look for an ansatz function f which fulfills pointwise

div f = 0.

Then we know that the energy is preserved.

4



4 Conservative FE-elements

First we will state that we use a so called partial staggerd grid. In the figure below we see
how the degrees of freedom are orderd. The horizontal velocity is named u and the vertical
velocity is named v and the width of the square is h. To say it in words:

• The pressure p is stored in the middle of the square.

• The velocities u and v for x- and y-directions are stored in the corners of the square.

Now we will show that the bilinear ansatz function aren’t good because the divergence
isn’t zero. The bilinear ansatz function is made out of the four elemental shape functions

φ1(x, y) = (1− x) · (1− y)
φ2(x, y) = x · (1− y)
φ3(x, y) = (1− x) · y
φ4(x, y) = x · y

The bilinear interpolation of the velocities u1, u2, u3, u4, v1, v2, v3, v4 reads then

−→u =
(

u(x, y)
v(x, y)

)
=

(
u1(1− x)y + u2xy + u3(1− x)(1− y) + u4x(1− y)
v1(1− x)y + v2xy + v3(1− x)(1− y) + v4x(1− y)

)
=

(
u3 + (u4 − u3)x + (u1 + u3)y + (−u1 + u2 + u3 − u4)xy

v3 + (v4 − v3)x + (v1 + v3)y + (−v1 + v2 + v3 − v4)xy

)
A example of a bilinear function is shown in the figure below.

Now we must only apply the div operator and we see that

div−→u = (u4 − u3) + (−u1 + u2 + u3 − u4)y + (v1 + v3) + (−v1 + v2 + v3 − v4)x 6= 0

The reason for this behavior is that the velocities u and v aren’t coupled.We leave now
this counterexample of a divergentfree FE-element and look ahead to consturct an appropriate
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ansatz function. In the first step, we derive the discrete continuity equation. The idea is that
we make a linear interpolation on the edges of the velocitices in the corners. We get then

u1 + u3

2
· h +

v3 + v4

2
· h =

u2 + u4

2
· h +

v1 + v2

2
· h

⇐⇒ u1 − u2 + u3 − u4 − v1 − v2 + v3 + v4 = 0

Our task is to fulfill div f = 0 pointwise. The main idea is that we use our freedom in
choice for the ansatz function. First we divide the square element into four equal triangels
like in the picture below.

On each triangle we make a linear interpolation of the velocities. Now we search a velocity
u5 and v5 such that on every tringale the divergence is zero. The condition div−→u gives use
the relations:

• upper triangle

∂xu = u2 − u1, ∂yv = v1 + v2 − 2v5

=⇒ v5 =
1
2
(v1 + v2 + u2 − u1)

• lower triangle

∂xu = u4 − u3, ∂yv = 2v5 − v3 − v4

=⇒ v5 =
1
2
(v3 + v4 + u3 − u4)

• left triangle

∂xu = 2u5 − u1 − u3, ∂yv = v1 − v3

=⇒ u5 =
1
2
(u1 + u3 + v3 − v1)

• right triangle

∂xu = u2 + u4 − 2u5, ∂yv = v2 − v4

=⇒ u5 =
1
2
(u2 + u4 + v2 − v4)

When we regard the discrete continuity equation we see that the first two relations are
equivalent and the last to equation are equivalent. The result is that we have a continous
function which is divergence free. It is the best, if we define u5 by the arithmetic mean of the
last two equations and analog for v5.

u5 =
1
4
(u1 + u2 + u3 + u4 − v1 + v2 + v3 − v4)

v5 =
1
4
(−u1 + u2 + u3 − u4 + v1 + v2 + v3 + v4)

We also see that we get here a coupling of the u and v velocities. The last step isn’t so
difficult, cause we still have to present a suitable ansatz function. But now we have the right
interpolation scheme and we just state the result:
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A little bit more illustrative are the following picture of this basis function. You must keep in
mind that the u and v component are coupled and therefor both parts are not zero.

People are still working in this field an e.g. in [Wei05] the [Bla04]-elements are agumented
there for an better application.
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[Bla04] C. Blanke. Kontinuitätserhaltende Finite-Elemente-Diskretisierung der Navier-
Stokes-Gleichung. Diplomarbeit, Technische Universität München, Fakultät für In-
formatik, Forschungs- und Lehreinheit Informatik V, 2004.

[Wei05] T. Weinzierl. Eine Cache-optimale Implementierung eines Navier-Stokes Lösers unter
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