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Computation of heat conduction ...

.. Within ceramic blocks
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* Modelling:
from nature to mathematics

* Simulation:
solution of the mathematical problem by
finite elements and multigrid method

* Visualization of the results:
pictures of 1sothermal lines, temperature
distribution and heat flow vectors



What 1s heat conduction? ‘

heat conduction:

R4 diffusive transport of energy
* in solids, liquids and gases,
IF caused by Brownian motion

of atoms and molecules



Fourier’s law of heat conduction ‘

Insulation
A The amount Q of transferred

/ heat 1s proportional to:

* temperature difference 7',-7,
Q e cross-sectional area 4

e period of time At

N e inverse thickness / /Ax
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> = ) = A

Temp 1

17 — 15
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The coefficient A is called thermal conductivity
and strongly depends on the material.



Computation of heat conduction ...

Fourier’s law (continued)

A L
@=A Ax

Because of [Q] =Joule = Watt sec, [T]=Kelvin
the unit of the thermal conductivity A has to be W/(mK).

AAt




Fourier’'s law (continued)

transferred heat with respect to time
@ _ )\TI — 12
dt Azx

heat flow : Q = A W]

transferred heat with respect to time and area

-1, ‘W
heat flux q':%:)\ 1A;172 [

|

m?2
In the limit Ax — 0, we obtain Fourier’s law:

G = —A\VT




Derivation of Fourier’'s PDE

Computation of heat conduction .

volume element dV = dx dy dz

A
z+dz ¢

.. within ceramic blocks

Q(-T) :%3 dydza Y
Oz + dz) = (s + %d:c) dy dz

Net heat entry by x-direction:
Q(z) — Q(z + dz) = —?Edm dy dz
T

y- and z-direction accordingly.

0q 0q,
—&da? dydz, —;dw dy dz
2z




Fourier’s PDE (continued) ‘

T T 0T
__)\8j qy _)\87 j, = —A—

{ remember Fourier's law:
ox

Oy’ 0z

0 ,. 0T o, 0T 0, 0T
é‘x()\(?x) é‘y()\é‘y) 8z()\8z) !

or simply: div(AVT) =0




Compnatation r{.‘.." eai conduction
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... of I" type (Dirichlet)
temperature given: 1 =1,

... of 2" type (Neumann)

. o1
heat flux given: ¢, = —A

on

... of 3" type (mixed / Cauchy)

coupling of convection ( + radiation )
and conduction



Mathematical model ‘

PDE for steady-state conditions: div(A\VT) =0

T=T,

A =0.025 W/(mK) Ay = 0.61 W/(mK)



Solution 1n the weak sense

Let V = {v c H'(Q) with v =0 on FD}
:>/’Ud’zlfv()\VT)dx:O YoeV
0

— [ oA (VT)TvdS — /Q MV (Vo)dx =0 Yo eV

JoQ

—0
i,@ Find a function T € Tp,, + V so that
f MV (Vo)dx =0 Yo eV

Q

where T, (x,y) =ay + [ °
N fulfills the inhom. Dirichlet b. c.
_




ic blocks

. within ceram

Computation of heat conduction .

x(1-y)

space of V
o0
Take a subspace S <V with dim § < o

dim V
1z:
finite element space of bilinear
functions on squares
(Pz(X,Y)

Choosing a sub

Galerkin ansa
We choose

Problem




Element stiffness matrix A®©

A = /(e) A (Vi) (Vi) dx

A© =)@ /6
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Go from coarsest grid level to finest by recursively performing
0 interpolation and adding hierarchical surpluses:

o C T
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Compute the residual on finest grid level and perform
0 one step of weighted Jacobi method: T%*) = T® - @) D1 pes®

approximation to the solution in k-th iteration A T
relaxation parameter
inverse of diagonal matrix

Recursively restrict the residual to the next coarser grid level
0 and perform an iteration step there (until top level is reached).



Cell-wise processing

. W
D=

E o i

brick

/| 77 Dirichlet cell
/ //(nthngtd)
% % %P ano curve




Computation of the cell residual ‘

LY * T,
T, ..., T,: current approximation
We defineT := (T,, T,, T;, T,)!
LB, * T,
(AOT), / AO(V Z T (Vi) dx

(A® T).: contribution of the cell to
the residual in node i



Interpretation of the cell residual ‘

Example: (A®T), :/ AV Tye))T (i) dx

YA

Cell residual 1in node 1:
heat flow node i = cell

(e) j=1

example

res in node 4

-->

., %
—v
vector (y,x)" on the unit square
> X /

weighting
for res,
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A temperature node (@) has four surrounding cells.
Accordingly, the residual of one node is assembled
by four cell residuals.

')&C/B '(}&C+}\.d )/6 -}\'d/3

7‘*0 7‘*d
2(h ),

® =) -(A,+A.)/6 Athg)/3 (AN y)/6
7‘*a 7‘*b

-}\'8/3 '(}&a+}¥b)/6 -}\'b/3

Assembled residual: net heat flow node =» surroundings




Weighted Jacobi on finest grid ‘

Ti(kﬂ) — Ti(k) - D{] resi(k)
where D, =2/3 (A, + A, + A.+ A,)

if (res/¥ =0) no correction
if (res®¥ > 0) decrease temperature
if (res” < 0) increase temperature



Restriction of the residual ‘

Restriction =  transporting the residual
to the next coarser level
1/3 2/3 '|O

e fine grid nodes

(O coarse grid nodes

2/9 4/9 2/3
X weighting factors

for calculating the

1/9 2/9 1/3 coarse cell residual
in the upper right
corner



Correction on coarser grids ‘

Remember the weighted Jacobi method:
T0D =T® - D1 res®

res{M.  obtained by restriction

D In general, coarse grid cells
consist of fine grid cells with
different thermal conductivities.

Problem: how to compute D




